The Influence of Halogenated Hypercarbon on Crystal Packing in the Series of 1-Ph-2-X-1,2-dicarba-closo-dodecaboranes (X = F, Cl, Br, I)

. 2020 Mar 06 ; 25 (5) : . [epub] 20200306

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32155946

Grantová podpora
19-17156S Grantová Agentura České Republiky

Although 1-Ph-2-X-closo-1,2-C2B10H10 (X = F, Cl, Br, I) derivatives had been computed to have positive values of the heat of formation, it was possible to prepare them. The corresponding solid-state structures were computationally analyzed. Electrostatic potential computations indicated the presence of highly positive σ-holes in the case of heavy halogens. Surprisingly, the halogen•••π interaction formed by the Br atom was found to be more favorable than that of I.

Zobrazit více v PubMed

Hnyk D., Všetečka V., Drož L., Exner O. Charge Distribution within 1,2-Dicarba-closo-dodecaborane: Dipole Moments of its Phenyl Derivatives. Collect. Czech. Chem. Commun. 2001;66:1375–1379. doi: 10.1135/cccc20011375. DOI

Brain P.T., Cowie J., Donohoe D.J., Hnyk D., Rankin D.W.H., Reed D., Reid B.D., Robertson H.E., Welch A.J. 1-Phenyl-1,2-dicarba-closo-dodecaborane, 1-Ph-1,2-closo-C2B10H11. Synthesis, Characterization, and Structure in the Gas Phase by Electron Diffraction, in the Crystalline Phase at 199 K by X-ray Diffraction, and by ab Initio Computations. Inorg. Chem. 1996;35:1701–1708. PubMed

Hnyk D., Všetečka V., Drož L. Charge Distribution within 1-Ph-2-X-1,2-dicarba-closo-dodecaboranes, (X = F, Cl, Br, I): A Dipole Moment and Computational Study. J. Mol. Struct. 2010;978:246–249. doi: 10.1016/j.molstruc.2010.02.027. DOI

Clark T., Hennemann M., Murray J.S., Politzer P. Halogen Bonding: The σ-Hole. J. Mol. Model. 2007;13:291–296. doi: 10.1007/s00894-006-0130-2. PubMed DOI

Kolář M., Hostaš J., Hobza P. The strength and directionality of a halogen bond are co-determined by the magnitude and size of the σ-hole. Phys. Chem. Chem. Phys. 2014;16:23279–23280. doi: 10.1039/C3CP55188A. PubMed DOI

Gamez P. The anion-π interaction: Naissance and establishment of peculiar supramolecular bond. Inorg. Chem. Front. 2014;1:35–43. doi: 10.1039/C3QI00055A. DOI

Prasanna M.D., Guru Rown T.N. C-halogen•••π interactions and their influence on molecular conformation and crystal packing: A database study. Cryst. Eng. 2000;3:135–154. doi: 10.1016/S1463-0184(00)00035-6. DOI

Youn I.S., Kim D.Y., Cho W.J., Madridejos J.M.L., Lee H.M., Kolaski M., Lee J., Baig C. Halogen-π Interactions between Benzene and X2/CX4 (X = Cl, Br): Assessment of Various Density Functionals with Respect to CCSD(T) J. Phys Chem. A. 2016;120:9305–9314. doi: 10.1021/acs.jpca.6b09395. PubMed DOI

Sun H., Horatscheck A., Martos V., Bartetzko M., Uhrig U., Lentz D., Schmieder P., Nazare M. Direct Experimental Evidence for Halogen-Aryl π Interactions in Solution from Molecular Torsion Balances. Angew. Chem. Int. Ed. 2017;56:6454–6458. doi: 10.1002/anie.201700520. PubMed DOI

Fanfrlík J., Přáda A., Padělková Z., Pecina A., Macháček J., Lepšík M., Holub J., Růžička A., Hnyk D., Hobza P. The Dominant Role of Chalcogen Bonding in the Crystal Packing of 2D/3D Aromatics. Angew. Chem. Int. Ed. 2014;53:10139–10142. doi: 10.1002/anie.201405901. PubMed DOI

Macháček J., Plešek J., Holub J., Hnyk D., Všetečka V., Císařová I., Kaupp M., Štíbr B. New Route to 1-Thia-closo-dodecaborane(11), closo-1-SB11H11, and its Halogenation Reactions. The Effect of the Halogen on the Dipole Moments and the NMR Spectra and the Importance of Spin−Orbit Coupling for the 11B Chemical Shifts. Dalton Trans. 2006:1024–1029. PubMed

Fanfrlík J., Holub J., Růžičková Z., Řezáč J., Lane P.D., Wann D.A., Hnyk D., Růžička A., Hobza P. Competition between Halogen, Hydrogen and Dihydrogen Bonding in Brominated Carboranes. ChemPhysChem. 2016;17:3373–3376. PubMed

McGrath T.D., Welch A.J. Steric Effects in Heteroboranes. IV. 1-Ph-2-Br-1,2-closo-C2B10H10. Acta Cryst. C51. 1995:649–651. doi: 10.1107/S0108270194005810. DOI

Holub J., Vrána J., Růžička A., Růžičková Z., Fanfrlík J., Hnyk D. Thiaboranes on Both Sides of the Icosahedral Barrier: Retaining and Breaking the Barrier with Carbon Functionalities. ChemPlusChem. 2019;84:822–827. doi: 10.1002/cplu.201900115. PubMed DOI

Hnyk D., Wann D.A., Holub J., Samdal S., Rankin D.W.H. Why is the Antipodal Effect in closo-1-SB9H9 so Large? A Possible Explanation Based on the Geometry from the Concerted Use of Gas Electron Diffraction and Computational Methods. Dalton Trans. 2011;40:5734–5737. PubMed

Hnyk D., Rankin D.W.H., Robertson H.E., Hofmann M., Schleyer P.v.R., Bühl M. Molecular Structure of 1,2-Dicarba-closo-decaborane(10) As Studied by the Concerted Use of Electron Diffraction and ab Initio Calculations. Inorg. Chem. 1994;33:4781–4786. doi: 10.1021/ic00099a031. DOI

Aubert E., Espinossa E., Nicolas I., Jeanin O., Fourmigue M. Toward a reverse hierarchy of halogen bonding between bromine and iodine. Faraday Discuss. 2017;203:389–406. doi: 10.1039/C7FD00067G. PubMed DOI

Ciancaleoni G., Belpassi L. Disentanglement of orthogonal hydrogen and halogen bonds via natural orbital for chemical valence: A charge displacement analysis. J. Comput. Chem. 2020:1–9. doi: 10.1002/jcc.26165. PubMed DOI

Groom C.R., Bruno I.J., Lightfoot M.P., Ward S.C. The Cambridge Structural Database. Acta Cryst. 2016;B72:171–179. doi: 10.1107/S2052520616003954. PubMed DOI PMC

Batsanov S.S. Van der Waals Radii of Elements. Inorganic Materials. 2001;37:871–885. doi: 10.1023/A:1011625728803. DOI

Kobayashi Y., Popov A.A., Miller S.M., Anderson O.P., Strauss S.H. Synthesis and structure of Ag(1-Me-12-SiPh3-CB11F10): Selective F12 substitution in 1-Me-CB11F11− and the first Ag(arene)4+ tetrahedron. Inorg. Chem. 2007;46:8505–8507. doi: 10.1021/ic701606p. PubMed DOI

Ivanova S.M., Ivanov S.V., Miller S.M., Anderson O.P., Solntsev K.A., Strauss S.H. Mono-, Di-, Tri-, and Tetracarbonyls of Copper(I), Including the Structures of Cu(CO)2(1-Bn-CB11F11) and [Cu(CO)4][1-Et-CB11F11] Inorg. Chem. 1999;38:3756–3757. doi: 10.1021/ic990321f. DOI

Romanato P., Duttwyler S., Linden A., Baldridge K.K., Siegel J.S. Competition between π-arene and lone-pair halogen coordination of silylium ions? J. Am. Chem. Soc. 2011;133:11844–11846. doi: 10.1021/ja2040392. PubMed DOI

Shoji Y., Tanaka N., Mikami K., Uchiyama M., Fukushima T. A two-coordinate boron cation featuring C-B+-C bonding. Nat. Chem. 2014;6:498–503. doi: 10.1038/nchem.1948. PubMed DOI

Geis V., Guttsche K., Knapp C., Scherer H., Uzun R. Synthesis and characterization of synthetically useful salts of the weakly-coordinating dianion [B12Cl12]2−. Dalton Trans. 2009:2687–2694. doi: 10.1039/b821030f. PubMed DOI

Kordts N., Kunzler S., Rathjen S., Sieling T., Groekappenberg H., Schmidtmann M., Muller T. Silyl Chalconium Ions: Synthesis, Structure and Application in Hydrodefluorination Reactions. Chem. Eur. J. 2017;23:10068–10079. doi: 10.1002/chem.201700995. PubMed DOI

Douvris C., Reed C.A. Increasing the Reactivity of Vaska’s Compound. Oxidative Addition of Chlorobenzene at Ambient Temperature. Organometallics. 2008;27:807–810.

Binder H., Kellner R., Vaas K., Hein M., Baumann F., Wanner M., Winter R., Kaim W., Honle W., Grin Y., et al. The closo-cluster triad: B9X9, [B9X9](•−), and [B9X9](2−) with tricapped trigonal prisms (X = Cl, Br, I). Syntheses, crystal and electronic structures. Z. Anorg. Allg. Chem. 1999;625:1059–1072. doi: 10.1002/(SICI)1521-3749(199907)625:7<1059::AID-ZAAC1059>3.0.CO;2-#. DOI

Gu W., McCulloch B.J., Reibenspies J.H., Ozerov O.V. Improved methods for the halogenation of the [HCB11H11]− anion. Chem. Commun. 2010;46:2820–2822. doi: 10.1039/c001555e. PubMed DOI

Yamaguchi T., Fuku-en S., Sugawara S., Kojima S., Yamamoto Y. Demethylation of an Allene Bearing Two Dimethoxythioxanthene Groups by Oxidation via a Vinyl Cation Intermediate. Aust. J. Chem. 2010;63:1638. doi: 10.1071/CH10297. DOI

Rifat A., Mahon M.F., Weller A.S. Dehydrogenation of cyclohexenes to cyclohexadienes by [(PPh3)2Rh]+. The isolation of an intermediate in the dehydrogenation of cyclohexane to benzene: Crystal structure of [(η4-C6H8)Rh(PPh3)2][closo-CB11H6Br6] J. Organomet. Chem. 2003;667:1–4. doi: 10.1016/S0022-328X(02)01923-X. DOI

Douvris C., Stoyanov E.S., Tham F.S., Reed C.A. Isolating fluorinated carbocations. Chem. Commun. 2007:1145–1147. doi: 10.1039/b617606b. PubMed DOI

Moxham G.L., Douglas T.M., Brayshaw S.K., Kociok-Kohn G., Lowe J.P., Weller A.S. The role of halogenated carborane monoanions in olefin hydrogenation catalysed by cationic iridium phosphine complexes. Dalton Trans. 2006:5492–5505. doi: 10.1039/B612049K. PubMed DOI

Bruker . SAINT (Version 8.38A) in APEX3 (Version 2018.1-0) Bruker AXS Inc.; Madison, WI, USA: 2018.

Krause L., Herbst-Irmer R., Sheldrick G.M., Stalke D. Comparison of silver and molybdenum microfocus X-ray sources for single-crystal structure determination. J. Appl. Cryst. 2015;48:3–10. doi: 10.1107/S1600576714022985. PubMed DOI PMC

Sheldrick G.M. SHELXT-Integrated space-group and crystal-structure determination. Acta Crystallogr. Sect. A. 2015;71:3–8. doi: 10.1107/S2053273314026370. PubMed DOI PMC

Sheldrick G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C. 2015;71:3–8. doi: 10.1107/S2053229614024218. PubMed DOI PMC

Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Mennucci B., Petersson G.A., et al. Gaussian 09, Revision, D.01. Gaussian, Inc.; Wallingford, CT, USA: 2009.

Flűkiger P., Lűthi H.P., Portmann S., Weber J. MOLEKEL 4.3. Swiss Center for Scientific Computing; Manno, Switzerland: 2000.

Portmann S., Luthi H.P. MOLEKEL: An Interactive Molecular Graphic Tool. CHIMIA Int. J. Chem. 2000;54:766–770.

Řezáč J. Cuby: An Integrative Framework for Computational Chemistry. J. Comput. Chem. 2016;37:1230–1237. doi: 10.1002/jcc.24312. PubMed DOI

Ahlrichs R., Bar M., Haser M., Horn H., Kolmel C. Electronic Structure Calculations on Workstation Computers: The Program System Turbomole. Chem. Phys. Lett. 1989;162:165–169. doi: 10.1016/0009-2614(89)85118-8. DOI

Hostaš J., Řezáč J. Accurate DFT-D3 Calculations in a Small Basis Set. J. Chem. Theory Comput. 2017;13:3575–3585. doi: 10.1021/acs.jctc.7b00365. PubMed DOI

Řezáč J., Hobza P. Advanced Corrections of Hydrogen Bonding and Dispersion for Semiempirical Quantum Mechanical Methods. J. Chem. Theory Comput. 2012;8:141–151. doi: 10.1021/ct200751e. PubMed DOI

Jeziorski B., Moszynski R., Szalewicz K. Perturbation Theory Approach to Intermolecular Potential Energy Surfaces of van der Waals Complexes. Chem. Rev. 1994;94:1887–1930. doi: 10.1021/cr00031a008. DOI

Parker T.M., Burns L.A., Parrish R.M., Ryno A.G., Sherrill C.D. Levels of Symmetry Adapted Perturbation Theory (SAPT) I. Efficiency and Performance for Interaction Energies. J. Chem. Phys. 2014;140:094106. PubMed

Stewart J.P. Optimization of parameters for semiempirical methods IV: Extension of MNDO, AM1, and PM3 to more main group elements. J. Mol. Model. 2004;10:155–164. doi: 10.1007/s00894-004-0183-z. PubMed DOI

Turney J.M., Simmonett A.C., Parrish R.M., Hohenstein E.G., Evangelista F., Fermann J.T., Mintz B.J., Burns L.A., Wilke J.J., Abrams M.L., et al. Psi4: An Open-Source Ab Initio Electronic Structure Program. WIREs Comput. Mol. Sci. 2012;2:556–565. doi: 10.1002/wcms.93. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...