Simple Syntheses of New Pegylated Trehalose Derivatives as a Chemical Tool for Potential Evaluation of Cryoprotectant Effects on Cell Membrane

. 2020 Jan 23 ; 25 (3) : . [epub] 20200123

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31979348

Grantová podpora
MEYS SAFMAT CZ.02.1.01/0.0/0.0/16_013/0001406, LO1409 Ministerstvo Školství, Mládeže a Tělovýchovy

In our work, we developed the synthesis of new polyfunctional pegylated trehalose derivatives and evaluated their cryoprotective effect using flow cytometry. We showed that new compounds (modified trehaloses) bound to appropriate extracellular polymeric cryoprotectants could be helpful as a chemical tool for the evaluation of their potential toxic cell membrane influences. Our aim was to form a chemical tool for the evaluation of cryoprotectant cell membrane influences, which are still not easily predicted during the freezing/thawing process. We combined two basic cryoprotectants: polyethyleneglycols (PEGs) and trehalose in the new chemical compounds-pegylated trehalose hybrids. If PEG and trehalose are chemically bound and trehalose is adsorbed on the cell surface PEGs molecules which are, due to the chemical bonding with trehalose, close to the cell surface, can remove the cell surface hydration layer which destabilizes the cell membrane. This was confirmed by the comparison of new material, PEG, trehalose, and their mixture cryoprotective capabilities.

Zobrazit více v PubMed

Naaldijk Y., Staude M., Fedorova V., Stolzing A. Effect of different freezing rates during cryopreservation of rat mesenchymal stem cells using combinations of hydroxyethyl starch and dimethylsulfoxide. BMC Biotechnol. 2012;12 doi: 10.1186/1472-6750-12-49. PubMed DOI PMC

Wolfe J., Bryant G. Freezing, drying, and/or vitrification of membrane-solute-water systems. Cryobiology. 1999;39:103–129. doi: 10.1006/cryo.1999.2195. PubMed DOI

Han B., Bischof J.C. Thermodynamic nonequilibrium phase change behavior and thermal properties of biological solutions for cryobiology applications. J. Biomech. Eng. Trans. ASME. 2004;126:196–203. doi: 10.1115/1.1688778. PubMed DOI

Kratochvilova I., Kopecna O., Bacikova A., Pagacova E., Falkova I., Follett S.E., Elliott K.W., Varga K., Golan M., Falk M. Changes in Cryopreserved Cell Nuclei Serve as Indicators of Processes during Freezing and Thawing. Langmuir. 2019;35:7496–7508. doi: 10.1021/acs.langmuir.8b02742. PubMed DOI

Kratochvilova I., Golan M., Pomeisl K., Richter J., Sedlakova S., Sebera J., Micova J., Falk M., Falkova I., Reha D., et al. Theoretical and experimental study of the antifreeze protein AFP752, trehalose and dimethyl sulfoxide cryoprotection mechanism: Correlation with cryopreserved cell viability. RSC Adv. 2017;7:352–360. doi: 10.1039/C6RA25095E. PubMed DOI PMC

Falk M., Falkova I., Kopecna O., Bacikova A., Pagacova E., Simek D., Golan M., Kozubek S., Pekarova M., Follett S.E., et al. Chromatin architecture changes and DNA replication fork collapse are critical features in cryopreserved cells that are differentially controlled by cryoprotectants. Sci. Rep. 2018;8:18. doi: 10.1038/s41598-018-32939-5. PubMed DOI PMC

Anderson D.M., Benson J.D., Kearsley A.J. Foundations of modeling in cryobiology-II: Heat and mass transport in bulk and at cell membrane and ice-liquid interfaces. Cryobiology. 2019;91:3–17. doi: 10.1016/j.cryobiol.2019.09.014. PubMed DOI PMC

Best B.P. Cryoprotectant Toxicity: Facts, Issues, and Questions. Rejuvenation Res. 2015;18:422–436. doi: 10.1089/rej.2014.1656. PubMed DOI PMC

Al-Ayoubi S.R., Schinkel P.K.F., Berghaus M., Herzog M., Winter R. Combined effects of osmotic and hydrostatic pressure on multilamellar lipid membranes in the presence of PEG and trehalose. Soft Matter. 2018;14:8792–8802. doi: 10.1039/C8SM01343H. PubMed DOI

Guy R.H., Szoka F.C. Perturbation of solute transport at a liquid-liquid interface by polyethylene glycol (PEG): Implications for PEG-induced biomembrane fusion. Phys. Chem. Chem. Phys. 2011;13:5346–5352. doi: 10.1039/c0cp02305a. PubMed DOI

Berthelot-Ricou A., Perrin J., di Giorgio C., de Meo M., Botta A., Courbiere B. Genotoxicity assessment of mouse oocytes by comet assay before vitrification and after warming with three vitrification protocols. Fertil. Steril. 2013;100:882–888. doi: 10.1016/j.fertnstert.2013.05.025. PubMed DOI

Bryant G., Wolfe J. Interfacial forces in cryobiology and anhydrobiology. Cryo-Letters. 1992;13:23–36.

Zaninoni A., Fermo E., Vercellati C., Consonni D., Marcello A.P., Zanella A., Cortelezzi A., Barcellini W., Bianchi P. Use of Laser Assisted Optical Rotational Cell Analyzer (LoRRca MaxSis) in the Diagnosis of RBC Membrane Disorders, Enzyme Defects, and Congenital Dyserythropoietic Anemias: A Monocentric Study on 202 Patients. Front. Physiol. 2018;9:12. doi: 10.3389/fphys.2018.00451. PubMed DOI PMC

Golan M., Pribyl J., Pesl M., Jelinkova S., Acimovic I., Jaros J., Rotrekl V., Falk M., Sefc L., Skladal P., et al. Cryopreserved Cells Regeneration Monitored by Atomic Force Microscopy and Correlated With State of Cytoskeleton and Nuclear Membrane. IEEE Trans. Nanobiosci. 2018;17:485–497. doi: 10.1109/TNB.2018.2873425. PubMed DOI

Golan M., Jelinkova S., Kratochvilova I., Skladal P., Pesl M., Rotrekl V., Pribyl J. AFM Monitoring the Influence o f Selected Cryoprotectants on Regeneration of Cryopreserved Cells Mechanical Properties. Front. Physiol. 2018;9:10. doi: 10.3389/fphys.2018.00804. PubMed DOI PMC

Crowe J.H., Crowe L.M., Chapman D. Preservation of membranes in anhydrobiotic organisms—The role of trehalose. Science. 1984;223:701–703. doi: 10.1126/science.223.4637.701. PubMed DOI

Crowe J.H., Crowe L.M., Carpenter J.F., Wistrom C.A. stabilization of dry phospholipid-bilayers and proteins by sugars. Biochem. J. 1987;242:1. doi: 10.1042/bj2420001. PubMed DOI PMC

Golovina E.A., Golovin A., Hoekstra F.A., Faller R. Water Replacement Hypothesis in Atomic Details: Effect of Trehalose on the Structure of Single Dehydrated POPC Bilayers. Langmuir. 2010;26:11118–11126. doi: 10.1021/la100891x. PubMed DOI

Tang M., Waring A.J., Hong M. Trehalose-protected lipid membranes for determining membrane protein structure and insertion. J. Magn. Reson. 2007;184:222–227. doi: 10.1016/j.jmr.2006.10.006. PubMed DOI PMC

Lee Y.A., Kim Y.H., Kim B.J., Jung M.S., Auh J.H., Seo J.T., Park Y.S., Lee S.H., Ryu B.Y. Cryopreservation of Mouse Spermatogonial Stem Cells in Dimethylsulfoxide and Polyethylene Glycol. Biol. Reprod. 2013;89:9. doi: 10.1095/biolreprod.113.111195. PubMed DOI

Schneck E., Sedlmeier F., Netz R.R. Hydration repulsion between biomembranes results from an interplay of dehydration and depolarization. Proc. Natl. Acad. Sci. USA. 2012;109:14405–14409. doi: 10.1073/pnas.1205811109. PubMed DOI PMC

Yamazaki M., Ito T. Deformation and instability in membrane-structure of phospholipid-vesicles caused by osmophobic association—Mechanical-stress model for the mechanism of poly(ethylene glycol)-induced membrane-fusion. Biochemistry. 1990;29:1309–1314. doi: 10.1021/bi00457a029. PubMed DOI

Lentz B.R., Lee J.K. Poly(ethylene glycol) (PEG)-mediated fusion between pure lipid bilayers: A mechanism in common with viral fusion and secretory vesicle release? (Review) Mol. Membr. Biol. 1999;16:279–296. doi: 10.1080/096876899294508. PubMed DOI

Liu B., Zhang Q.F., Zhao Y.H., Ren L.X., Yuan X.Y. Trehalose-functional glycopeptide enhances glycerol-free cryopreservation of red blood cells. J. Mater. Chem. B. 2019;7:5695–5703. doi: 10.1039/C9TB01089K. PubMed DOI

Rose J.D., Maddry J.A., Comber R.N., Suling W.J., Wilson L.N., Reynolds R.C. Synthesis and biological evaluation of trehalose analogs as potential inhibitors of mycobacterial cell wall biosynthesis. Carbohydr. Res. 2002;337:105–120. doi: 10.1016/S0008-6215(01)00288-9. PubMed DOI

Diot J., Garcia-Moreno M.I., Gouin S.G., Mellet C.O., Haupt K., Kovensky J. Multivalent iminosugars to modulate affinity and selectivity for glycosidases. Org. Biomol. Chem. 2009;7:357–363. doi: 10.1039/B815408B. PubMed DOI

Nwe K., Brechbiel M.W. Growing Applications of “Click Chemistry” for Bioconjugation in Contemporary Biomedical Research. Cancer Biother. Radiopharm. 2009;24:289–302. doi: 10.1089/cbr.2008.0626. PubMed DOI PMC

Lewis W.G., Green L.G., Grynszpan F., Radic Z., Carlier P.R., Taylor P., Finn M.G., Sharpless K.B. Click chemistry in situ: Acetylcholinesterase as a reaction vessel for the selective assembly of a femtomolar inhibitor from an array of building blocks. Angew. Chem. Int. Ed. 2002;41:1053–1057. doi: 10.1002/1521-3773(20020315)41:6<1053::AID-ANIE1053>3.0.CO;2-4. PubMed DOI

Manetsch R., Krasinski A., Radic Z., Raushel J., Taylor P., Sharpless K.B., Kolb H.C. In situ click chemistry: Enzyme inhibitors made to their own specifications. J. Am. Chem. Soc. 2004;126:12809–12818. doi: 10.1021/ja046382g. PubMed DOI

Tornoe C.W., Christensen C., Meldal M. Peptidotriazoles on solid phase: 1,2,3-triazoles by regiospecific copper(I)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J. Org. Chem. 2002;67:3057–3064. doi: 10.1021/jo011148j. PubMed DOI

McNaught A.D., Wilkinson A. IUPAC. Compendium of Chemical Terminology. 2nd ed. Blackwell Scientific Publications; Oxford, UK: 1997. The “Gold Book”.

Hui S.W., Boni L.T. In: Membrane Fusion Induced by Polyethylene Glycol. Dekker M., editor. University of Groningen; Groningen, The Netherlands: 1991.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...