Impact of essential genes on the success of genome editing experiments generating 3313 new genetically engineered mouse lines

. 2024 Sep 30 ; 14 (1) : 22626. [epub] 20240930

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39349521

Grantová podpora
UM1OD023221 NIH HHS - United States
U42OD011185 NIH HHS - United States
OGI-051 Genome Canada
UM1 OD023221 NIH HHS - United States
U42OD011175 NIH HHS - United States
LM2018126 Ministry of Education, Youth and Sports of the Czech Republic
OGI-137 Genome Canada
OGI-090 Ontario Genomics
ANR-10-IDEX-0002-02 Institut National de la Santé et de la Recherche Médicale
MC_UP_1502/3 Medical Research Council - United Kingdom
OGI-090 Genome Canada
OGI-137 Ontario Genomics
UM1 OD023222 NIH HHS - United States
ANR-10-INBS-07 Institut National de la Santé et de la Recherche Médicale
UM1HG006370 NIH HHS - United States
U42OD011174 NIH HHS - United States
UM1 HG006348 NHGRI NIH HHS - United States
U42 OD011174 NIH HHS - United States
OGI-051 Ontario Genomics
UM1 HG006370 NHGRI NIH HHS - United States
UMIHG006348 NIH HHS - United States
ANR-10-LABX-0030-INRT Institut National de la Santé et de la Recherche Médicale
U42 OD011175 NIH HHS - United States
Wellcome Trust - United Kingdom
U42 OD011185 NIH HHS - United States
RVO 68378050 Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences
UM1OD023222 NIH HHS - United States

Odkazy

PubMed 39349521
PubMed Central PMC11443006
DOI 10.1038/s41598-024-72418-8
PII: 10.1038/s41598-024-72418-8
Knihovny.cz E-zdroje

The International Mouse Phenotyping Consortium (IMPC) systematically produces and phenotypes mouse lines with presumptive null mutations to provide insight into gene function. The IMPC now uses the programmable RNA-guided nuclease Cas9 for its increased capacity and flexibility to efficiently generate null alleles in the C57BL/6N strain. In addition to being a valuable novel and accessible research resource, the production of 3313 knockout mouse lines using comparable protocols provides a rich dataset to analyze experimental and biological variables affecting in vivo gene engineering with Cas9. Mouse line production has two critical steps - generation of founders with the desired allele and germline transmission (GLT) of that allele from founders to offspring. A systematic evaluation of the variables impacting success rates identified gene essentiality as the primary factor influencing successful production of null alleles. Collectively, our findings provide best practice recommendations for using Cas9 to generate alleles in mouse essential genes, many of which are orthologs of genes linked to human disease.

CNRS INSERM CELPHEDIA PHENOMIN Institut Clinique de la Souris Université de Strasbourg Illkirch Graffenstaden France

Czech Centre for Phenogenomics Institute of Molecular Genetics of the Czech Academy of Sciences Vestec Czech Republic

Department of Integrative Physiology Baylor College of Medicine Houston TX 77030 USA

Department of Mathematics and Statistics University of Guelph Guelph ON N1G 2W1 Canada

Department of Molecular and Cellular Biology Baylor College of Medicine Houston TX 77030 USA

Department of Molecular and Human Genetic Baylor College of Medicine Houston TX 77030 USA

Department of Statistics University of Manitoba Winnipeg MB R3T 2N2 Canada

Department of Surgery School of Medicine University of California Davis Davis CA 95618 USA

European Molecular Biology Laboratory European Bioinformatics Institute Wellcome Genome Campus Hinxton UK

LGC Assure Fordham CB7 5WW UK

Mouse Biology Program University of California Davis Davis CA 95618 USA

MRC Harwell Institute Harwell OX11 0RD UK

Nuffield Department of Population Health University of Oxford Oxford OX3 7LF UK

Program in Craniofacial Biology and Department of Orofacial Sciences University of California San Francisco San Francisco CA USA

Reproductive and Developmental Biology Laboratory NIEHS Research Triangle Park Durham NC 27709 USA

The Centre for Phenogenomics Toronto ON M5T 3H7 Canada

The Francis Crick Institute 1 Midland Rd London NW1 1AT UK

The Hospital for Sick Children Toronto ON M5G 1X8 Canada

The Jackson Laboratory Bar Harbor ME 04609 USA

The Jackson Laboratory for Genomic Medicine Farmington CT 06032 USA

The Mary Lyon Centre MRC Harwell Institute Harwell Campus Didcot Oxon OX11 0RD UK

UT Health San Antonio San Antonio TX 78229 USA

Wellcome MRC Cambridge Stem Cell Institute University of Cambridge Trinity Lane Cambridge CB2 1TN UK

Wellcome Sanger Institute Wellcome Genome Campus Hinxton Cambridge CB10 1SA UK

William Harvey Research Institute Queen Mary University of London London EC1M 6BQ UK

Zobrazit více v PubMed

Birling, M. C. et al. A resource of targeted mutant mouse lines for 5061 genes. Nat. Genet.53, 416–419 (2021). PubMed PMC

Lloyd, K. C. K. et al. The deep genome project. Genome Biol.21, 18 (2020). PubMed PMC

Bradley, A. et al. The mammalian gene function resource: the international knockout mouse consortium. Mamm. Genome23, 580–586 (2012). PubMed PMC

Popp, M. W. & Maquat, L. E. The dharma of nonsense-mediated mRNA decay in mammalian cells. Mol. Cells37, 1–8 (2014). PubMed PMC

Lalonde, S. et al. Frameshift indels introduced by genome editing can lead to in-frame exon skipping. PLoS ONE12, e0178700 (2017). PubMed PMC

Mou, H. et al. CRISPR/Cas9-mediated genome editing induces exon skipping by alternative splicing or exon deletion. Genome Biol.18, 108 (2017). PubMed PMC

Smits, A. H. et al. Biological plasticity rescues target activity in CRISPR knock outs. Nat. Methods16, 1087–1093 (2019). PubMed

Behringer, R. R., Gertsenstein, M., Nagy, K. & Nagy, A. Manipulating the Mouse Embryo: A Laboratory Manual 814 (Cold Spring Harbor Laboratory Press, 2014).

Doe, B., Brown, E. & Boroviak, K. Generating CRISPR/Cas9-derived mutant mice by zygote cytoplasmic injection using an automatic microinjector. Methods Protoc.1(1), 5. 10.3390/mps1010005 (2018). PubMed PMC

Gertsenstein, M. & Nutter, L. M. J. Production of knockout mouse lines with Cas9. Methods191, 32–43 (2021). PubMed

Kaneko, T., Sakuma, T., Yamamoto, T. & Mashimo, T. Simple knockout by electroporation of engineered endonucleases into intact rat embryos. Sci. Rep.4, 6382 (2014). PubMed PMC

Modzelewski, A. J. et al. Efficient mouse genome engineering by CRISPR-EZ technology. Nat. Protoc.13, 1253–1274 (2018). PubMed PMC

Wang, W. et al. Delivery of Cas9 protein into mouse zygotes through a series of electroporation dramatically increases the efficiency of model creation. J. Genet. Genom. = Yi chuan xue bao43(5), 319–327. 10.1016/j.jgg.2016.02.004 (2016). PubMed PMC

Anderson, K. R. et al. CRISPR off-target analysis in genetically engineered rats and mice. Nat. Methods15, 512–514 (2018). PubMed PMC

Iyer, V. et al. Off-target mutations are rare in Cas9-modified mice. Nat. Methods12, 479 (2015). PubMed

Peterson, K. A. et al. Whole genome analysis for 163 gRNAs in Cas9-edited mice reveals minimal off-target activity. Commun. Biol.6, 626 (2023). PubMed PMC

Willi, M., Smith, H. E., Wang, C., Liu, C. & Hennighausen, L. Mutation frequency is not increased in CRISPR-Cas9-edited mice. Nat. Methods15, 756–758 (2018). PubMed

Lanza, D. G. et al. Comparative analysis of single-stranded DNA donors to generate conditional null mouse alleles. BMC Biol.16, 69 (2018). PubMed PMC

Cacheiro, P. et al. Human and mouse essentiality screens as a resource for disease gene discovery. Nat. Commun.11, 655 (2020). PubMed PMC

Ring, N. et al. A mouse informatics platform for phenotypic and translational discovery. Mamm. Genome26, 413–421 (2015). PubMed PMC

Barrett, T. et al. NCBI GEO: Archive for functional genomics data sets–update. Nucleic Acids Res.41, D991–D995 (2013). PubMed PMC

Karczewski, K. J. et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature581, 434–443 (2020). PubMed PMC

Online Mendelian Inheritance in Man, OMIM®. McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University (Baltimore, 2020)

Scavizzi, F. et al. Blastocyst genotyping for quality control of mouse mutant archives: An ethical and economical approach. Transgen. Res.24, 921–927 (2015). PubMed PMC

Kim, H. K. et al. SpCas9 activity prediction by DeepSpCas9, a deep learning-based model with high generalization performance. Sci. Adv.5, e9249 (2019). PubMed PMC

Cacheiro, P. et al. Mendelian gene identification through mouse embryo viability screening. Genome Med.14, 119 (2022). PubMed PMC

Economides, A. N. et al. Conditionals by inversion provide a universal method for the generation of conditional alleles. Proc. Natl. Acad. Sci. U. S. A.110, E3179–E3188 (2013). PubMed PMC

Nagy, A. Cre recombinase: The universal reagent for genome tailoring. Genesis26, 99–109 (2000). PubMed

Russell, W. M. S. & Burch, R. L. The Principles of Humane Experimental Technique (Methuen, London, 1959).

Popp, M. W. & Maquat, L. E. Organizing principles of mammalian nonsense-mediated mRNA decay. Annu. Rev. Genet.47, 139–165 (2013). PubMed PMC

Ran, F. A. et al. Genome engineering using the CRISPR-Cas9 system. Nat. Protoc.8, 2281–2308 (2013). PubMed PMC

Hodgkins, A. et al. WGE: A CRISPR database for genome engineering. Bioinformatics31, 3078–3080 (2015). PubMed PMC

Haeussler, M. et al. Evaluation of off-target and on-target scoring algorithms and integration into the guide RNA selection tool CRISPOR. Genome Biol.17, 148 (2016). PubMed PMC

Peterson, K. A. et al. CRISPRtools: a flexible computational platform for performing CRISPR/Cas9 experiments in the mouse. Mamm. Genome28, 283–290 (2017). PubMed PMC

Labun, K., Montague, T. G., Gagnon, J. A., Thyme, S. B. & Valen, E. CHOPCHOP v2: A web tool for the next generation of CRISPR genome engineering. Nucleic Acids Res.44, W272–W276 (2016). PubMed PMC

Elrick H. et al. FORCAST: A fully integrated and open source pipeline to design Cas-mediated mutagenesis experiments. bioRxiv 2020.04.21.053090 (2020).

Gertsenstein, M. & Nutter, L. M. J. Engineering point mutant and epitope-tagged alleles in mice using Cas9 RNA-guided nuclease. Curr. Protoc. Mouse Biol.8, 28–53 (2018). PubMed PMC

Bassett, A. R., Tibbit, C., Ponting, C. P. & Liu, J. L. Highly efficient targeted mutagenesis of Drosophila with the CRISPR/Cas9 system. Cell Rep.4, 220–228 (2013). PubMed PMC

Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science339, 819–823 (2013). PubMed PMC

Mali, P. et al. RNA-guided human genome engineering via Cas9. Science339, 823–826 (2013). PubMed PMC

Hwang, W. Y. et al. Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat. Biotechnol.31, 227–229 (2013). PubMed PMC

Mianne, J. et al. Correction of the auditory phenotype in C57BL/6N mice via CRISPR/Cas9-mediated homology directed repair. Genome Med.8, 16 (2016). PubMed PMC

Gardiner, W. J. & Teboul, L. Overexpression transgenesis in mouse: Pronuclear injection. Methods Mol. Biol.561, 111–126 (2009). PubMed

Green, M. R. & Sambrook, J. Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Laboratory Press, 2012).

Truett, G. E. et al. Preparation of PCR-quality mouse genomic DNA with hot sodium hydroxide and tris (HotSHOT). Biotechniques29(52), 4 (2000). PubMed

Mianne, J. et al. Analysing the outcome of CRISPR-aided genome editing in embryos: Screening, genotyping and quality control. Methods121–122, 68–76 (2017). PubMed

Ryder, E. et al. Molecular characterization of mutant mouse strains generated from the EUCOMM/KOMP-CSD ES cell resource. Mamm. Genome24, 286–294 (2013). PubMed PMC

Harris, C. R. et al. Array programming with NumPy. Nature585, 357–362 (2020). PubMed PMC

McKinney, W. Data structures for statistical computing in python. in Proceedings of the 9th Python in Science Conference, Austin, TX, 2010 vol. 445, pp. 50–61.

Wilcoxon, F. Individual comparisons by ranking methods. Biometr. Bull.1, 80–83 (1945).

Kruskal, W. H. & Wallis, W. A. Use of ranks in one-criterion variance analysis. J. Am. Stat. Assoc.47, 583–621 (1952).

Pearson, K. X. On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling. Lond. Edinburgh Dublin Philos. Mag. J. Sci.50, 157–175 (1900).

Holm, S. A simple sequentially rejective multiple test procedure. Scand. J. Stat.6, 65–70 (1979).

Team R.C. 2021. R: A language and environment for statistical computing. In R Foundation for Statistical Computing, Vienna, Austria

Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, 2016).

Wickham, H. et al. Welcome to the Tidyverse. J. Open Source Softw.4, 1686 (2019).

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...