The Influence of Halogenated Hypercarbon on Crystal Packing in the Series of 1-Ph-2-X-1,2-dicarba-closo-dodecaboranes (X = F, Cl, Br, I)
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
19-17156S
Grantová Agentura České Republiky
PubMed
32155946
PubMed Central
PMC7179469
DOI
10.3390/molecules25051200
PII: molecules25051200
Knihovny.cz E-zdroje
- Klíčová slova
- halogen bond, icosahedral boron cluster, sigma hole,
- MeSH
- halogenace MeSH
- halogeny chemie MeSH
- molekulární konformace MeSH
- molekulární modely MeSH
- sloučeniny boru chemická syntéza chemie MeSH
- techniky syntetické chemie MeSH
- uhlík chemie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- halogeny MeSH
- sloučeniny boru MeSH
- uhlík MeSH
Although 1-Ph-2-X-closo-1,2-C2B10H10 (X = F, Cl, Br, I) derivatives had been computed to have positive values of the heat of formation, it was possible to prepare them. The corresponding solid-state structures were computationally analyzed. Electrostatic potential computations indicated the presence of highly positive σ-holes in the case of heavy halogens. Surprisingly, the halogen•••π interaction formed by the Br atom was found to be more favorable than that of I.
APIGENEX s r o Poděbradská 173 5 190 00 Prague 9 Czech Republic
Institute of Inorganic Chemistry of the Czech Academy of Sciences 250 68 Husinec Řež Czech Republic
Zobrazit více v PubMed
Hnyk D., Všetečka V., Drož L., Exner O. Charge Distribution within 1,2-Dicarba-closo-dodecaborane: Dipole Moments of its Phenyl Derivatives. Collect. Czech. Chem. Commun. 2001;66:1375–1379. doi: 10.1135/cccc20011375. DOI
Brain P.T., Cowie J., Donohoe D.J., Hnyk D., Rankin D.W.H., Reed D., Reid B.D., Robertson H.E., Welch A.J. 1-Phenyl-1,2-dicarba-closo-dodecaborane, 1-Ph-1,2-closo-C2B10H11. Synthesis, Characterization, and Structure in the Gas Phase by Electron Diffraction, in the Crystalline Phase at 199 K by X-ray Diffraction, and by ab Initio Computations. Inorg. Chem. 1996;35:1701–1708. PubMed
Hnyk D., Všetečka V., Drož L. Charge Distribution within 1-Ph-2-X-1,2-dicarba-closo-dodecaboranes, (X = F, Cl, Br, I): A Dipole Moment and Computational Study. J. Mol. Struct. 2010;978:246–249. doi: 10.1016/j.molstruc.2010.02.027. DOI
Clark T., Hennemann M., Murray J.S., Politzer P. Halogen Bonding: The σ-Hole. J. Mol. Model. 2007;13:291–296. doi: 10.1007/s00894-006-0130-2. PubMed DOI
Kolář M., Hostaš J., Hobza P. The strength and directionality of a halogen bond are co-determined by the magnitude and size of the σ-hole. Phys. Chem. Chem. Phys. 2014;16:23279–23280. doi: 10.1039/C3CP55188A. PubMed DOI
Gamez P. The anion-π interaction: Naissance and establishment of peculiar supramolecular bond. Inorg. Chem. Front. 2014;1:35–43. doi: 10.1039/C3QI00055A. DOI
Prasanna M.D., Guru Rown T.N. C-halogen•••π interactions and their influence on molecular conformation and crystal packing: A database study. Cryst. Eng. 2000;3:135–154. doi: 10.1016/S1463-0184(00)00035-6. DOI
Youn I.S., Kim D.Y., Cho W.J., Madridejos J.M.L., Lee H.M., Kolaski M., Lee J., Baig C. Halogen-π Interactions between Benzene and X2/CX4 (X = Cl, Br): Assessment of Various Density Functionals with Respect to CCSD(T) J. Phys Chem. A. 2016;120:9305–9314. doi: 10.1021/acs.jpca.6b09395. PubMed DOI
Sun H., Horatscheck A., Martos V., Bartetzko M., Uhrig U., Lentz D., Schmieder P., Nazare M. Direct Experimental Evidence for Halogen-Aryl π Interactions in Solution from Molecular Torsion Balances. Angew. Chem. Int. Ed. 2017;56:6454–6458. doi: 10.1002/anie.201700520. PubMed DOI
Fanfrlík J., Přáda A., Padělková Z., Pecina A., Macháček J., Lepšík M., Holub J., Růžička A., Hnyk D., Hobza P. The Dominant Role of Chalcogen Bonding in the Crystal Packing of 2D/3D Aromatics. Angew. Chem. Int. Ed. 2014;53:10139–10142. doi: 10.1002/anie.201405901. PubMed DOI
Macháček J., Plešek J., Holub J., Hnyk D., Všetečka V., Císařová I., Kaupp M., Štíbr B. New Route to 1-Thia-closo-dodecaborane(11), closo-1-SB11H11, and its Halogenation Reactions. The Effect of the Halogen on the Dipole Moments and the NMR Spectra and the Importance of Spin−Orbit Coupling for the 11B Chemical Shifts. Dalton Trans. 2006:1024–1029. PubMed
Fanfrlík J., Holub J., Růžičková Z., Řezáč J., Lane P.D., Wann D.A., Hnyk D., Růžička A., Hobza P. Competition between Halogen, Hydrogen and Dihydrogen Bonding in Brominated Carboranes. ChemPhysChem. 2016;17:3373–3376. PubMed
McGrath T.D., Welch A.J. Steric Effects in Heteroboranes. IV. 1-Ph-2-Br-1,2-closo-C2B10H10. Acta Cryst. C51. 1995:649–651. doi: 10.1107/S0108270194005810. DOI
Holub J., Vrána J., Růžička A., Růžičková Z., Fanfrlík J., Hnyk D. Thiaboranes on Both Sides of the Icosahedral Barrier: Retaining and Breaking the Barrier with Carbon Functionalities. ChemPlusChem. 2019;84:822–827. doi: 10.1002/cplu.201900115. PubMed DOI
Hnyk D., Wann D.A., Holub J., Samdal S., Rankin D.W.H. Why is the Antipodal Effect in closo-1-SB9H9 so Large? A Possible Explanation Based on the Geometry from the Concerted Use of Gas Electron Diffraction and Computational Methods. Dalton Trans. 2011;40:5734–5737. PubMed
Hnyk D., Rankin D.W.H., Robertson H.E., Hofmann M., Schleyer P.v.R., Bühl M. Molecular Structure of 1,2-Dicarba-closo-decaborane(10) As Studied by the Concerted Use of Electron Diffraction and ab Initio Calculations. Inorg. Chem. 1994;33:4781–4786. doi: 10.1021/ic00099a031. DOI
Aubert E., Espinossa E., Nicolas I., Jeanin O., Fourmigue M. Toward a reverse hierarchy of halogen bonding between bromine and iodine. Faraday Discuss. 2017;203:389–406. doi: 10.1039/C7FD00067G. PubMed DOI
Ciancaleoni G., Belpassi L. Disentanglement of orthogonal hydrogen and halogen bonds via natural orbital for chemical valence: A charge displacement analysis. J. Comput. Chem. 2020:1–9. doi: 10.1002/jcc.26165. PubMed DOI
Groom C.R., Bruno I.J., Lightfoot M.P., Ward S.C. The Cambridge Structural Database. Acta Cryst. 2016;B72:171–179. doi: 10.1107/S2052520616003954. PubMed DOI PMC
Batsanov S.S. Van der Waals Radii of Elements. Inorganic Materials. 2001;37:871–885. doi: 10.1023/A:1011625728803. DOI
Kobayashi Y., Popov A.A., Miller S.M., Anderson O.P., Strauss S.H. Synthesis and structure of Ag(1-Me-12-SiPh3-CB11F10): Selective F12 substitution in 1-Me-CB11F11− and the first Ag(arene)4+ tetrahedron. Inorg. Chem. 2007;46:8505–8507. doi: 10.1021/ic701606p. PubMed DOI
Ivanova S.M., Ivanov S.V., Miller S.M., Anderson O.P., Solntsev K.A., Strauss S.H. Mono-, Di-, Tri-, and Tetracarbonyls of Copper(I), Including the Structures of Cu(CO)2(1-Bn-CB11F11) and [Cu(CO)4][1-Et-CB11F11] Inorg. Chem. 1999;38:3756–3757. doi: 10.1021/ic990321f. DOI
Romanato P., Duttwyler S., Linden A., Baldridge K.K., Siegel J.S. Competition between π-arene and lone-pair halogen coordination of silylium ions? J. Am. Chem. Soc. 2011;133:11844–11846. doi: 10.1021/ja2040392. PubMed DOI
Shoji Y., Tanaka N., Mikami K., Uchiyama M., Fukushima T. A two-coordinate boron cation featuring C-B+-C bonding. Nat. Chem. 2014;6:498–503. doi: 10.1038/nchem.1948. PubMed DOI
Geis V., Guttsche K., Knapp C., Scherer H., Uzun R. Synthesis and characterization of synthetically useful salts of the weakly-coordinating dianion [B12Cl12]2−. Dalton Trans. 2009:2687–2694. doi: 10.1039/b821030f. PubMed DOI
Kordts N., Kunzler S., Rathjen S., Sieling T., Groekappenberg H., Schmidtmann M., Muller T. Silyl Chalconium Ions: Synthesis, Structure and Application in Hydrodefluorination Reactions. Chem. Eur. J. 2017;23:10068–10079. doi: 10.1002/chem.201700995. PubMed DOI
Douvris C., Reed C.A. Increasing the Reactivity of Vaska’s Compound. Oxidative Addition of Chlorobenzene at Ambient Temperature. Organometallics. 2008;27:807–810.
Binder H., Kellner R., Vaas K., Hein M., Baumann F., Wanner M., Winter R., Kaim W., Honle W., Grin Y., et al. The closo-cluster triad: B9X9, [B9X9](•−), and [B9X9](2−) with tricapped trigonal prisms (X = Cl, Br, I). Syntheses, crystal and electronic structures. Z. Anorg. Allg. Chem. 1999;625:1059–1072. doi: 10.1002/(SICI)1521-3749(199907)625:7<1059::AID-ZAAC1059>3.0.CO;2-#. DOI
Gu W., McCulloch B.J., Reibenspies J.H., Ozerov O.V. Improved methods for the halogenation of the [HCB11H11]− anion. Chem. Commun. 2010;46:2820–2822. doi: 10.1039/c001555e. PubMed DOI
Yamaguchi T., Fuku-en S., Sugawara S., Kojima S., Yamamoto Y. Demethylation of an Allene Bearing Two Dimethoxythioxanthene Groups by Oxidation via a Vinyl Cation Intermediate. Aust. J. Chem. 2010;63:1638. doi: 10.1071/CH10297. DOI
Rifat A., Mahon M.F., Weller A.S. Dehydrogenation of cyclohexenes to cyclohexadienes by [(PPh3)2Rh]+. The isolation of an intermediate in the dehydrogenation of cyclohexane to benzene: Crystal structure of [(η4-C6H8)Rh(PPh3)2][closo-CB11H6Br6] J. Organomet. Chem. 2003;667:1–4. doi: 10.1016/S0022-328X(02)01923-X. DOI
Douvris C., Stoyanov E.S., Tham F.S., Reed C.A. Isolating fluorinated carbocations. Chem. Commun. 2007:1145–1147. doi: 10.1039/b617606b. PubMed DOI
Moxham G.L., Douglas T.M., Brayshaw S.K., Kociok-Kohn G., Lowe J.P., Weller A.S. The role of halogenated carborane monoanions in olefin hydrogenation catalysed by cationic iridium phosphine complexes. Dalton Trans. 2006:5492–5505. doi: 10.1039/B612049K. PubMed DOI
Bruker . SAINT (Version 8.38A) in APEX3 (Version 2018.1-0) Bruker AXS Inc.; Madison, WI, USA: 2018.
Krause L., Herbst-Irmer R., Sheldrick G.M., Stalke D. Comparison of silver and molybdenum microfocus X-ray sources for single-crystal structure determination. J. Appl. Cryst. 2015;48:3–10. doi: 10.1107/S1600576714022985. PubMed DOI PMC
Sheldrick G.M. SHELXT-Integrated space-group and crystal-structure determination. Acta Crystallogr. Sect. A. 2015;71:3–8. doi: 10.1107/S2053273314026370. PubMed DOI PMC
Sheldrick G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C. 2015;71:3–8. doi: 10.1107/S2053229614024218. PubMed DOI PMC
Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Mennucci B., Petersson G.A., et al. Gaussian 09, Revision, D.01. Gaussian, Inc.; Wallingford, CT, USA: 2009.
Flűkiger P., Lűthi H.P., Portmann S., Weber J. MOLEKEL 4.3. Swiss Center for Scientific Computing; Manno, Switzerland: 2000.
Portmann S., Luthi H.P. MOLEKEL: An Interactive Molecular Graphic Tool. CHIMIA Int. J. Chem. 2000;54:766–770.
Řezáč J. Cuby: An Integrative Framework for Computational Chemistry. J. Comput. Chem. 2016;37:1230–1237. doi: 10.1002/jcc.24312. PubMed DOI
Ahlrichs R., Bar M., Haser M., Horn H., Kolmel C. Electronic Structure Calculations on Workstation Computers: The Program System Turbomole. Chem. Phys. Lett. 1989;162:165–169. doi: 10.1016/0009-2614(89)85118-8. DOI
Hostaš J., Řezáč J. Accurate DFT-D3 Calculations in a Small Basis Set. J. Chem. Theory Comput. 2017;13:3575–3585. doi: 10.1021/acs.jctc.7b00365. PubMed DOI
Řezáč J., Hobza P. Advanced Corrections of Hydrogen Bonding and Dispersion for Semiempirical Quantum Mechanical Methods. J. Chem. Theory Comput. 2012;8:141–151. doi: 10.1021/ct200751e. PubMed DOI
Jeziorski B., Moszynski R., Szalewicz K. Perturbation Theory Approach to Intermolecular Potential Energy Surfaces of van der Waals Complexes. Chem. Rev. 1994;94:1887–1930. doi: 10.1021/cr00031a008. DOI
Parker T.M., Burns L.A., Parrish R.M., Ryno A.G., Sherrill C.D. Levels of Symmetry Adapted Perturbation Theory (SAPT) I. Efficiency and Performance for Interaction Energies. J. Chem. Phys. 2014;140:094106. PubMed
Stewart J.P. Optimization of parameters for semiempirical methods IV: Extension of MNDO, AM1, and PM3 to more main group elements. J. Mol. Model. 2004;10:155–164. doi: 10.1007/s00894-004-0183-z. PubMed DOI
Turney J.M., Simmonett A.C., Parrish R.M., Hohenstein E.G., Evangelista F., Fermann J.T., Mintz B.J., Burns L.A., Wilke J.J., Abrams M.L., et al. Psi4: An Open-Source Ab Initio Electronic Structure Program. WIREs Comput. Mol. Sci. 2012;2:556–565. doi: 10.1002/wcms.93. DOI