The Effect of Rhizoboxes on Plant Growth and Root: Shoot Biomass Partitioning
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
32010171
PubMed Central
PMC6978282
DOI
10.3389/fpls.2019.01693
Knihovny.cz E-zdroje
- Klíčová slova
- 2D pot shape, experimental container, nutrient supply, plant growth, rhizobox, root:shoot biomass partitioning,
- Publikační typ
- časopisecké články MeSH
Various types of flat rhizoboxes aid in root visualization and tracking in experiments where the focus is upon root system growth and development. While size of the pot is known to affect experiments, nothing is known about the impact of rhizoboxes-not only their volume, but also their shape might affect root and shoot growth. Therefore, we investigated how rhizoboxes change plant biomass and root:shoot biomass partitioning. We compared biomass and root:shoot ratio of plants growing in the pots with different geometry-usual three-dimensional, cuboid plant pots and flat two-dimensional rhizoboxes about the same volume. We used two different nutritional treatments (deionized water and additional nutrients) for investigating whether the nutrient availability in the substrate changed the impact of rhizoboxes on plant growth. We used 15 species for the generalizability of our results across the phylogenetic tree. Proportional investment of plants into roots was similar in usual pots and in rhizoboxes. This pattern was stable across nutrition treatments and across species. Further, we found no differences in total biomass of plants between pot type within nutrient treatments. With added nutrients, the plants had a higher biomass and lower root:shoot ratio compared to treatments without nutrient addition. Thus, species can be safely compared when grown in the rhizoboxes; rhizoboxes did not affect root system growth comparisons among species and nutrient levels. Also, they did not affect plant growth in terms of total biomass.
Zobrazit více v PubMed
Arp W. (1991). Effects of source–sink relations on photosynthetic acclimation to elevated CO2 . Plant Cell Environ. 14, 869–875. 10.1111/j.1365-3040.1991.tb01450.x DOI
Bunt A. C., Kulwiec Z. J. (1970). The effect of container porosity on root environment and plant growth. I. Temperature. Plant Soil 32, 65–80. 10.1007/BF01372847 DOI
Carpenter B., Gelman A., Hoffman M. D., Lee D., Goodrich B., Betancourt M., et al. (2017). Stan : a probabilistic programming language. J. Stat. Softw. 76, 1–32. 10.18637/jss.v076.i01 PubMed DOI PMC
Chapin FS, III, Bloom A. J., Field C. B., Waring R. H. (1987). Plant responses to multiple environmental factors. BioScience 37, 49–57. 10.2307/1310177 DOI
Delgado A. J., Serrano M. J., López F., Acosta J. F. (2011). Effects of fertilisation and neighbors removal on biomass allocation and fruit production in Cistus ladanifer. Plant Biosyst. 145, 324–330. 10.1080/11263504.2011.558684 DOI
Durka W., Michalski S. G. (2012). Daphne: a dated phylogeny of a large European flora for phylogenetically informed ecological analyses. Ecology 93, 2297–2297. 10.1890/12-0743.1 DOI
Falik O., Reides P., Gersani M., Novoplansky A. (2005). Root navigation by self inhibition. Plant Cell Environ. 28, 562–569. 10.1111/j.1365-3040.2005.01304.x DOI
Fitter A. H., Nichols R., Harvey M. L. (1988). Root system architecture in relation to life history and nutrient supply. Funct. Ecol. 3, 345–351. 10.2307/2389407 DOI
Gedroc J. J., McConnaughay K. D. M., Coleman J. S. (1996). Plasticity in root/shoot partitioning: optimal, ontogenetic, or both? Funct. Ecol. 10, 44–50. 10.2307/2390260 DOI
Gelman A., Rubin D. B. (1992). Inference from iterative simulation using multiple sequences. Stat. Sci. 7, 457–472. 10.1214/ss/1177011136 DOI
Gross K., Maruca D., Pregitzer S. K. (1992). Seedling growth and root morphology of plants with different life-histories. New Phytol. 120, 535–542. 10.1111/j.1469-8137.1992.tb01803.x DOI
Herold A., McNeil P. H. (1979). Restoration of photosynthesis in pot-bound tobacco plants. J. Exp. Bot. 30, 1187–1194. 10.1093/jxb/30.6.1187 DOI
Hoffman M. D., Gelman A. (2014). The no-U-turn sampler: adaptively setting path lengths in hamiltonian monte Carlo. J. Mach. Learn. Res. 4, 1–30.
Hylander L. D. (2002). Improvements of rhizoboxes used for studies of soil–root interactions. Commun. Soil Sci. Plant Anal. 33, 155–161. 10.1081/css-120002384 DOI
Keever G. J., Cobb G. S., McDaniel R. (1986). Effects of container size, root pruning, and fertilization on growth of seedling pecans. J. Environ. Hortic. 4, 11–13. 10.24266/0738-2898-4.1.11 DOI
Mašková T., Weiser M. (2019). The roles of interspecific variability in seed mass and soil resource availability in root system development. Plant Soil 435, 395–406. 10.1007/s11104-018-3896-y DOI
Markham J. W., Bremer D. J., Boyer C. R., Schroeder K. R. (2011). Effect of container color on substrate temperatures and growth of red maple and redbud. HortScience 46, 721–726. 10.21273/HORTSCI.46.5.721 DOI
Marschner H., Römheld V. (1983). In vivo measurement of root-induced pH changes at the soil-root interface: effect of plant species and nitrogen source. Z. für Pflanzenphysiologie 111 (3), 241–251. 10.1016/s0044-328x(83)80083-x DOI
McConnaughay K. D. M., Berntson G., Bazzaz F. (1993). Limitations to CO2–induced growth enhancement in pot studies. Oecologia 94, 183–192. PubMed
Ou Z. H. (2014). Direction change of plant root growth by the impenetrable boundary. Plant Biosyst. – Int. J. Dealing all Aspects Plant Biol. 148, 1160–1168. 10.1080/11263504.2014.913729 DOI
Pagel M. (1999). Inferring the historical patterns of biological evolution. Nature 401, 877. 10.1038/44766 PubMed DOI
Poorter H., Bühler J., van Dusschoten D., Climent J., Postma A. J. (2012). Pot size matters: a meta-analysis of the effects of rooting volume on plant growth. Funct. Plant Biol. 39, 839–850. 10.1071/fp12049 PubMed DOI
R Core Team , (2016). R: A language and environment for statistical computing (Vienna, Austria: R Foundation for Statistical Computing; ). Retrieved from https://www.r-project.org/.
Schmidt E. J., Lowry C., Gaudin C. M. A. (2018). An optimized Rhizobox protocol to visualize root growth and responsiveness to localized nutrients. J. Vis. Exp. 140, e58674. 10.3791/58674 PubMed DOI PMC
Semchenko M., Hutchings J. M., John A. E. (2007). Challenging the tragedy of the commons in root competition: confounding effects of neighbour presence and substrate volume. J. Ecol. 95, 252–260.
Stan Development Team (2018). RStan: the R interface to Stan (R package; ). Retrieved from http://mc-stan.org/.
Youssef R. A., Chino M. (1987). Studie on the behavior of nutrients in the rhizosphere I: Establishment of a new rhizobox system to study nutrient status in the rhizosphere. J. Plant Nutr. 10, 9–16. 10.1080/01904168709363646 DOI
Plant Nutrition-New Methods Based on the Lessons of History: A Review
Dryad
10.5061/dryad.67mg4q8