Impact of essential genes on the success of genome editing experiments generating 3313 new genetically engineered mouse lines
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
UM1OD023221
NIH HHS - United States
U42OD011185
NIH HHS - United States
OGI-051
Genome Canada
UM1 OD023221
NIH HHS - United States
U42OD011175
NIH HHS - United States
LM2018126
Ministry of Education, Youth and Sports of the Czech Republic
OGI-137
Genome Canada
OGI-090
Ontario Genomics
ANR-10-IDEX-0002-02
Institut National de la Santé et de la Recherche Médicale
MC_UP_1502/3
Medical Research Council - United Kingdom
OGI-090
Genome Canada
OGI-137
Ontario Genomics
UM1 OD023222
NIH HHS - United States
ANR-10-INBS-07
Institut National de la Santé et de la Recherche Médicale
UM1HG006370
NIH HHS - United States
U42OD011174
NIH HHS - United States
UM1 HG006348
NHGRI NIH HHS - United States
U42 OD011174
NIH HHS - United States
OGI-051
Ontario Genomics
UM1 HG006370
NHGRI NIH HHS - United States
UMIHG006348
NIH HHS - United States
ANR-10-LABX-0030-INRT
Institut National de la Santé et de la Recherche Médicale
U42 OD011175
NIH HHS - United States
Wellcome Trust - United Kingdom
U42 OD011185
NIH HHS - United States
RVO 68378050
Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences
UM1OD023222
NIH HHS - United States
PubMed
39349521
PubMed Central
PMC11443006
DOI
10.1038/s41598-024-72418-8
PII: 10.1038/s41598-024-72418-8
Knihovny.cz E-zdroje
- Klíčová slova
- Cas9, Genome editing, Knockout, Mouse,
- MeSH
- alely MeSH
- CRISPR-Cas systémy MeSH
- editace genu * metody MeSH
- esenciální geny * MeSH
- fenotyp MeSH
- genetické inženýrství metody MeSH
- myši inbrední C57BL MeSH
- myši knockoutované * MeSH
- myši MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
The International Mouse Phenotyping Consortium (IMPC) systematically produces and phenotypes mouse lines with presumptive null mutations to provide insight into gene function. The IMPC now uses the programmable RNA-guided nuclease Cas9 for its increased capacity and flexibility to efficiently generate null alleles in the C57BL/6N strain. In addition to being a valuable novel and accessible research resource, the production of 3313 knockout mouse lines using comparable protocols provides a rich dataset to analyze experimental and biological variables affecting in vivo gene engineering with Cas9. Mouse line production has two critical steps - generation of founders with the desired allele and germline transmission (GLT) of that allele from founders to offspring. A systematic evaluation of the variables impacting success rates identified gene essentiality as the primary factor influencing successful production of null alleles. Collectively, our findings provide best practice recommendations for using Cas9 to generate alleles in mouse essential genes, many of which are orthologs of genes linked to human disease.
Department of Integrative Physiology Baylor College of Medicine Houston TX 77030 USA
Department of Mathematics and Statistics University of Guelph Guelph ON N1G 2W1 Canada
Department of Molecular and Cellular Biology Baylor College of Medicine Houston TX 77030 USA
Department of Molecular and Human Genetic Baylor College of Medicine Houston TX 77030 USA
Department of Statistics University of Manitoba Winnipeg MB R3T 2N2 Canada
Department of Surgery School of Medicine University of California Davis Davis CA 95618 USA
Mouse Biology Program University of California Davis Davis CA 95618 USA
MRC Harwell Institute Harwell OX11 0RD UK
Nuffield Department of Population Health University of Oxford Oxford OX3 7LF UK
Reproductive and Developmental Biology Laboratory NIEHS Research Triangle Park Durham NC 27709 USA
The Centre for Phenogenomics Toronto ON M5T 3H7 Canada
The Francis Crick Institute 1 Midland Rd London NW1 1AT UK
The Hospital for Sick Children Toronto ON M5G 1X8 Canada
The Jackson Laboratory Bar Harbor ME 04609 USA
The Jackson Laboratory for Genomic Medicine Farmington CT 06032 USA
The Mary Lyon Centre MRC Harwell Institute Harwell Campus Didcot Oxon OX11 0RD UK
UT Health San Antonio San Antonio TX 78229 USA
Wellcome MRC Cambridge Stem Cell Institute University of Cambridge Trinity Lane Cambridge CB2 1TN UK
Wellcome Sanger Institute Wellcome Genome Campus Hinxton Cambridge CB10 1SA UK
William Harvey Research Institute Queen Mary University of London London EC1M 6BQ UK
Zobrazit více v PubMed
Birling, M. C. et al. A resource of targeted mutant mouse lines for 5061 genes. Nat. Genet.53, 416–419 (2021). PubMed PMC
Lloyd, K. C. K. et al. The deep genome project. Genome Biol.21, 18 (2020). PubMed PMC
Bradley, A. et al. The mammalian gene function resource: the international knockout mouse consortium. Mamm. Genome23, 580–586 (2012). PubMed PMC
Popp, M. W. & Maquat, L. E. The dharma of nonsense-mediated mRNA decay in mammalian cells. Mol. Cells37, 1–8 (2014). PubMed PMC
Lalonde, S. et al. Frameshift indels introduced by genome editing can lead to in-frame exon skipping. PLoS ONE12, e0178700 (2017). PubMed PMC
Mou, H. et al. CRISPR/Cas9-mediated genome editing induces exon skipping by alternative splicing or exon deletion. Genome Biol.18, 108 (2017). PubMed PMC
Smits, A. H. et al. Biological plasticity rescues target activity in CRISPR knock outs. Nat. Methods16, 1087–1093 (2019). PubMed
Behringer, R. R., Gertsenstein, M., Nagy, K. & Nagy, A. Manipulating the Mouse Embryo: A Laboratory Manual 814 (Cold Spring Harbor Laboratory Press, 2014).
Doe, B., Brown, E. & Boroviak, K. Generating CRISPR/Cas9-derived mutant mice by zygote cytoplasmic injection using an automatic microinjector. Methods Protoc.1(1), 5. 10.3390/mps1010005 (2018). PubMed PMC
Gertsenstein, M. & Nutter, L. M. J. Production of knockout mouse lines with Cas9. Methods191, 32–43 (2021). PubMed
Kaneko, T., Sakuma, T., Yamamoto, T. & Mashimo, T. Simple knockout by electroporation of engineered endonucleases into intact rat embryos. Sci. Rep.4, 6382 (2014). PubMed PMC
Modzelewski, A. J. et al. Efficient mouse genome engineering by CRISPR-EZ technology. Nat. Protoc.13, 1253–1274 (2018). PubMed PMC
Wang, W. et al. Delivery of Cas9 protein into mouse zygotes through a series of electroporation dramatically increases the efficiency of model creation. J. Genet. Genom. = Yi chuan xue bao43(5), 319–327. 10.1016/j.jgg.2016.02.004 (2016). PubMed PMC
Anderson, K. R. et al. CRISPR off-target analysis in genetically engineered rats and mice. Nat. Methods15, 512–514 (2018). PubMed PMC
Iyer, V. et al. Off-target mutations are rare in Cas9-modified mice. Nat. Methods12, 479 (2015). PubMed
Peterson, K. A. et al. Whole genome analysis for 163 gRNAs in Cas9-edited mice reveals minimal off-target activity. Commun. Biol.6, 626 (2023). PubMed PMC
Willi, M., Smith, H. E., Wang, C., Liu, C. & Hennighausen, L. Mutation frequency is not increased in CRISPR-Cas9-edited mice. Nat. Methods15, 756–758 (2018). PubMed
Lanza, D. G. et al. Comparative analysis of single-stranded DNA donors to generate conditional null mouse alleles. BMC Biol.16, 69 (2018). PubMed PMC
Cacheiro, P. et al. Human and mouse essentiality screens as a resource for disease gene discovery. Nat. Commun.11, 655 (2020). PubMed PMC
Ring, N. et al. A mouse informatics platform for phenotypic and translational discovery. Mamm. Genome26, 413–421 (2015). PubMed PMC
Barrett, T. et al. NCBI GEO: Archive for functional genomics data sets–update. Nucleic Acids Res.41, D991–D995 (2013). PubMed PMC
Karczewski, K. J. et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature581, 434–443 (2020). PubMed PMC
Online Mendelian Inheritance in Man, OMIM®. McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University (Baltimore, 2020)
Scavizzi, F. et al. Blastocyst genotyping for quality control of mouse mutant archives: An ethical and economical approach. Transgen. Res.24, 921–927 (2015). PubMed PMC
Kim, H. K. et al. SpCas9 activity prediction by DeepSpCas9, a deep learning-based model with high generalization performance. Sci. Adv.5, e9249 (2019). PubMed PMC
Cacheiro, P. et al. Mendelian gene identification through mouse embryo viability screening. Genome Med.14, 119 (2022). PubMed PMC
Economides, A. N. et al. Conditionals by inversion provide a universal method for the generation of conditional alleles. Proc. Natl. Acad. Sci. U. S. A.110, E3179–E3188 (2013). PubMed PMC
Nagy, A. Cre recombinase: The universal reagent for genome tailoring. Genesis26, 99–109 (2000). PubMed
Russell, W. M. S. & Burch, R. L. The Principles of Humane Experimental Technique (Methuen, London, 1959).
Popp, M. W. & Maquat, L. E. Organizing principles of mammalian nonsense-mediated mRNA decay. Annu. Rev. Genet.47, 139–165 (2013). PubMed PMC
Ran, F. A. et al. Genome engineering using the CRISPR-Cas9 system. Nat. Protoc.8, 2281–2308 (2013). PubMed PMC
Hodgkins, A. et al. WGE: A CRISPR database for genome engineering. Bioinformatics31, 3078–3080 (2015). PubMed PMC
Haeussler, M. et al. Evaluation of off-target and on-target scoring algorithms and integration into the guide RNA selection tool CRISPOR. Genome Biol.17, 148 (2016). PubMed PMC
Peterson, K. A. et al. CRISPRtools: a flexible computational platform for performing CRISPR/Cas9 experiments in the mouse. Mamm. Genome28, 283–290 (2017). PubMed PMC
Labun, K., Montague, T. G., Gagnon, J. A., Thyme, S. B. & Valen, E. CHOPCHOP v2: A web tool for the next generation of CRISPR genome engineering. Nucleic Acids Res.44, W272–W276 (2016). PubMed PMC
Elrick H. et al. FORCAST: A fully integrated and open source pipeline to design Cas-mediated mutagenesis experiments. bioRxiv 2020.04.21.053090 (2020).
Gertsenstein, M. & Nutter, L. M. J. Engineering point mutant and epitope-tagged alleles in mice using Cas9 RNA-guided nuclease. Curr. Protoc. Mouse Biol.8, 28–53 (2018). PubMed PMC
Bassett, A. R., Tibbit, C., Ponting, C. P. & Liu, J. L. Highly efficient targeted mutagenesis of Drosophila with the CRISPR/Cas9 system. Cell Rep.4, 220–228 (2013). PubMed PMC
Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science339, 819–823 (2013). PubMed PMC
Mali, P. et al. RNA-guided human genome engineering via Cas9. Science339, 823–826 (2013). PubMed PMC
Hwang, W. Y. et al. Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat. Biotechnol.31, 227–229 (2013). PubMed PMC
Mianne, J. et al. Correction of the auditory phenotype in C57BL/6N mice via CRISPR/Cas9-mediated homology directed repair. Genome Med.8, 16 (2016). PubMed PMC
Gardiner, W. J. & Teboul, L. Overexpression transgenesis in mouse: Pronuclear injection. Methods Mol. Biol.561, 111–126 (2009). PubMed
Green, M. R. & Sambrook, J. Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Laboratory Press, 2012).
Truett, G. E. et al. Preparation of PCR-quality mouse genomic DNA with hot sodium hydroxide and tris (HotSHOT). Biotechniques29(52), 4 (2000). PubMed
Mianne, J. et al. Analysing the outcome of CRISPR-aided genome editing in embryos: Screening, genotyping and quality control. Methods121–122, 68–76 (2017). PubMed
Ryder, E. et al. Molecular characterization of mutant mouse strains generated from the EUCOMM/KOMP-CSD ES cell resource. Mamm. Genome24, 286–294 (2013). PubMed PMC
Harris, C. R. et al. Array programming with NumPy. Nature585, 357–362 (2020). PubMed PMC
McKinney, W. Data structures for statistical computing in python. in Proceedings of the 9th Python in Science Conference, Austin, TX, 2010 vol. 445, pp. 50–61.
Wilcoxon, F. Individual comparisons by ranking methods. Biometr. Bull.1, 80–83 (1945).
Kruskal, W. H. & Wallis, W. A. Use of ranks in one-criterion variance analysis. J. Am. Stat. Assoc.47, 583–621 (1952).
Pearson, K. X. On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling. Lond. Edinburgh Dublin Philos. Mag. J. Sci.50, 157–175 (1900).
Holm, S. A simple sequentially rejective multiple test procedure. Scand. J. Stat.6, 65–70 (1979).
Team R.C. 2021. R: A language and environment for statistical computing. In R Foundation for Statistical Computing, Vienna, Austria
Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, 2016).
Wickham, H. et al. Welcome to the Tidyverse. J. Open Source Softw.4, 1686 (2019).