Thiaboranes on Both Sides of the Icosahedral Barrier: Retaining and Breaking the Barrier with Carbon Functionalities

. 2019 Jul ; 84 (7) : 822-827. [epub] 20190611

Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid31944001

The concept of icosahedral barrier has been expanded from the chemistry of carbaboranes to the area of thiaboranes. Both representatives of this barrier, i. e., closo-1,2-C2 B10 H12 and closo-1-SB11 H11 , are similar in their electron distribution, which is dominated by positive charge in the midpoint of the C-C vector and on the sulfur atom with experimentally determined dipole moments of 4.50 D and 3.64 D, respectively. This is a driving force for their reactivity as exemplified by their reactions with different carbon functionalities. Icosahedral closo-1-SB11 H11 reacts both with an electron sextet containing carbon (in the form of N-heterocyclic carbenes), reported earlier, and with methyl iodide with an electron octet on the carbon. The latter reaction provides hexamethylated thiaborane on the basis of methylation so far unknown in this area of heteroborane chemistry. The computations of the heat of formation (ΔHf298 ) make it possible to estimate the height of the barrier as well as to propose closo-thiaboranes beyond the barrier. Eleven and twelve vertex thiaboranes with nido electron count are known experimentally for breaking the barrier. These computations also suggest that the larger nido-thiaboranes are promising candidates for the corresponding experimental availability, i. e., the ΔHf298 of a 13-vertex nido-thiaborane cluster has been computed to be more negative than that of the well-known nido-SB10 H11- cluster (-6.7 and -5.6 kcal mol-1 per vertex, respectively).

Zobrazit více v PubMed

R. N. Grimes, Angew. Chem. Int. Ed. 2003, 42, 1198-1200;

Angew. Chem. 2003, 115, 1232-1234;

I. B. Sivaev, V. I. Bregatze, S. Sjoberg, Collect. Czech. Chem. Commun. 2002, 67, 679-727;

E. D. Jemmis, J. Am. Chem. Soc. 1983, 104, 7017-7020.

S. Körbe, P. J. Schreiber, J. Michl, Chem. Rev. 2006, 106, 5208-5249.

D. Hnyk, E. Vajda, M. Bühl, P. v. R. Schleyer, Inorg. Chem. 1992, 31, 2464-2467.

H. Møllendal, S. Samdal, J. Holub, D. Hnyk, Inorg. Chem. 2003, 42, 3043-3046.

D. Hnyk, D. A. Wann, J. Holub, S. Samdal, D. W. H. Rankin, Dalton Trans. 2011, 40, 5734-5737.

P. v. R. Schleyer, K. Najafian, Inorg. Chem. 1998, 37, 3454-3470.

A. Burke, D. Ellis, B. T. Giles, B. E. Hodson, S. A. Macgregor, G. M. Rosair, A. J. Welch, Angew. Chem. Int. Ed. 2003, 115, 235-238.

P. v. R. Schleyer, K. Najafian, A. M. Mebel, Inorg. Chem. 1998, 37, 6765-6772.

L. Deng, H.-S. Chan, Z. Xie, Angew. Chem. Int. Ed. 2005, 44, 2128-2131;

Angew. Chem. 2005, 117, 2166-2169.

J. Zhang, Z. Xie , Acc. Chem. Res. 2014, 47, 1623-1633.

See e. g. D. Hnyk, D. A. Wann, D. in Boron: the Fifth Element, Vol 20., Springer, Dordrecht, 2015, pp. 17-48. The so-called arachno electron count is also mentioned.

J. Fanfrlík, D. Hnyk, M. Lepšík, P. Hobza, Phys. Chem. Chem. Phys. 2007, 9, 2085-2093.

M. T. Serrate, D. Ellis, G. M. Rosair, A. J. Welch, J. Organomet. Chem. 2013, 747, 211-216.

D. Hnyk, M. Hofmann, P. v. R. Schleyer, M. Bühl, D. W. H. Rankin, J. Phys. Chem. 1996, 100, 3435-3440.

D. McKay, S. A. Macgregor, A. J. Welch, Chem. Sci. 2015, 6, 3117-3128.

M. G. Davidson, M. A. Fox, T. G. Hibbert, J. A. K. Howard, A. Mackinnon, I. S. Neretin, K. Wade, Chem. Commun. 1999, 1649-1650.

C. E. Willans, C. A. Kilner, M. A. Fox, Chem. Eur. J. 2010, 16, 10644-10648.

F. Teixidor, G. Barberà, A. Vaca, R. Kivekäs, R. Sillanpää, J. Oliva, C. Vinas, J. Am. Chem. Soc. 2005, 127, 10158-10159 and the references therein.

J. Vrána, J. Holub, Z. Růžičková, J. Fanfrlík, D. Hnyk, A. Růžička, Inorg. Chem. 2019, 58, 2471-2482.

G. Knizia, J. Chem. Theory Comput. 2013, 9, 4834-4843.

J. D. Cox, D. D. Wagman, V. A. Medvedev, CODATA Key Values for Thermodynamics; Hemisphere Publishing Corp., New York, 1989.

M. W. Chase, Jr., C. A. Davies, J. R. Downey, Jr., D. D. Frurip, R. A. McDonald, A. A. Syverrud, JANAF Thermochemical Tables. J. Phys. Chem. Ref. Data 1985, 14, Suppl. 1.

J. W. Ochterski, G. A. Petersson, K. B. Wiberg, J. Am. Chem. Soc. 1995, 117, 11299-11308.

J. B. Pedley, Thermochemical Data and Structures of Organic Compounds, Vol. 1, Thermodynamics Research Center: College Station, TX, 1994.

M. Bühl, P. v. R. Schleyer, Z. Havlas, D. Hnyk, S. Heřmánek, Inorg. Chem. 1991, 30, 3107-3111.

J. Macháček, J. Plešek, J. Holub, D. Hnyk, V. Všetečka, I. Císařová, M. Kaupp, B. Štíbr, Dalton Trans. 2006, 1024-1029.

J. Fanfrlík, A. Přáda, Z. Padělková, A. Pecina, J. Macháček, M. Lepšík, J. Holub, A. Růžička, D. Hnyk, P. Hobza, Angew. Chem. Int. Ed. 2014, 53, 10139-10142;

Angew. Chem. 2014, 126, 10303-10306.

J. Fanfrlík, M. Lepšík, D. Hořínek, Z. Havlas, P. Hobza, ChemPhysChem, 2006, 7, 1100-1105.

P. Melichar, D. Hnyk, J. Fanfrlík, Phys. Chem. Chem. Phys. 2018, 20, 4666-4675.

M. Bakardjiev, O. L. Tok, A. Růžička, Z. Růžičková, J. Holub, D. Hnyk, Z. Špalt, J. Fanfrlík, B. Štíbr, Dalton Trans. 2018, 47, 11070-11076.

M. Bakardjiev, O. L. Tok, A. Růžička, Z. Růžičková, J. Holub, D. Hnyk, J. Fanfrlík, RSC Adv. 2018, 8, 38238-38244.

M. Bakardjiev, A. Růžička, Z. Růžičková, O. L. Tok, J. Holub, D. Hnyk, J. Fanfrlík, B. Štíbr, Inorg. Chem. 2019, 58, 2865-2871.

J. Li, R. Pang, Z. Li, G. Lai, X.-Q. Xiao, T. Müller, Angew. Chem. Int. Ed. 2019, 58, 1397-1401.

J. Řezáč, J. Comput. Chem. 2016, 37, 1230-1237.

R. Ahlrichs, M. Bar, M. Haser, H. Horn, C. Kolmel, Chem. Phys. Lett. 1989, 162, 165-169.

Gaussian 09 (Revision D.01), M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.

P. Flükiger, H. P. Lüthi, S. Portmann, J. Weber, Swiss Center for Scientific Computing, Manno (Switzerland), 2000.

K. E. Riley, K.-A. Tran, P. Lane, J. S. Murray, P. Politzer, J. Comput. Sci. 2016, 17, 273-284.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...