• This record comes from PubMed

Influence of Processing Techniques on Microstructure and Mechanical Properties of a Biodegradable Mg-3Zn-2Ca Alloy

. 2016 Oct 28 ; 9 (11) : . [epub] 20161028

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

New Mg-3Zn-2Ca magnesium alloy was prepared using different processing techniques: gravity casting as well as squeeze casting in liquid and semisolid states. Materials were further thermally treated; thermal treatment of the gravity cast alloy was additionally combined with the equal channel angular pressing (ECAP). Alloy processed by the squeeze casting in liquid as well as in semisolid state exhibit improved plasticity; the ECAP processing positively influenced both the tensile and compressive characteristics of the alloy. Applied heat treatment influenced the distribution and chemical composition of present intermetallic phases. Influence of particular processing techniques, heat treatment, and intermetallic phase distribution is thoroughly discussed in relation to mechanical behavior of presented alloys.

See more in PubMed

Advesian M.M., Baker H. ASM Specialty Handbook: Magnesium and Magnesium Alloys. ASM International; Materials Park, OH, USA: 1999.

Witte F., Fischer J., Nellesen J., Crostack H.-A., Kaese V., Pisch A., Beckmann F., Windhagen H. In vitro and in vivo corrosion measurements of magnesium alloys. Biomaterials. 2006;27:1013–1018. doi: 10.1016/j.biomaterials.2005.07.037. PubMed DOI

Staiger M.P., Pietak A.M., Huadmai J., Dias G. Magnesium and its alloys as orthopedic biomaterials: A review. Biomaterials. 2006;27:1728–1734. doi: 10.1016/j.biomaterials.2005.10.003. PubMed DOI

Zhang B., Hou Y., Wang X., Wang Y., Geng L. Mechanical properties, degradation performance and cytotoxicity of Mg-Zn-Ca biomedical alloys with different compositions. Mater. Sci. Eng. C. 2011;31:1667–1673. doi: 10.1016/j.msec.2011.07.015. DOI

Gupta M., Sharon N.M.L. Magnesium, Magnesium Alloys, and Magnesium Composites. John Wiley & Sons; Hoboken, NJ, USA: 2011.

Du H., Wei Z., Liu X., Zhang E. Effects of Zn on the microstructure, mechanical property and bio-corrosion property of Mg-3Ca alloys for biomedical application. Mater. Chem. Phys. 2011;125:568–575. doi: 10.1016/j.matchemphys.2010.10.015. DOI

Zhang S., Zhang X., Zhao C., Li J., Song Y., Xie C., Tao H., Zhang Y., He Y., Jiang Y., et al. Research on an Mg-Zn alloy as a degradable biomaterial. Acta Biomater. 2010;6:626–640. doi: 10.1016/j.actbio.2009.06.028. PubMed DOI

Baltzer N., Copponnex T. Precious Metals for Biomedical Applications. Elsevier Science; Cambridge, UK: 2014.

Raman R.K.S., Harandi S.E. Understanding Corrosion-Assisted Cracking of Magnesium Alloys for Bioimplant Applications. In: Singh A., Solanki K., Manuel M.V., Neelameggham N.R., editors. Magnesium Technology 2016. John Wiley & Sons; Hoboken, NJ, USA: 2016.

Beck A. Magnesium und Seine Legierungen. Springer; Berlin/Heidelberg, Germany: 1939.

Ben-Hamu G., Eliezer D., Shin K.S. The role of Si and Ca on new wrought Mg-Zn-Mn based alloy. Mater. Sci. Eng. A. 2007;447:35–43. doi: 10.1016/j.msea.2006.10.059. DOI

Jardim P.M., Solorzano G., Sande J.B.V. Second phase formation in melt-spun Mg-Ca-Zn alloys. Mater. Sci. Eng. A. 2004;381:196–205. doi: 10.1016/j.msea.2004.04.043. DOI

Yin D.-S., Zhang E.-L., Zeng S.-Y. Effect of Zn on mechanical property and corrosion property of extruded Mg-Zn-Mn alloy. Trans. Nonferr. Met. Soc. 2008;18:763–768. doi: 10.1016/S1003-6326(08)60131-4. DOI

Xu L., Yu G., Zhang E., Pan F., Yang K. In vivo corrosion behavior of Mg-Mn-Zn alloy for bone implant application. J. Biomed. Mater. Res. A. 2007;83:703–711. doi: 10.1002/jbm.a.31273. PubMed DOI

Geng L., Zhang B.P., Li A.B., Dong C.C. Microstructure and mechanical properties of Mg-4.0Zn-0.5Ca alloy. Mater. Lett. 2009;63:557–559. doi: 10.1016/j.matlet.2008.11.044. DOI

Ortega Y., Monge M.A., Pareja R. The precipitation process in Mg-Ca-(Zn) alloys investigated by positron annihilation spectroscopy. J. Alloys Compd. 2008;463:62–66. doi: 10.1016/j.jallcom.2007.09.044. DOI

Sun Y., Zhang B., Wang Y., Geng L., Jiao X. Preparation and characterization of a new biomedical Mg-Zn-Ca alloy. Mater. Des. 2012;34:58–64. doi: 10.1016/j.matdes.2011.07.058. DOI

Oh J.C., Ohkubo T., Mukai T., Hono K. TEM and 3DAP characterization of an age-hardened Mg-Ca-Zn alloy. Scr. Mater. 2005;53:675–679. doi: 10.1016/j.scriptamat.2005.05.030. DOI

Wan Y., Xiong G., Luo H., He F., Huang Y., Zhou X. Preparation and characterization of a new biomedical magnesium–calcium alloy. Mater. Des. 2008;29:2034–2037. doi: 10.1016/j.matdes.2008.04.017. DOI

Li Z., Gu X., Lou S., Zheng Y. The development of binary Mg-Ca alloys for use as biodegradable materials within bone. Biomaterials. 2008;29:1329–1344. doi: 10.1016/j.biomaterials.2007.12.021. PubMed DOI

Larionova T.V., Park W.-W., You B.-S. A ternary phase observed in rapidly solidified Mg-Ca-Zn alloys. Scr. Mater. 2001;45:7–12. doi: 10.1016/S1359-6462(01)00982-4. DOI

Sustek V., Cadek J., Spigarelli S. Creep behavior at high stresses of a Mg-Zn-Ca-Ce-La alloy processed by rapid solidification. Scr. Mater. 1996;35:449–454. doi: 10.1016/1359-6462(96)00141-8. DOI

You B.S., Park W.W., Chung I.S. The effect of calcium additions on the oxidation behavior in magnesium alloys. Scr. Mater. 2000;42:1089–1094. doi: 10.1016/S1359-6462(00)00344-4. DOI

Gao X., Zhu S.M., Muddle B.C., Nie J.F. Precipitation-hardened Mg-Ca-Zn alloys with superior creep resistance. Scr. Mater. 2005;53:1321–1326. doi: 10.1016/j.scriptamat.2005.08.035. DOI

Gu X.N., Zhou W.R., Zheng Y.F., Cheng Y., Wei S.C., Zhong S.P., Xi T.F., Chen L.J. Corrosion fatigue behaviors of two biomedical Mg alloys—AZ91D and WE43—In simulated body fluid. Acta Biomater. 2010;6:4605–4613. doi: 10.1016/j.actbio.2010.07.026. PubMed DOI

Ghomashchi M.R., Vikhrov A. Squeeze casting: An overview. J. Mater. Process. Technol. 2000;101:1–9. doi: 10.1016/S0924-0136(99)00291-5. DOI

Kleiner S., Beffort O., Wahlen A., Uggowitzer P.J. Microstructure and mechanical properties of squeeze cast and semi-solid cast Mg-Al alloys. J. Light Met. 2002;2:277–280. doi: 10.1016/S1471-5317(03)00012-9. DOI

Wagener W., Hartmann D., Lehnert F., Scholz K. Mechanical Properties of Magnesium Alloys Processed by Semi-Solid Casting. In: Kainer K.U., editor. Magnesium Alloys and their Applications. Wiley-VCH Verlag GmbH & Co.; Weinheim, Germany: 2006. pp. 291–295.

Metallic Materials—Tensile Testing—Part 1: Method of Test at Room Temperature. International Organization for Standardization; Geneva, Switzerland: 2016. ISO 6892-1:2016.

Von Mises R. Mechanik der plastischen Formänderung von Kristallen. Z. Angew. Math. Mech. 1928;8:161–185. doi: 10.1002/zamm.19280080302. DOI

Mendelson S. Dislocations in HCP Metals. J. Appl. Phys. 1970;41:1893–1910. doi: 10.1063/1.1659139. DOI

Trojanová Z., Lukáč P. Physical aspects of plastic deformation in Mg-Al alloys with Sr and Ca. Int. J. Mater. Res. 2009;100:270–276. doi: 10.3139/146.110054. DOI

Labusch R. Statistische Theorien der Mischkristallhärtung. (Statistical theories of solid solution hardening) Acta Metall. 1972;20:917–927. doi: 10.1016/0001-6160(72)90085-5. DOI

Wang Y.N., Huang J.C. The role of twinning and untwinning in yielding behavior in hot-extruded Mg-Al-Zn alloy. Acta Mater. 2007;55:897–905. doi: 10.1016/j.actamat.2006.09.010. DOI

Klimanek P., Pötzsch A. Microstructure evolution under compressive plastic deformation of magnesium at different temperatures and strain rates. Mater. Sci. Eng. A. 2002;324:145–150. doi: 10.1016/S0921-5093(01)01297-7. DOI

Trojanová Z., Cáceres C.H., Lukáč P., Čížek L. Serrated flow in AZ91 magnesium alloy in tension and compression. Kovove Mater. 2008;46:243–248.

Cáceres C.H., Rodriguez A.H. Acoustic emission and deformation bands in Al-2.5%Mg and Cu-30%Zn. Acta Metall. Mater. 1987;35:2851–2864. doi: 10.1016/0001-6160(87)90284-7. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...