Simple Syntheses of New Pegylated Trehalose Derivatives as a Chemical Tool for Potential Evaluation of Cryoprotectant Effects on Cell Membrane
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
MEYS SAFMAT CZ.02.1.01/0.0/0.0/16_013/0001406, LO1409
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
31979348
PubMed Central
PMC7038055
DOI
10.3390/molecules25030497
PII: molecules25030497
Knihovny.cz E-zdroje
- Klíčová slova
- click-chemistry, cryoprotection, pegylation,
- MeSH
- buněčná membrána účinky léků metabolismus MeSH
- click chemie MeSH
- dimethylsulfoxid farmakologie MeSH
- kryoprezervace MeSH
- kryoprotektivní látky farmakologie MeSH
- lidé MeSH
- nádorové buněčné linie MeSH
- polyethylenglykoly chemie farmakologie MeSH
- průtoková cytometrie MeSH
- trehalosa analogy a deriváty chemická syntéza chemie farmakologie MeSH
- viabilita buněk účinky léků MeSH
- zmrazování MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- dimethylsulfoxid MeSH
- kryoprotektivní látky MeSH
- polyethylenglykoly MeSH
- trehalosa MeSH
In our work, we developed the synthesis of new polyfunctional pegylated trehalose derivatives and evaluated their cryoprotective effect using flow cytometry. We showed that new compounds (modified trehaloses) bound to appropriate extracellular polymeric cryoprotectants could be helpful as a chemical tool for the evaluation of their potential toxic cell membrane influences. Our aim was to form a chemical tool for the evaluation of cryoprotectant cell membrane influences, which are still not easily predicted during the freezing/thawing process. We combined two basic cryoprotectants: polyethyleneglycols (PEGs) and trehalose in the new chemical compounds-pegylated trehalose hybrids. If PEG and trehalose are chemically bound and trehalose is adsorbed on the cell surface PEGs molecules which are, due to the chemical bonding with trehalose, close to the cell surface, can remove the cell surface hydration layer which destabilizes the cell membrane. This was confirmed by the comparison of new material, PEG, trehalose, and their mixture cryoprotective capabilities.
Zobrazit více v PubMed
Naaldijk Y., Staude M., Fedorova V., Stolzing A. Effect of different freezing rates during cryopreservation of rat mesenchymal stem cells using combinations of hydroxyethyl starch and dimethylsulfoxide. BMC Biotechnol. 2012;12 doi: 10.1186/1472-6750-12-49. PubMed DOI PMC
Wolfe J., Bryant G. Freezing, drying, and/or vitrification of membrane-solute-water systems. Cryobiology. 1999;39:103–129. doi: 10.1006/cryo.1999.2195. PubMed DOI
Han B., Bischof J.C. Thermodynamic nonequilibrium phase change behavior and thermal properties of biological solutions for cryobiology applications. J. Biomech. Eng. Trans. ASME. 2004;126:196–203. doi: 10.1115/1.1688778. PubMed DOI
Kratochvilova I., Kopecna O., Bacikova A., Pagacova E., Falkova I., Follett S.E., Elliott K.W., Varga K., Golan M., Falk M. Changes in Cryopreserved Cell Nuclei Serve as Indicators of Processes during Freezing and Thawing. Langmuir. 2019;35:7496–7508. doi: 10.1021/acs.langmuir.8b02742. PubMed DOI
Kratochvilova I., Golan M., Pomeisl K., Richter J., Sedlakova S., Sebera J., Micova J., Falk M., Falkova I., Reha D., et al. Theoretical and experimental study of the antifreeze protein AFP752, trehalose and dimethyl sulfoxide cryoprotection mechanism: Correlation with cryopreserved cell viability. RSC Adv. 2017;7:352–360. doi: 10.1039/C6RA25095E. PubMed DOI PMC
Falk M., Falkova I., Kopecna O., Bacikova A., Pagacova E., Simek D., Golan M., Kozubek S., Pekarova M., Follett S.E., et al. Chromatin architecture changes and DNA replication fork collapse are critical features in cryopreserved cells that are differentially controlled by cryoprotectants. Sci. Rep. 2018;8:18. doi: 10.1038/s41598-018-32939-5. PubMed DOI PMC
Anderson D.M., Benson J.D., Kearsley A.J. Foundations of modeling in cryobiology-II: Heat and mass transport in bulk and at cell membrane and ice-liquid interfaces. Cryobiology. 2019;91:3–17. doi: 10.1016/j.cryobiol.2019.09.014. PubMed DOI PMC
Best B.P. Cryoprotectant Toxicity: Facts, Issues, and Questions. Rejuvenation Res. 2015;18:422–436. doi: 10.1089/rej.2014.1656. PubMed DOI PMC
Al-Ayoubi S.R., Schinkel P.K.F., Berghaus M., Herzog M., Winter R. Combined effects of osmotic and hydrostatic pressure on multilamellar lipid membranes in the presence of PEG and trehalose. Soft Matter. 2018;14:8792–8802. doi: 10.1039/C8SM01343H. PubMed DOI
Guy R.H., Szoka F.C. Perturbation of solute transport at a liquid-liquid interface by polyethylene glycol (PEG): Implications for PEG-induced biomembrane fusion. Phys. Chem. Chem. Phys. 2011;13:5346–5352. doi: 10.1039/c0cp02305a. PubMed DOI
Berthelot-Ricou A., Perrin J., di Giorgio C., de Meo M., Botta A., Courbiere B. Genotoxicity assessment of mouse oocytes by comet assay before vitrification and after warming with three vitrification protocols. Fertil. Steril. 2013;100:882–888. doi: 10.1016/j.fertnstert.2013.05.025. PubMed DOI
Bryant G., Wolfe J. Interfacial forces in cryobiology and anhydrobiology. Cryo-Letters. 1992;13:23–36.
Zaninoni A., Fermo E., Vercellati C., Consonni D., Marcello A.P., Zanella A., Cortelezzi A., Barcellini W., Bianchi P. Use of Laser Assisted Optical Rotational Cell Analyzer (LoRRca MaxSis) in the Diagnosis of RBC Membrane Disorders, Enzyme Defects, and Congenital Dyserythropoietic Anemias: A Monocentric Study on 202 Patients. Front. Physiol. 2018;9:12. doi: 10.3389/fphys.2018.00451. PubMed DOI PMC
Golan M., Pribyl J., Pesl M., Jelinkova S., Acimovic I., Jaros J., Rotrekl V., Falk M., Sefc L., Skladal P., et al. Cryopreserved Cells Regeneration Monitored by Atomic Force Microscopy and Correlated With State of Cytoskeleton and Nuclear Membrane. IEEE Trans. Nanobiosci. 2018;17:485–497. doi: 10.1109/TNB.2018.2873425. PubMed DOI
Golan M., Jelinkova S., Kratochvilova I., Skladal P., Pesl M., Rotrekl V., Pribyl J. AFM Monitoring the Influence o f Selected Cryoprotectants on Regeneration of Cryopreserved Cells Mechanical Properties. Front. Physiol. 2018;9:10. doi: 10.3389/fphys.2018.00804. PubMed DOI PMC
Crowe J.H., Crowe L.M., Chapman D. Preservation of membranes in anhydrobiotic organisms—The role of trehalose. Science. 1984;223:701–703. doi: 10.1126/science.223.4637.701. PubMed DOI
Crowe J.H., Crowe L.M., Carpenter J.F., Wistrom C.A. stabilization of dry phospholipid-bilayers and proteins by sugars. Biochem. J. 1987;242:1. doi: 10.1042/bj2420001. PubMed DOI PMC
Golovina E.A., Golovin A., Hoekstra F.A., Faller R. Water Replacement Hypothesis in Atomic Details: Effect of Trehalose on the Structure of Single Dehydrated POPC Bilayers. Langmuir. 2010;26:11118–11126. doi: 10.1021/la100891x. PubMed DOI
Tang M., Waring A.J., Hong M. Trehalose-protected lipid membranes for determining membrane protein structure and insertion. J. Magn. Reson. 2007;184:222–227. doi: 10.1016/j.jmr.2006.10.006. PubMed DOI PMC
Lee Y.A., Kim Y.H., Kim B.J., Jung M.S., Auh J.H., Seo J.T., Park Y.S., Lee S.H., Ryu B.Y. Cryopreservation of Mouse Spermatogonial Stem Cells in Dimethylsulfoxide and Polyethylene Glycol. Biol. Reprod. 2013;89:9. doi: 10.1095/biolreprod.113.111195. PubMed DOI
Schneck E., Sedlmeier F., Netz R.R. Hydration repulsion between biomembranes results from an interplay of dehydration and depolarization. Proc. Natl. Acad. Sci. USA. 2012;109:14405–14409. doi: 10.1073/pnas.1205811109. PubMed DOI PMC
Yamazaki M., Ito T. Deformation and instability in membrane-structure of phospholipid-vesicles caused by osmophobic association—Mechanical-stress model for the mechanism of poly(ethylene glycol)-induced membrane-fusion. Biochemistry. 1990;29:1309–1314. doi: 10.1021/bi00457a029. PubMed DOI
Lentz B.R., Lee J.K. Poly(ethylene glycol) (PEG)-mediated fusion between pure lipid bilayers: A mechanism in common with viral fusion and secretory vesicle release? (Review) Mol. Membr. Biol. 1999;16:279–296. doi: 10.1080/096876899294508. PubMed DOI
Liu B., Zhang Q.F., Zhao Y.H., Ren L.X., Yuan X.Y. Trehalose-functional glycopeptide enhances glycerol-free cryopreservation of red blood cells. J. Mater. Chem. B. 2019;7:5695–5703. doi: 10.1039/C9TB01089K. PubMed DOI
Rose J.D., Maddry J.A., Comber R.N., Suling W.J., Wilson L.N., Reynolds R.C. Synthesis and biological evaluation of trehalose analogs as potential inhibitors of mycobacterial cell wall biosynthesis. Carbohydr. Res. 2002;337:105–120. doi: 10.1016/S0008-6215(01)00288-9. PubMed DOI
Diot J., Garcia-Moreno M.I., Gouin S.G., Mellet C.O., Haupt K., Kovensky J. Multivalent iminosugars to modulate affinity and selectivity for glycosidases. Org. Biomol. Chem. 2009;7:357–363. doi: 10.1039/B815408B. PubMed DOI
Nwe K., Brechbiel M.W. Growing Applications of “Click Chemistry” for Bioconjugation in Contemporary Biomedical Research. Cancer Biother. Radiopharm. 2009;24:289–302. doi: 10.1089/cbr.2008.0626. PubMed DOI PMC
Lewis W.G., Green L.G., Grynszpan F., Radic Z., Carlier P.R., Taylor P., Finn M.G., Sharpless K.B. Click chemistry in situ: Acetylcholinesterase as a reaction vessel for the selective assembly of a femtomolar inhibitor from an array of building blocks. Angew. Chem. Int. Ed. 2002;41:1053–1057. doi: 10.1002/1521-3773(20020315)41:6<1053::AID-ANIE1053>3.0.CO;2-4. PubMed DOI
Manetsch R., Krasinski A., Radic Z., Raushel J., Taylor P., Sharpless K.B., Kolb H.C. In situ click chemistry: Enzyme inhibitors made to their own specifications. J. Am. Chem. Soc. 2004;126:12809–12818. doi: 10.1021/ja046382g. PubMed DOI
Tornoe C.W., Christensen C., Meldal M. Peptidotriazoles on solid phase: 1,2,3-triazoles by regiospecific copper(I)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J. Org. Chem. 2002;67:3057–3064. doi: 10.1021/jo011148j. PubMed DOI
McNaught A.D., Wilkinson A. IUPAC. Compendium of Chemical Terminology. 2nd ed. Blackwell Scientific Publications; Oxford, UK: 1997. The “Gold Book”.
Hui S.W., Boni L.T. In: Membrane Fusion Induced by Polyethylene Glycol. Dekker M., editor. University of Groningen; Groningen, The Netherlands: 1991.