The Deep Genome Project
Language English Country Great Britain, England Media electronic
Document type Editorial
Grant support
FS/12/82/29736
British Heart Foundation - United Kingdom
MC_UP_1502/1
Medical Research Council - United Kingdom
UM1 OD023222
NIH HHS - United States
MC_EX_MR/M009203/1
Medical Research Council - United Kingdom
UM1 OD023221
NIH HHS - United States
MC_U142684171
Medical Research Council - United Kingdom
G9521010
Medical Research Council - United Kingdom
MC_PC_14089
Medical Research Council - United Kingdom
MC_U142684172
Medical Research Council - United Kingdom
UM1 HG006348
NHGRI NIH HHS - United States
MR/M009203/1
Medical Research Council - United Kingdom
UM1 HG006370
NHGRI NIH HHS - United States
PubMed
32008577
PubMed Central
PMC6996159
DOI
10.1186/s13059-020-1931-9
PII: 10.1186/s13059-020-1931-9
Knihovny.cz E-resources
- MeSH
- Phenotype MeSH
- Genome * MeSH
- Genes MeSH
- Humans MeSH
- Mutation MeSH
- Mice genetics MeSH
- Proteins genetics MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Mice genetics MeSH
- Animals MeSH
- Publication type
- Editorial MeSH
- Names of Substances
- Proteins MeSH
Center of Animal Biotechnology and Gene Therapy Universitat Autònoma Barcelona Barcelona Spain
Department of Medicine Brigham and Women's Hospital Harvard Medical School Boston USA
Department of Molecular and Human Genetics Baylor College of Medicine Houston TX 77030 USA
Departments of Molecular Physiology and Biophysics Baylor College of Medicine Houston TX 77030 USA
DST NWU Preclinical Drug Development Platform North West University Potchefstroom 2520 South Africa
Faculty of Science and Engineering School of Spatial Sciences Curtin University Perth Australia
German Center for Diabetes Research 85764 Neuherberg Germany
Medical Research Council Harwell Institute Harwell Oxfordshire OX11 0RD UK
Monterotondo Mouse Clinic Italian National Research Council Monterotondo Scalo 1 00015 Rome Italy
National Laboratory Animal Center National Applied Research Laboratories Taipei Taiwan
Phenomics Australia The Australian National University 131 Garran Road Acton ACT 2601 Australia
RIKEN BioResource Research Center Tsukuba Ibaraki 305 0074 Japan
The Centre for Phenogenomics Lunenfeld Tanenbaum Research Institute Toronto ON M5T 3H7 Canada
The Centre for Phenogenomics The Hospital for Sick Children Toronto ON M5T 3H7 Canada
The Hospital for Sick Children Toronto ON M5G 1X8 Canada
The Jackson Laboratory Bar Harbor ME 04609 USA
Wellcome Trust Sanger Institute Hinxton Cambridge CB10 1SA UK
See more in PubMed
Waterston RH, et al. Initial sequencing and comparative analysis of the mouse genome. Nature. 2002;420:520–562. doi: 10.1038/nature01262. PubMed DOI
Hartley T, et al. The unsolved rare genetic disease atlas? An analysis of the unexplained phenotypic descriptions in OMIM. Am J Med Genet. 2018;178C:458–462. doi: 10.1002/ajmg.c.31662. PubMed DOI
Posey JE, et al. Insights into genetics, human biology and disease gleaned from family based genomic studies. Genetics Med. 2019;21:798–812. doi: 10.1038/s41436-018-0408-7. PubMed DOI PMC
Brommage Robert, Powell David R., Vogel Peter. Predicting human disease mutations and identifying drug targets from mouse gene knockout phenotyping campaigns. Disease Models & Mechanisms. 2019;12(5):dmm038224. doi: 10.1242/dmm.038224. PubMed DOI PMC
Mungall CJ, et al. The Monarch Initiative: an integrative data and analytic platform connecting phenotypes to genotypes across species. Nucleic Acids Res. 2017;45:D712–D722. doi: 10.1093/nar/gkw1128. PubMed DOI PMC
Brown SD, Moore MW. The International Mouse Phenotyping Consortium: past and future perspectives on mouse phenotyping. Mamm Genome. 2012;23:632–640. doi: 10.1007/s00335-012-9427-x. PubMed DOI PMC
Breschi A, Gingeras TR, Guigo R. Comparative transcriptomics in human and mouse. Nat Rev Genet. 2017;18:425–440. doi: 10.1038/nrg.2017.19. PubMed DOI PMC
Cacheiro P, et al. New models for human disease from the International Mouse Phenotyping Consortium. Mamm Genome. 2019;30:143–150. doi: 10.1007/s00335-019-09804-5. PubMed DOI PMC
Meehan TF, et al. Disease model discovery from 3,328 gene knockouts by The International Mouse Phenotyping Consortium. Nat Genet. 2017;49:1231–1238. doi: 10.1038/ng.3901. PubMed DOI PMC
Hoffman-Andrews L. The known unknown: the challenges of genetic variants of uncertain significance in clinical practice. J Law Biosci. 2018;4:648–657. doi: 10.1093/jlb/lsx038. PubMed DOI PMC
Stoeger T, et al. Large-scale investigation of the reasons why potentially important genes are ignored. PLoS Biol. 2018;16:e2006643. doi: 10.1371/journal.pbio.2006643. PubMed DOI PMC
Oprea TI, et al. Unexplored therapeutic opportunities in the human genome. Nat Rev Drug Discov. 2018;17:377. doi: 10.1038/nrd.2018.52. PubMed DOI
Liu P, et al. Reanalysis of clinical exome sequencing data. N Engl J Med. 2019;380:25. doi: 10.1056/NEJMc1812033. PubMed DOI PMC
Waring MJ, et al. An analysis of the attrition of drug candidates from four major pharmaceutical companies. Nat Rev Drug Discov. 2015;14:475–486. doi: 10.1038/nrd4609. PubMed DOI
Yang N, et al. TBX6 compound inheritance leads to congenital vertebral malformations in humans and mice. Hum Mol Genet. 2019;28:539–547. doi: 10.1093/hmg/ddy358. PubMed DOI PMC
Posey JE, et al. Resolution of disease phenotypes resulting from multilocus genomic variation. N Engl J Med. 2017;376:21–31. doi: 10.1056/NEJMoa1516767. PubMed DOI PMC
Paun A, Yau C, Danska JS. The influence of the microbiome on type 1 diabetes. J Immunol. 2017;198:590–595. doi: 10.4049/jimmunol.1601519. PubMed DOI
Stoodley CJ, et al. Altered cerebellar connectivity in autism and cerebellar-mediated rescue of autism-related behaviors in mice. Nat Neurosci. 2017;20:1744–1751. doi: 10.1038/s41593-017-0004-1. PubMed DOI PMC
Yue F, et al. A comparative encyclopedia of DNA elements in the mouse genome. Nature. 2014;515:355–364. doi: 10.1038/nature13992. PubMed DOI PMC
Wu N, et al. Tbx6 null variants and a common hypomorphic allele in congenital scoliosis. N Engl J Med. 2015;372:341–350. doi: 10.1056/NEJMoa1406829. PubMed DOI PMC