Plant Nutrition-New Methods Based on the Lessons of History: A Review
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
QK23020056
Ministry of Agriculture, Czech republic
PubMed
38140480
PubMed Central
PMC10747035
DOI
10.3390/plants12244150
PII: plants12244150
Knihovny.cz E-zdroje
- Klíčová slova
- long-term field experiments, modern nutrition methods, soil and plant analysis, stressful environment,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
As with new technologies, plant nutrition has taken a big step forward in the last two decades. The main objective of this review is to briefly summarise the main pathways in modern plant nutrition and attract potential researchers and publishers to this area. First, this review highlights the importance of long-term field experiments, which provide us with valuable information about the effects of different applied strategies. The second part is dedicated to the new analytical technologies (tomography, spectrometry, and chromatography), intensively studied environments (rhizosphere, soil microbial communities, and enzymatic activity), nutrient relationship indexes, and the general importance of proper data evaluation. The third section is dedicated to the strategies of plant nutrition, i.e., (i) plant breeding, (ii) precision farming, (iii) fertiliser placement, (iv) biostimulants, (v) waste materials as a source of nutrients, and (vi) nanotechnologies. Finally, the increasing environmental risks related to plant nutrition, including biotic and abiotic stress, mainly the threat of soil salinity, are mentioned. In the 21st century, fertiliser application trends should be shifted to local application, precise farming, and nanotechnology; amended with ecofriendly organic fertilisers to ensure sustainable agricultural practices; and supported by new, highly effective crop varieties. To optimise agriculture, only the combination of the mentioned modern strategies supported by a proper analysis based on long-term observations seems to be a suitable pathway.
Zobrazit více v PubMed
Aftab T., Hakeem K.R., editors. Sustainable Plant Nutrition. Molecular Interventions and Advancements for Crop. 1st ed. Elsevier; Amsterdam, The Netherlands: Academic Press; Cambridge, MA, USA: 2022.
Maathius F.J.M., editor. Plant Mineral Nutrients. Methods and Protocols. Humana Press Inc.; Totowa, NJ, USA: 2017.
Rengel Z., Cakmak I., White P.J., editors. Marschner’s Mineral Nutrition of Plants. 4th ed. Elsevier; Amsterdam, The Netherlands: Academic Press; Cambridge, MA, USA: 2023.
Timisina J., editor. Fertilizer Application on Crop Yields. MDPI; Basel, Switzerland: 2019.
Tikhonovich T.A., Provorov N.A. Chapter 14—Beneficial plant-microbe interactions. In: Dyakov Y.T., Dzavakhiya V.G., Korpela T., editors. Comprehensive and Molecular Phytopathology. Elsevier; Amsterdam, The Netherlands: 2007. DOI
Pöhlitz J., Rücknagel J., Schlüter S., Vogel H.-J., Christen O. Estimation of critical stress ranges to preserve soil functions for differently textured soils. Soil Tillage Res. 2020;200:104637. doi: 10.1016/j.still.2020.104637. DOI
Garcia W.O., Amann T., Hartmann J., Karstens K., Popp A., Boysen L.R., Smith P., Goll D. Impacts of enhanced weathering on biomass production for negative emission technologies and soil hydrology. Biogeosciences. 2020;17:2107–2133. doi: 10.5194/bg-17-2107-2020. DOI
Ebabu K., Tsunekawa A., Haregeweyn N., Adgo E., Meshesha D.T., Aklog D., Masunaga T., Tsubo M., Sultan D., Fenta A.A., et al. Exploring the variability of soil properties as influenced by land use and management practices: A case study in the Upper Blue Nile basin, Ethiopia. Soil Tillage Res. 2020;200:104614. doi: 10.1016/j.still.2020.104614. DOI
El-Ramady H.R., Alshaal T.A., Shehata S.A., Domokos-Szabolcsy É., Elhawat N., Prokisch J., Fári M., Marton L. Plant Nutrition: From Liquid Medium to Micro-farm. In: Ozier-Lafontaine H., Lesueur-Jannoyer M., editors. Sustainable Agriculture Reviews 14: Agroecology and Global Change. Springer; Cham, Switzerland: 2014. pp. 449–508. DOI
Ye L., Zhao X., Bao E., Li J., Zou Z., Cao K. Bio-organic fertilizer with reduced rates of chemical fertilization improves soil fertility and enhances tomato yield and quality. Sci. Rep. 2020;10:177. doi: 10.1038/s41598-019-56954-2. PubMed DOI PMC
Xu P., Liu Y., Zhu J., Shi L., Fu Q., Chen J., Hu H., Huang Q. Influence mechanisms of long-term fertilizations on the mineralization of organic matter in Ultisol. Soil Tillage Res. 2020;201:104594. doi: 10.1016/j.still.2020.104594. DOI
Wang J.Y., Yan X.Y., Gong W. Effect of long-term fertilization on soil productivity on the North China Plain. Pedosphere. 2015;25:450–458. doi: 10.1016/S1002-0160(15)30012-6. DOI
Veum K.S., Goyne K.W., Kremer R.J., Miles R.J., Sudduth K.A. Biological indicators of soil quality and soil organic matter characteristics in an agricultural management continuum. Biogeochemistry. 2014;117:81–99. doi: 10.1007/s10533-013-9868-7. DOI
Menšík L., Hlisnikovský L., Pospíšilová L., Kunzová E. The effect of application of organic manures and mineral fertilizerson the state of soil organic matter and nutrients in the long-term field experiment. J. Soils Sediments. 2018;18:2813–2822. doi: 10.1007/s11368-018-1933-3. DOI
Bowles T.M., Mooshammer M., Socolar Y., Calderon F., Cavigelli M.A., Culman S.W., Deen W., Drury C.F., Garcia A.G.Y., Gaudin A.C.M., et al. Long-Term Evidence Shows that Crop-Rotation Diversification Increases Agricultural Resilience to Adverse Growing Conditions in North America. One Earth. 2020;2:284–293. doi: 10.1016/j.oneear.2020.02.007. DOI
Rosenzweig S.T., Stromberger M.E., Schipanski M.E. Intensified dryland crop rotations support greater grain production with fewer inputs. Agric. Ecosyst. Environ. 2018;264:63–72. doi: 10.1016/j.agee.2018.05.017. DOI
Modak K., Biswas D.R., Ghosh A., Pramanik P., Das T.K., Das S., Kumar S., Krishnan P., Bhattacharyya R. Zero tillage and residue retention impact on soil aggregation and carbon stabilization within aggregates in subtropical India. Soil Tillage Res. 2020;202:104649. doi: 10.1016/j.still.2020.104649. DOI
Cania B., Vestergaard G., Krauss M., Fliessbach A., Schloter M., Schulz S. A long-term field experiment demonstrates the influence of tillage on the bacterial potential to produce soil structure-stabilizing agents such as exopolysaccharides and lipopolysaccharides. Environ. Microbiome. 2019;14:1. doi: 10.1186/s40793-019-0341-7. PubMed DOI PMC
Cooper R.J., Hama-Aziza Z.Q., Hiscock K.M., Lovett A.A., Vrain E., Dugdale S.J., Sünnenberg G., Dockerty T., Hovesen P., Noble L. Conservation tillage and soil health: Lessons from a 5-year UK farm trial (2013–2018) Soil Tillage Res. 2020;202:104648. doi: 10.1016/j.still.2020.104648. DOI
Lynch J.P. Root phenotypes for improved nutrient capture: An underexploited opportunity for global agriculture. New Phytol. 2019;223:548–564. doi: 10.1111/nph.15738. PubMed DOI
Keel S.G., Anken T., Büchi L., Chervet A., Fliessbach A., Flisch R., Huguenin-Elie O., Mäder P., Mayer J., Sinaj S., et al. Loss of soil organic carbon in Swiss long-term agricultural experiments over a wide range of management practices. Agric. Ecosyst. Environ. 2019;286:106654. doi: 10.1016/j.agee.2019.106654. DOI
Poulton P., Johnston J., Macdonald A., White R., Powlson D. Major limitations to achieving “4 per 1000” increases in soil organic carbon stock in temperate regions: Evidence from long-term experiments at Rothamsted Research, United Kingdom. Glob. Chang. Biol. 2018;24:2563–2584. doi: 10.1111/gcb.14066. PubMed DOI PMC
Šeremešić S., Ćirić V., Milošev D., Vasin J., Djalovic I. Changes in soil carbon stock under the wheat-based cropping systems at Vojvodina province of Serbia. Arch. Agron. Soil Sci. 2017;63:388–402. doi: 10.1080/03650340.2016.1218475. DOI
Paustian K., Collier S., Baldock J., Burgess R., Creque J., DeLonge M., Dungait J., Ellert B., Frank S., Goddard T., et al. Quantifying carbon for agricultural soil management: From the current status toward a global soil information system. Carbon Manag. 2019;10:567–587. doi: 10.1080/17583004.2019.1633231. DOI
Michaud A.M., Cambier P., Sappin-Didier V., Deltreil V., Mercier V., Rampon J.-N., Houot S. Mass balance and long-term soil accumulation of trace elementsin arable crop systems amended with urban composts or cattlemanure during 17 years. Environ. Sci. Pollut. Res. 2020;27:5367–5386. doi: 10.1007/s11356-019-07166-8. PubMed DOI PMC
Yang G.-H., Zhu G.-Y., Li H.-L., Han X.-M., Li J.-M., Ma Y.-B. Accumulation and bioavailability of heavy metals in a soil-wheat/maize system with long-term sewage sludge amendments. J. Integr. Agric. 2018;17:1861–1870. doi: 10.1016/S2095-3119(17)61884-7. DOI
Bationo A., Waswa B., Abdou A., Bado B., Bonzi M., Iwuafor E., Kibunja C., Kihara J., Mucheru M., Mugendi D., et al. Overview of Long-Term Experiments in Africa. In: Bationo A., Waswa B., Abdou A., Bado B.V., Bonzi M., Sedogo M., Iwuafor E., editors. Lessons Learned from Long-Term Soil Fertility Management Experiments in Africa. Springer Science; New York, NY, USA: London, UK: 2012. pp. 1–26. DOI
Fornara D.A., Steinbeiss S., McNamara N.P., Gleixner G., Oakley S., Poulton P.R., Bardgett R.D. Increases in soil organic carbon sequestration can reduce the global warming potential of long-term liming to permanent grassland. Glob. Change Biol. 2011;17:1925–1934. doi: 10.1111/j.1365-2486.2010.02328.x. DOI
Houot S., Chaussod R., Hounemenou C., Barriuso E., Bourgeois S. Differences Induced in the Soil Organic Matter Characteristics and Microbial Activity by Various Management Practices in Long Term Field Experiments. Dev. Geochem. 1991;6:435–443. doi: 10.1016/B978-0-444-88900-3.50047-3. DOI
Houot S., Chaussod R. Impact of agricultural practices on the size and activity of the microbial biomass in a long-term field experiment. Biol. Fertil. Soils. 1995;19:309–316. doi: 10.1007/BF00336100. DOI
Bakker P.A.H.M., Pieterse C.M.J., de Jonge R., Berendsen R.L. The soil-Borne Legacy. Cell. 2018;172:1178–1180. doi: 10.1016/j.cell.2018.02.024. PubMed DOI
Bakker E., Lanson B., Findling N., Wander M.M., Hubert F. Mineralogical differences in a temperate cultivated soil arising from different agronomic processes and plant K-uptake. Geoderma. 2019;347:210–219. doi: 10.1016/j.geoderma.2019.04.010. DOI
Flessa H., Ludwig B., Heil B., Merbach W. The origin of soil organic C, dissolved organic C, and respiration in long-term maize experiment in Halle, Germany, determined by13Cnatural abundance. J. Plant Nutr. Soil Sci. 2000;163:157–163. doi: 10.1002/(SICI)1522-2624(200004)163:2<157::AID-JPLN157>3.0.CO;2-9. DOI
Merbach W., Deubel A. Long-term field experiments–museum relics or scientific challenge? Plant Soil Environ. 2008;54:219–226. doi: 10.17221/395-PSE. DOI
Körschens M., Albert E., Armbruster M., Barkusky D., Baumecker M., Behle-Schalk L., Bischoff R., Čergan Z., Ellmer F., Herbst F., et al. Effect of mineral and organic fertilization on crop yield, nitrogen uptake, carbon and nitrogen balances, as well as soil organic carbon content and dynamics: Results from 20 European long-term field experiments of the twenty-first century. Arch. Agron. Soil Sci. 2013;59:1017–1040. doi: 10.1080/03650340.2012.704548. DOI
Merbach W., Herbst F., Eibner H., Schmidt L., Deubel A. Influence of different long-term mineral–organic fertilization on yield, nutrient balance and soil C and N contents of a sandy loess (Haplic Phaeozem) in middle Germany. Arch. Agron. Soil Sci. 2013;59:1059–1071. doi: 10.1080/03650340.2012.692875. DOI
Buyanovsky G.A., Brown J.R., Wagner G.H. Soil organic matter dynamics in Sanborn Field (North America) NATO ASI Ser. 1996;138:295–296. doi: 10.1007/978-3-642-61094-3_24. DOI
Miles R.J., Brown J.R. The Sanborn Field Experiment: Implications for Long-Term Soil Organic Carbon Levels. Agron. J. 2011;103:268–278. doi: 10.2134/agronj2010.0221s. DOI
Christensen B.T. The Askov long-term field experiments. Arch. Agron. Soil Sci. 1997;42:265–278. doi: 10.1080/03650349709385732. DOI
Bruun S., Christensen B.T., Hansen E.M., Magid J., Jensen L.S. Calibration and validation of the soil organic matter dynamics of the Daisy model with data from the Askov long-term experiments. Soil Biol. Biochem. 2003;35:67–76. doi: 10.1016/S0038-0717(02)00237-7. DOI
Šimanský V., Jonczak J. Sorption capacity of sandy soil under long-term fertilization. Agric./Pol’nohospodárstvo. 2019;65:164–171. doi: 10.2478/agri-2019-0017. DOI
Stêpieñ W., Kobialka M. Effect of long-term organic and mineral fertilization on selected physico-chemical soil properties in rye monoculture and five-year crop rotation. Soil Sci. Annu. 2019;70:34–38. doi: 10.2478/ssa-2019-0004. DOI
Yang Z., Singh B.R., Hansen S., Hu Z., Riley H. Aggregate Associated Sulfur Fractions in Long-Term (>80 Years) Fertilized Soils. Soil Sci. Soc. Am. J. 2007;71:163–170. doi: 10.2136/sssaj2006.0242. DOI
Riley H. Long-term fertilizer trials on loam soil at M⊘ystad, south-eastern Norway: Crop yields, nutrient balances and soil chemical analyses from 1983 to 2003. Acta Agric. Scand. Sect. B-Soil Plant Sci. 2007;57:140–154. doi: 10.1080/09064710600766412. DOI
Riley H. Residual value of inorganic fertilizer and farmyard manure for crop yields and soil fertility after long-term use on a loam soil in Norway. Nutr. Cycl. Agroecosyst. 2016;104:25–37. doi: 10.1007/s10705-015-9756-8. DOI
Nguyen-Sy T., Cheng W., Kimani S.M., Shiono H., Sugawara R., Tawaraya K., Watanabe T., Kumagai K. Stable carbon isotope ratios of water-extractable organic carbon affected by application of rice straw and rice straw compost during a long-term rice experiment in Yamagata, Japan. Soil Sci. Plant Nutr. 2020;66:125–132. doi: 10.1080/00380768.2019.1708209. DOI
Hejcman M., Kunzova E. Sustainability of winter wheat production on sandy-loamy Cambisol in the Czech Republic: Results from a long-term fertilizer and crop rotation experiment. Field Crops Res. 2010;115:191–199. doi: 10.1016/j.fcr.2009.11.004. DOI
Simon T., Cerhanova D., Mikanova O. The effect of site characteristics and farming practices on soil organic matter in long-term field experiments in the Czech Republic. Arch. Agron. Soil Sci. 2011;57:693–704. doi: 10.1080/03650340.2010.493879. DOI
Šrek P., Hejcman M., Kunzová E. Effect of long-term cattle slurry and mineral N, P and K application on concentrations of N, P, K, Ca, Mg, As, Cd, Cr, Cu, Mn, Ni, Pb and Zn in peeled potato tubers and peels. Plant Soil Environ. 2014;58:167–173. doi: 10.17221/610/2011-PSE. DOI
Hisnikovský L., Kunzová E., Menšík L. Winter wheat: Results of long-term fertilizer experiment in Prague-Ruzyně over the last 60 years. Plant Soil Environ. 2016;62:105–113. doi: 10.17221/746/2015-PSE. DOI
KSLA . Success Stories of Agricultural Long-Term Experiments. KSLA; Uppsala, Sweden: 2007.
Kätterer T., Bolinder M.A., Berglund K., Kirchmann H. Strategies for carbon sequestration in agricultural soils in northern Europe. Acta Agric. Scand. Sect. A–Anim. Sci. 2012;62:181–198. doi: 10.1080/09064702.2013.779316. DOI
Morari F., Lugato E., Berti A., Giardini L. Long-term effects of recommended management practices on soil carbon changes and sequestration in north-eastern Italy. Soil Use Manag. 2006;22:71–81. doi: 10.1111/j.1475-2743.2005.00006.x. DOI
Lugato E., Paustian K., Giardini L. Modelling soil organic carbon dynamics in two long-term experiments of north-eastern Italy. Agric. Ecosyst. Environ. 2007;120:423–432. doi: 10.1016/j.agee.2006.11.006. DOI
Berti A., Morari F., DalFerro N., Simonetti G., Polese R. Organic input quality is more important than its quantity: C turnover coefficients in different cropping systems. Eur. J. Agron. 2016;77:138–145. doi: 10.1016/j.eja.2016.03.005. DOI
Destain J.P., Raimond Y., Darcheville M. The fertilizing value of slurry applied to arable crops and its residual effects in a long-term experiment. In: Williams J.H., editor. Long Term Effect of Sewage Sludge and Slurries Application. Elsevier; Amsterdam, The Netherlands: 1985. 248p
Johnston A.E., Poulton P.R. The importance of long-term experiments in agriculture: Their management to ensure continued crop production and soil fertility; the Rothamsted experience. Eur. J. Soil Sci. 2018;69:113–125. doi: 10.1111/ejss.12521. PubMed DOI PMC
Kismányoky T., Tóth Z. Effect of mineral and organic fertilization on soil organic carbon content as well as on grain production of cereals in the IOSDV (ILTE) long-term field experiment, Keszthely, Hungary. Arch. Agron. Soil Sci. 2013;59:1121–1131. doi: 10.1080/03650340.2012.712208. DOI
Jolánkai M., Tarnawa Á., Nyárai H.F., Szentpétery Z., Kassai M.K. Agronomic benefits of long-term trials. J. Agric. Environ. Sci. 2018;5:27–30. doi: 10.1556/0088.2018.67.1.11. DOI
Šeremešić S., Ćirić V., Djalović I., Vasin J., Zeremski T., Siddique K.H.M., Farooq M. Long-term winter wheat cropping influenced soil organic carbon pools in different aggregate fractions of Chernozem soil. Arch. Agron. Soil Sci. 2020;66:2055–2066. doi: 10.1080/03650340.2019.1711065. DOI
Asrade D.A., Kulhánek M., Balík J., Černý J., Sedlář O. Side effect of organic fertilizing on the phosphorus transformation and balance over 27 years of maize monoculture. Field Crops Res. 2023;295:108902. doi: 10.1016/j.fcr.2023.108902. DOI
Asrade D.A., Kulhánek M., Černý J., Sedlář O., Balík J. Effects of long-term mineral fertilization on silage maize monoculture yield, phosphorus uptake and its dynamic in soil. Field Crops Res. 2022;280:108476. doi: 10.1016/j.fcr.2022.108476. DOI
Spiegel H., Dersch G., Baumgarten A., Hösch J. The International Organic Nitrogen Long-term Fertilization Experiment (IOSDV) at Vienna after 21 years. Arch. Agron. Soil Sci. 2010;56:405–420. doi: 10.1080/03650341003645624. DOI
Trajanov A., Spiege H., Debeljak M., Sandén T. Using data mining techniques to model primary productivity from international long-term ecological research (ILTER) agricultural experiments in Austria. Reg. Environ. Chang. 2018;19:325–337. doi: 10.1007/s10113-018-1361-3. DOI
Meng L., Ding W., Cai Z. Long-term application of organic manure and nitrogen fertilizer on N2O emissions, soil quality and crop production in a sandy loam soil. Soil Biol. Biochem. 2005;37:2037–2045. doi: 10.1016/j.soilbio.2005.03.007. DOI
Feng Y., Guo Z., Zhong L., Zhao F., Zhang J., Lin X. Balanced Fertilization Decreases Environmental Filtering on Soil Bacterial Community Assemblage in North China. Front. Microbiol. 2017;8:2376. doi: 10.3389/fmicb.2017.02376. PubMed DOI PMC
Celik I., Gunal H., Budak M., Akpinar C. Effects of long-term organic and mineral fertilizers on bulk density and penetration resistance in semi-arid Mediterranean soil conditions. Geoderma. 2010;160:236–243. doi: 10.1016/j.geoderma.2010.09.028. DOI
Çelik I., Günal H., Acar M., Acir N., Barut Z.B., Budak M. Evaluating the long- term effects of tillage systems on soil structural quality using visual assessment and classical methods. Soil Use Manag. 2019;36:223–239. doi: 10.1111/sum.12554. DOI
Bassouny M., Chen J. Effect of long-term organic and mineral fertilizer on physical properties in root zone of a clayey Ultisol. Arch. Agron. Soil Sci. 2016;62:819–828. doi: 10.1080/03650340.2015.1085649. DOI
Khan K.F. Application, principle and operation of ICP-OES in pharmaceutical analysis. J. Pharm. Innov. 2019;8:281–282.
Galvão E.S., Santos J.M., Lima A.T., Reis N.C., Orlando M.T.D., Stuetz R.M. Trands in analytical techniques applied to particulate matter characterization: A critical review of fundaments and applications. Chemosphere. 2018;199:546–568. doi: 10.1016/j.chemosphere.2018.02.034. PubMed DOI
Korkmaz K., Kara S.M., Özkutlu F., Akgün M., Senkal B.C. Profile of Heavy Metal and Nutrient Elements in some Sideritis Species. Indian J. Pharm. Educ. Res. 2017;51:209–212. doi: 10.5530/ijper.51.3s.14. DOI
Barros J.A.V.A., de Souza P.F., Schiavo D., Nóbrega A. Microwave-assisted digestion using diluted acid and base solutions for plant analysis by ICP OES. J. Anal. At. Spectrom. 2016;31:337. doi: 10.1039/C5JA00294J. DOI
Kulhánek M., Černý J., Balík J., Sedlář O., Suran P. Potential of Mehlich 3 method for extracting plant available sulfur in the Czech agricultural soils. Plant Soil Environ. 2018;64:455–462. doi: 10.17221/372/2018-PSE. DOI
Warrender C.M., Warrender G.W., Smith B., McKenzie C., Gilbert R.G. Accelerated testing of nutrient release rates from fertiliser granules. Aust. J. Soil Res. 2010;48:668–673. doi: 10.1071/SR09176. DOI
Kanwar L.S., Kurella S., Chaudhuy S., Wani S.P. Comparative Evaluation of Inductively Coupled Plasma-Optical Emission Spectrometry and Colorimetry for Determining Phosphorus in Grain Samples. Commun. Soil Sci. Plant Anal. 2016;47:818–821. doi: 10.1080/00103624.2016.1146895. DOI
Tombuloglu H., Slimani Y., Alshammari T., Tombuloglu G., Almessiere M., Baykal A., Ercan I., Ozcelik S., Demirci T. Magnetic Behavior and Nutrient Content Analyses of Barley (Hordeum vulgare L.) Tissues upon CoNd0.2Fe1.8O4. Magnetic Nanoparticle Treatment. J. Soil Sci. Plant Nutr. 2019;20:357–366. doi: 10.1007/s42729-019-00115-x. DOI
Perring L., Andrey D. Multi-elemental ED-XRF Determination in Dehydrated Bouillon and Sauce Base Products. Food Anal. Methods. 2018;11:148–160. doi: 10.1007/s12161-017-0985-0. DOI
Barberá R., Farré R., Lagarda M.J. Copper: Properties and Determination. In: Caballero B., Finglas P., Toldra F., editors. Encyclopedia of Food and Nutrition. 2nd ed. Academic Press; Cambridge, MA, USA: 2003. pp. 1634–1639.
Zhang X., Cresswell M. Inorganic Controlled Release Technology. Butterworth–Heinemann; Oxford, UK: 2016. pp. 57–91. DOI
Singh A.K. Engineered Nanoparticles; Structure, Properties and Mechanisms of Toxicity. Elsevier Inc.; Waltham, MA, USA: 2016. pp. 125–170. DOI
Jo G., Todorov T.I. Distribution of nutrient and toxic elements in brown and polished rice. Food Chem. 2019;289:299–307. doi: 10.1016/j.foodchem.2019.03.040. PubMed DOI
Parzych S., Kwiatkowski P., Asztemborska M., Ruzik L. Evaluation of the content and bioaccessibility of selected metals from barely grass. Eur. Food Res. Technol. 2020;246:1251–1257. doi: 10.1007/s00217-020-03485-0. DOI
Koelmel J., Amarasiriwardena D. Imaging of metal bioaccumulation in Hay-scented fern (Dennstaedtia punctilobula) rhizomes growing on contaminated soils by laser ablatioan ICP-MS. Environ. Pollut. 2012;168:62–70. doi: 10.1016/j.envpol.2012.03.035. PubMed DOI
Guibourdenche L., Stevenson R., Pedneault K., Poirier A., Widory D. Characterizing nutrient pathways in Quebec (Canada) vineyards: Insight from stable and radiogenic strontium isotopes. Chem. Geol. 2020;532:119375. doi: 10.1016/j.chemgeo.2019.119375. DOI
Górecka H., Chojnacka K., Górecki H. The application of ICP-MS and ICP-OES in determination of micronutrients in wood ashes used as soil conditioners. Talanta. 2006;70:950–956. doi: 10.1016/j.talanta.2006.05.061. PubMed DOI
von Blanckenburg F., von Wirén N., Guelke M., Weiss D.J., Bullen T.D. Fractionation of metal stable isotopes by higher plants. Elements. 2009;5:375–380. doi: 10.2113/gselements.5.6.375. DOI
Pravallika S. Gas Chromatography a Mini Review. J. Pharm. Anal. 2016;5:55–62.
Sankaran S., Mishra A., Ehsani R., Davis C. A review of advanced techniques for detecting plant diseases. Comput. Electron. Agric. 2010;72:1–13. doi: 10.1016/j.compag.2010.02.007. DOI
Cai Z., Ouyang F., Su J., Zhang X., Liu C., Xiao Y., Zhang J., Ge F. Attraction of adult Harmonia axyridis to volatiles of the insectary plant Cnidium monnieri. Biol. Control. 2020;143:104189. doi: 10.1016/j.biocontrol.2020.104189. DOI
Stierlin É., Michel T., Fernandez X. Field analyses of lavender volatile organic compounds: Performance evaluation of a portable gas chromatography-mass spectrometry device. Phytochem. Anal. 2020:1–8. doi: 10.1002/pca.2942. PubMed DOI
Nahar L., Guo M., Sarker S.D. Gas chromatographic analysis of naturally occurring cannabinoids: A review of literature published during the past decade. Phytochem. Anal. 2020;31:778–785. doi: 10.1002/pca.2886. PubMed DOI
Sifatullah K.M., Semra T.G. Study of Pesticide Contamination in Soil, Water and Produce Using Gas Chromatography Mass Spectrometry. J. Anal. Bioanal. Tech. 2018;9:409. doi: 10.4172/2155-9872.1000409. DOI
Chormey D.S., Ayyildiz F.M., Bakirdere S. Feasibility studies on the uptake and bioaccessibility of pesticides, hormones and endocrine disruptive compounds in plants, and simulation of gastric and intestinal conditions. Microchem. J. 2020;155:104669. doi: 10.1016/j.microc.2020.104669. DOI
Mohan H., Lim J.M., Lee S.W., Cho M., Park Y.J., Seralathan K.K., Oh B.-T. Enhanced removal of bisphenol A from contaminated soil by coupling Bacillus subtilis HV-3 with electrochemical system. Chemosphere. 2020;249:126083. doi: 10.1016/j.chemosphere.2020.126083. PubMed DOI
Liu Y.F., Zhang J.L., Nie X.F., Zhang P., Yan X.Q., Fu K.F. Simultaneous Determination of 11 Preservatives in Cosmetics and Pharmaceuticals by Matrix Solid-phase Dispersion Coupled with Gas Chromatography. Acta Chromatogr. 2019;32:203–209. doi: 10.1556/1326.2019.00700. DOI
Davey E., Wigand C., Johnson R., Sundberg K., Morris J., Roman C.T. Use of computed tomography imaging for quantifying coarse roots, rhizomes, peat, and particle densities in matsh soils. Ecol. Appl. 2011;21:2156–2171. doi: 10.1890/10-2037.1. PubMed DOI
Taina I.A., Heck R.J., Elliot T.R. Application of X-ray computed tomography to soil science: A literature review. Can. J. Soil Sci. 2008;88:1–20. doi: 10.4141/CJSS06027. DOI
Gribbe S., Blume-Werry G., Couwenberg J. Digital, Three-Dimensional Visualization of Root Systems in Peat. Soil Syst. 2020;4:13. doi: 10.3390/soilsystems4010013. DOI
Tracy S.R., Black C.R., Roberts J.A., Sturrock C., Mairhofer S., Craigon J., Mooney S.J. Quantifying the impact of soil compaction on root system architecture in tomato (Solanum lycopersicum) by X-ray micro-computed tomography. Ann. Bot. 2012;110:511–519. doi: 10.1093/aob/mcs031. PubMed DOI PMC
Garbout A., Munkholm L.J., Hansen S.B., Petersen B.M., Munk O.L., Pajor R. The use of PET/CT scanning technique for 3D visualization and quantification of real-time soil/plant interactions. Plant Soil. 2012;352:113–127. doi: 10.1007/s11104-011-0983-8. DOI
Hamza M.A., Anderson S.H., Aylmore L.A.G. Computed tomographic evaluation of osmotica on shrinkage and recovery of lupin (Lupinus angustifolius L.) and radish (Raphanus sativus L.) roots. Environ. Exp. Bot. 2007;59:334–339. doi: 10.1016/j.envexpbot.2006.04.004. DOI
Mooney S.J. Three-dimensional visualization and quantification of soil macroporosity and water flow patters using computed tomography. Soil Use Manag. 2002;18:142–151. doi: 10.1111/j.1475-2743.2002.tb00232.x. DOI
Al-Raoush R., Papadopoulos A. representative elementary volume analysis of porous media using X-ray computed tomography. Powder Technol. 2010;200:69–77. doi: 10.1016/j.powtec.2010.02.011. DOI
Zheng J., Sun Q., Zheng H., Wei D., Li Z., Gao L. Three-dimensional particle shape characterizations from half particle geometries. Powder Technol. 2020;367:122–132. doi: 10.1016/j.powtec.2020.03.046. DOI
Zhou Y., Qin Y., Liu X., Feng Z., Zhu H., Yao Q. Soil Bacterial Function Associated with Stylo (Legume) and Bahigrass (Grass) Is Affected More Strongly by Soil Chemical Property Than by Bacterial Community Composition. Front. Microbiol. 2019;10:798. doi: 10.3389/fmicb.2019.00798. PubMed DOI PMC
Mooney S.J., Morris C. A morphological approach to understanding preferential flow using image analysis with dye tracers and X-ray Computed Tomography. Catena. 2008;73:204–211. doi: 10.1016/j.catena.2007.09.003. DOI
Schlüter S., Albrecht L., Schwärzel K., Kreselmeier J. Long-term effects of conventional tillgae and no-tillage on saturated and near-saturated hydraulic conductivity—Can their prediction be improved by pore metrics obtained with X-ray CT? Geoderma. 2020;361:114082. doi: 10.1016/j.geoderma.2019.114082. DOI
Luo L., Lin H., Li S. Quantification of 3-D soil macropore networks in different soil types and land uses using computed tomography. J. Hydrol. 2010;393:53–64. doi: 10.1016/j.jhydrol.2010.03.031. DOI
Pires L.F., Auler A.C., Roque W.L., Mooney S.J. X-ray microtomography analysis of soil pore structure dynamics under wetting and drying cycles. Geoderma. 2020;362:114103. doi: 10.1016/j.geoderma.2019.114103. PubMed DOI PMC
Pálsdóttir A.M., Alsanius B.M., Johannesson V., Ask A. Prospect of non-destructive analysis of root growth and geometry using computerised tomography (CT X-ray) Acta Hortic. 2008;779:155–159. doi: 10.17660/ActaHortic.2008.779.17. DOI
Flavel R.J., Guppy C.N., Tighe M., Watt M., McNeill A., Young I.M. Non-destructive quantification of cereal roots in soil using high-resolution X-ray tomography. J. Exp. Bot. 2012;63:2503–2511. doi: 10.1093/jxb/err421. PubMed DOI
Perret J.S., Al-Belushi M.E., Deadman M. Non-destructive visualization and quantification of roots using computed tomography. Soil Biol. Biochem. 2007;39:391–399. doi: 10.1016/j.soilbio.2006.07.018. DOI
Blais K.E. Master’s Thesis. Simon Fraser University; Burnaby, BC, Canada: 2005. Measurement of Physical and Hydraulic Properties of Organic Soil Using Computed Tomography Imagery.174p
Metzner R., Eggert A., van Dusschoten D., Pflugfelder D., Grth S., Schurr U., Uhlmann N., Jahnke S. Direct comparison of MRI and X-ray CT technologies for 3D imaging of root systems in soil: Potential and challenges for root trait quantification. Plant Methods. 2015;11:17. doi: 10.1186/s13007-015-0060-z. PubMed DOI PMC
Zappala S., Mairhofer S., Tracy S., Sturrock C.J., Bennett M., Pridmore T., Mooney S.J. Quantifying the effect of soil moisture content on segmenting root system architecture in X-ray computed tomography. Plant Soil. 2013;370:35–45. doi: 10.1007/s11104-013-1596-1. DOI
Grünauer F., Schillinger B., Steichele E. Optimization of the beam geometry for the cold neutron tomography facility at the new neutron source in Munich. Appl. Radiat. Isot. 2004;61:479–485. doi: 10.1016/j.apradiso.2004.03.073. PubMed DOI
Sutton D. Tomographic techniques for the study of exceptionally preserved fossils. Proc. R. Soc. B Biol. Sci. 2008;275:1587–1593. doi: 10.1098/rspb.2008.0263. PubMed DOI PMC
Mawodza T., Burce G., Casson S., Menon M. Wheat root system architecture and soil moisture distribution in an aggregated soil using neutron computed tomography. Geoderma. 2020;359:113988. doi: 10.1016/j.geoderma.2019.113988. DOI
Moradi A.B., Conesa H.M., Robinson B., Lehmann E., Kuehne G., Kaestner A., Oswald S., Schulin R. Neutron radiography as a tool for revealing root development in soil: Capabilities and limitations. Plant Soil. 2009;318:243–255. doi: 10.1007/s11104-008-9834-7. DOI
Zarebanadkouki M., Carminati A., Kaestner A., Mannes D., Morgano M., Peetermans S., Lehmann E., Trtik P. On-the-fly neutron tomography of water transport into lupine roots. Phys. Procedia. 2015;69:292–298. doi: 10.1016/j.phpro.2015.07.041. DOI
Raichle M.E. Positron emission tomography. Ann. Rev. Neurosci. 1983;6:249–267. doi: 10.1146/annurev.ne.06.030183.001341. PubMed DOI
Raichle M.E. A brief history of human brain mapping. Trends Neurosci. 2009;32:118–126. doi: 10.1016/j.tins.2008.11.001. PubMed DOI
Vallabhajosula S., Solnes L., Vallabhajosula B. Tomography Radiopharmaceuticals and Clinical Applications: What is New? Semin. Nucl. Med. 2011;41:246–264. doi: 10.1053/j.semnuclmed.2011.02.003. PubMed DOI
Converse A.K., Ahlers E.O., Bryan T.W., Bryan T.W., Hetue J.D., Lake K.A., Ellison P.A., Engle J.W., Barnhart T.E., Nickles R.J., et al. mathematical modeling of positron emission tomography (PET) data to assess radiofluoride transport in living plants following petiolar administration. Plant Methods. 2015;11:18. doi: 10.1186/s13007-015-0061-y. PubMed DOI PMC
Alberts B., Bray D., Hopkin K., Johnson A.D., Lewis J., Raff M., Roberts K., Walter P. Essential Cell Biology. 4th ed. Garland Science; New York, NY, USA: 2013. 864p
Hubeau M., Steppe K. Plant-PET Scans: In Vivo Mapping of Xylem and Phloem Functioning. Trends Plant Sci. 2015;20:10. doi: 10.1016/j.tplants.2015.07.008. PubMed DOI
Knoblauch M., Peters W.S. Münch, morphology, microfluidics—Our structural problem with phloem. Plant Cell Environ. 2010;33:1439–1452. doi: 10.1111/j.1365-3040.2010.02177.x. PubMed DOI
Thompson M.V. Phloem: The long and the short of it. Trends Plant Sci. 2006;11:26–32. doi: 10.1016/j.tplants.2005.11.009. PubMed DOI
Sevanto S. Phloem transport and drought. J. Exp. Bot. 2014;65:1751–1759. doi: 10.1093/jxb/ert467. PubMed DOI
Ohya T., Tanoi K., Hamada Y., Okabe H., Rai H., Hojo J., Suzuki K., Nakanishi T.M. An analysis of Long-Distance Water Transport in the Soybean Stem Using H215O. Plant Cell Physiol. 2008;49:718–729. doi: 10.1093/pcp/pcn047. PubMed DOI
DeSchepper V., Bühler J., Thorpe M., Roeb G., Huber G., van Dusschoten D., Jahnke S., Steppe K. 11C-PET imaging reveals transport dynamics and sectorial plasticity of oak phloem after girdling. Front. Plant Sci. 2013;4:200. doi: 10.3389/fpls.2013.00200. PubMed DOI PMC
Steppe K., Cochard H., Lacointe A., Améglio T. Could rapid diameter changes be facilitated by a variable hydraulic conductance. Plant Cell Environ. 2012;35:150–157. doi: 10.1111/j.1365-3040.2011.02424.x. PubMed DOI
Wang Q., Mathews A.J., Li J., Wen J., Komarov S., O’Sullivan J.A., Tai Y.-C. A dedicated high-resolution PET imager for plant sciences. Phys. Med. Biol. 2014;59:19. doi: 10.1088/0031-9155/59/19/5613. PubMed DOI
Kikuchi K., Ishii S., Fujimaki S., Suzui N., Matsuhashi S., Honda I., Shishido Y., Kawachi N. Real-time Analysis of Photoassimilate Translocation in Intact Eggplant Frueit using 11CO2 and a Positron-emitting Tracer Imaging System. J. Jpn. Soc. Hortic. Sci. 2008;77:199–205. doi: 10.2503/jjshs1.77.199. DOI
Kawachi N., Kikuchi K., Suzui N., Ishii S., Fujimaki S., Ishioka N.S., Watabe H. Imaging of Carbon translocation to Fruit Using Carbon-11-Labeled Carbon Dioxide and Positron Emission Tomography. IEE Trans. Nucl. Sci. 2011;58:395–399. doi: 10.1109/TNS.2011.2113192. DOI
Kurita K., Miyoshi Y., Nagao Y., Yamaguchi M., Suzui N., Yin Y.-G., Ishii S., Kawachi N., Hidaka K., Yoshida E., et al. Fruit PET: 3-D imaging of carbon distribution in fruit using OpenPET. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2020;954:161843. doi: 10.1016/j.nima.2019.01.069. DOI
Ariňo-Estrada G., Mitchell G.S., Saha P., Arzani A., Cherry S.R., Blumwald E., Kyme A.Z. Imaging Salt Uptake Dynamics in Plants Using PET. Sci. Rep. 2019;9:18626. doi: 10.1038/s41598-019-54781-z. PubMed DOI PMC
Mary B., Peruzzo L., Boaga J., Genni N., Schmutz M., Wu Y., Hubbard S.S., Cassiani G. Time-lapse monitoring of root water uptake using electrical resistivity tomography and mise- à-la-masse: A vineyard infiltration experiment. Soil. 2020;6:95–114. doi: 10.5194/soil-6-95-2020. DOI
Weigand M., Kemma A. Imaging and functional characterization of crop root systems using spectroscopic electrical impedance measurements. Plant Soil. 2019;435:201–224. doi: 10.1007/s11104-018-3867-3. DOI
Corona-Lopez D.D.J., Sommer S., Rolfe S.A., Podd F., Grieve B.D. Electrical impedance tomography as a tool for phenotyping plant roots. Plant Methods. 2019;15:49. doi: 10.1186/s13007-019-0438-4. PubMed DOI PMC
Hoult D.I., Bhakar B. NMR Signal Reception: Virtual Photons and Coherent Spontaneous Emission. Concept. Magn. Reson. 1997;9:277–297. doi: 10.1002/(SICI)1099-0534(1997)9:5<277::AID-CMR1>3.0.CO;2-W. DOI
Metzner R., van Dusschoten D., Bühler J., Schurr U., Jahnke S. Belowground plant development measured with magnetic resonance imaging (MRI): Exploiting the potential for non-invasive trait quantification using sugar beet as a proxy. Front. Plant Sci. 2014;5:469. doi: 10.3389/fpls.2014.00469. PubMed DOI PMC
Windt W.C., Vergeldt F.J., De Jager P.A., Van As H. MRI of long-distance water transport: A comparison of the phloem and xylem flow characteristics and dynamics in poplar, castor bean, tomato and tobacco. Plant Cell Environ. 2006;29:1715–1729. doi: 10.1111/j.1365-3040.2006.01544.x. PubMed DOI
Sardans J., Peňulas J., Lope-Piedrafita S. Changes in water content and distribution in Quercus ilex leaves during progressive drought assessed by in vivo 1H magnetic resonance imaging. BMC Plant Biol. 2010;10:188. doi: 10.1186/1471-2229-10-188. PubMed DOI PMC
Jakusch P., Kocsis T., Székely I.K., Hatvani I.G. The application of magnetic resonance imaging (MRI) to the examination of plant tissues and water barriers. Acta Biol. Hung. 2018;69:423–436. doi: 10.1556/018.69.2018.4.5. PubMed DOI
Borisjuk L., Rolletschek H., Neuberger T. Nuclear magnetic resonance imaging of lipid in living plants. Prog. Lipid Res. 2013;52:465–487. doi: 10.1016/j.plipres.2013.05.003. PubMed DOI
Munz E., Jakob P.M., Borisjuk L. The potential of nuclear magnetic resonance to track lipids in planta. Biochimie. 2016;130:97–108. doi: 10.1016/j.biochi.2016.07.014. PubMed DOI
Jahnke S., Menzel M.I., van Dusschoten D., Roeb G.W., Bühler J., Minwuyelet S., Blümler P., Temperton V.M., Hombach T., Streun M., et al. Combined MRI–PET dissects dynamic changes in plant structures and functions. Plant J. 2009;59:634–644. doi: 10.1111/j.1365-313X.2009.03888.x. PubMed DOI
Mazzei P., Cozzolino V., Piccolo A. High-Resolution Magic.Angle: Spinning NMR and Magnetic Resonance Imaging Spectroscopies Distinguish Metabolome and Structural Properties of maize Seeds from Plants Treated with Different Fertilizers and Arbuscular mycorrhizal fungi. J. Agric. Food Chem. 2018;66:2580–2588. doi: 10.1021/acs.jafc.7b04340. PubMed DOI
Hillnhütter C., Sikora R.A., Oerke E.C., van Dusschoten D. Nuclear magnetic resonance: A tool for imaging belowground damage caused by Heterodera schachtii and Rhizoctonia solani on sugar beet. J. Exp. Bot. 2012;63:319–327. doi: 10.1093/jxb/err273. PubMed DOI PMC
van Dusschoten D., Metzner R., Kochs J., Postma J.A., Pflugfelder D., Bühler J., Schurr U., Jahnke S. Quantitative 3D Analysis of Plant Roots Growing in Soil Using Magnetic Resonance Imaging. Plant Physiol. 2018;170:1176–1188. doi: 10.1104/pp.15.01388. PubMed DOI PMC
Popova L., van Dusschoten D., Nagel K.A., Fiorani F., Mazzolai B. Plant root turtuosity: An indicator of root path formation in soil with different composition and density. Ann. Bot. 2016;118:685–698. doi: 10.1093/aob/mcw057. PubMed DOI PMC
Gruwel M.L.H. In Situ Magnetic Resonance Imaging of Plant Roots. Vadose Zone J. 2014;13:1–8. doi: 10.2136/vzj2013.08.0158. DOI
Tomotsune M., Yoshitake S., Masuda R., Koizumi H. Preliminary observations of soil organic layers using a compact MRI for non-destructive analysis of internal soil structure. Ecol. Res. 2015;30:303–310. doi: 10.1007/s11284-015-1242-x. DOI
Bamrah R.K., Vijayan P., Karunakaran C., Muir D., Hallin E., Goetz B., Nickerson M., Tanino K., Warkentin T.D. Evaluation of X-ray Fluorescence Spectroscopy as a Tool for Nutrient Analysis of Pea Seeds. Crop Sci. 2019;59:2689–2700. doi: 10.2135/cropsci2019.01.0004. DOI
Kalpna D.R., Kaneria M.J. Multielement Analysis Using ED-XRF and ICP-MS from Couroupita guianensis for Sustainable Agriculture by Soil Reclamation. In: Shukla V., Kumar N., editors. Environmental Concerns and Sustainable Development. Vol. 2. Springer Nature; Singapore: Lucknow, India: 2020. pp. 325–337. DOI
Jagadeesha B.G., Narayana Y., Sudashan M., Banerjee S. Studies on uptake and retention of trace elements by medicinal plants in the environs of Hassan of South India. Radiat. Phys. Chem. 2018;144:317–321. doi: 10.1016/j.radphyschem.2017.09.005. DOI
Iftode S., Huzum R., Sirbu-Radasanu D.S., Buzgar N., Iancu G.B., Buzatu A. Geochemical distribution of selected trace elements in the soil-plant system from Manaila mining area, Romania. Analele Stiintifice Ale Univ. “Al. I. Cuza” Din Iasi Ser. Geol. 2015;31:21–31.
Swain S.S., Ray D.K., Chang P.K. ED-XRF spektrometry-based trace element composition of genetically engineered rhizoclones vis-á-vis natural roots of a multi-medicinal plant, butterfly pea (Clitoria ternatea L.). J. Radioanal. Nucl. Chem. 2012;293:443–453. doi: 10.1007/s10967-012-1796-9. DOI
Anonymous How to feed a hungry world. Nature. 2010;466:531–532. doi: 10.1038/466531a. PubMed DOI
Cassidy S.T., Burr A.A., Reeb R.A., Pardo A.L.M., Woods K.D., Wood C.W. using clear plastic CD cases as low-cost mini-rhizotrons to phenotype root traits. Appl. Plant Sci. 2020;8:e11340. doi: 10.1002/aps3.11340. PubMed DOI PMC
You J., Hu Y., Wang C. Application of seed germination pouch for culture and initial resistance screening for the soybean cyst nematode Heterodera glycines. Nematology. 2018;20:905–909. doi: 10.1163/15685411-00003184. DOI
Martins S.M., de Brito G.G., Gonçalves W.C., Tripode B.M.D., Lartaud M., Duarte J.B., Morello C.d.L., Giband M. PhenoRoots: An inexpensive non-invasive phenotyping system to assess the variability of the root system architecture. Sci. Agric. 2020;77:e20180420. doi: 10.1590/1678-992x-2018-0420. DOI
Smith A.G., Petersen J., Selvan R., Rasmussen C.R. Segmentation of roots in soil with U-Net. Plant Methods. 2020;16:13. doi: 10.1186/s13007-020-0563-0. PubMed DOI PMC
Louvieaux J., Leclercq A., Haelterman L., Hermans C. In-Field Observation of Root Growth and Nitrogen Uptake Efficiency of Winter Oilseed Rape. Agronomy. 2020;10:105. doi: 10.3390/agronomy10010105. DOI
Potvin L.R., Lilleskov E.A. Introduced earthworm species exhibited unique patterns of seasonal activity and vertical distribution, and Lumbricus terrestris burrows remained usable for at least 7 years in hardwood and pine stands. Biol. Fertil. Soils. 2017;53:187–198. doi: 10.1007/s00374-016-1173-x. DOI
Hall R.L., Staal L.B., MacIntosh K.A., McGrath J.W., Bailey J., Black L., Nielsen U.G., Reitzel K., Williams P.N. Phosphorus speciation and fertiliser performance characteristics: A comparison of waste recovered struvites from global sources. Geoderma. 2020;362:114096. doi: 10.1016/j.geoderma.2019.114096. DOI
Vieira L.M., Gomes E.N., Brown T.A., Constantino C., Zanette F. Growth and quality of Brazilian pine tree seedlings as affected by container type and volume. Ornam. Hortic. 2019;25:276–286. doi: 10.1590/2447-536x.v25i3.2059. DOI
Okutani F., Hamato S., Aoki Y., Nakayasu M., Nihei N., Nishimura T., Yazaki K., Sugiyama A. Rhizosphere modelling reveals spatiotemporal distribution of daidzein shaping soybean rhizosphere bacterial community. Plant Cell Environ. 2020;43:1036–1046. doi: 10.1111/pce.13708. PubMed DOI
Tao Q., Zhao J., Li J., Liu Y., Luo J., Yuan S., Li B., Li Q., Xu Q., Yu X., et al. Unique root exudate tartaric acid enhanced cadmium mobilization and uptake in Cd-hyperaccumulator Sedum alfredii. J. Hazard. Mater. 2020;383:121177. doi: 10.1016/j.jhazmat.2019.121177. PubMed DOI
Li Y., Li Y., Yang M., Chang S.X., Qi J., Tang C., Wen Z., Hong Z., Yang T., Ma Z., et al. Changes of microbial functional capacities in the rhizosphere contribute to aluminum tolerance by genotype-specific soybeans in acid soils. Biol. Fertil. Soils. 2020;56:771–783. doi: 10.1007/s00374-020-01451-2. DOI
Javed M.T., Akram M.S., Habib N., Tanwir K., Ali Q., Niazi N.K., Gul H., Iqbal N. Deciphering the growth, organic acid exudations, and ionic homeostasis of Amaranthus viridis L. and Portulaca oleracea L. under lead chloride stress. Environ. Sci. Pollut. Res. 2017;25:2958–2971. doi: 10.1007/s11356-017-0735-2. PubMed DOI
Zhou Y.Y., Wang X.M. Mesomechanics characteristics of soil reinforcement by plant roots. Bull. Eng. Geol. Environ. 2019;78:3719–3728. doi: 10.1007/s10064-018-1370-y. DOI
Nassal D., Spohn M., Eltlbany N., Jacquiod S., Smalla K., Marhan S., Kandeler E. Effects of phosphorus-mobilizing bacteria on tomato growth and soil microbial activity. Plant Soil. 2018;427:17–37. doi: 10.1007/s11104-017-3528-y. DOI
Duncan E.G., O’Sullivan C.A., Roper M.M., Palta J., Whisson K., Peoples M.B. Yield and nitrogen use efficiency of wheat increased with root length and biomass due to nitrogen, phosphorus and potassium interactions. J. Plant Nutr. Soil Sci. 2018;181:364–373. doi: 10.1002/jpln.201700376. DOI
Schmidt J.E., Lowry C., Gaudin A.C.M. An optimized Rhizobox Protocol to Visualize Root Growth and Responsiveness to Localized Nutrients. J. Vis. Exp. 2018:e58674. doi: 10.3791/58674. PubMed DOI PMC
Mašková T., Weiser M. The roles of interspecific variability in seed mass and soil resource availability in root system development. Plant Soil. 2019;435:395–406. doi: 10.1007/s11104-018-3896-y. DOI
Herrmann P.S.P., Sydoruk V., Porto F.N.M. Microwave Transmittance Technique Using Microstrip Patch Antennas, as a Non-Invasive Tool to Determine Soil Moisture in Rhizoboxes. Sensors. 2020;20:1166. doi: 10.3390/s20041166. PubMed DOI PMC
Gutiérrez-Ginés M.J., Madejón E., Lehto N.J., McLenaghen R.D., Horswell J., Dickinson N., Robinson B.H. Response of a Pioneering Species (Leptospermum scoparium J.R.Forst. and G.Forst) to heterogenity in a Low-Fertility Soil. Front. Plant Sci. 2019;10:93. doi: 10.3389/fpls.2019.00093. PubMed DOI PMC
Han T., Cal A., Liu K., Huang J., Wang B., Li D., Qaswar M., Feng G., Zhang H. The links between potassium availability and soil exchange calcium, magnesium, aluminium are mediated by lime in acidic soil. J. Soils Sediments. 2019;19:1382–1392. doi: 10.1007/s11368-018-2145-6. DOI
Baldi E., Miotto A., Ceretta C.A., Quartieri M., Sorrenti G., Brunetto G., Toselli M. Soil-applied phosphorous is an effective tool to mitigate the toxicity of copper excess on grapevine grown in rhizobox. Sci. Hortic. 2018;227:102–111. doi: 10.1016/j.scienta.2017.09.010. DOI
Mašková T., Klimeš A. The Effect of Rhizoboxes on Plant Growth and Root: Shoot Biomass Partitioning. Front. Plant Sci. 2020;10:1693. doi: 10.3389/fpls.2019.01693. PubMed DOI PMC
Zhao C., Long J., Liao H., Zheng C., Li J., Liu L., Zhang M. Dynamics of soil microbial communities following vegetation succession in a karst mountain ecosystem, southwest China. Sci. Rep. 2019;9:2160. doi: 10.1038/s41598-018-36886-z. PubMed DOI PMC
Rath K.M., Murphy D.N., Rousk J. The microbial community size, structure, and process rates along natural gradients of soil salinity. Soil Biol. Biochem. 2019;138:107607. doi: 10.1016/j.soilbio.2019.107607. DOI
Zhang W.-W., Wang C., Xue R., Wang L.-J. Effects of salinity on the soil microbial community and soil fertility. J. Integr. Agric. 2019;18:1360–1368. doi: 10.1016/S2095-3119(18)62077-5. DOI
Deltedesco E., Keiblinger K.M., Piepho H.-P., Antonielli L., Potsch E.M., Zechmeister-Boltenstern S., Gorfer M. Soil microbial community structure and function mainly respond to indirect effects in a multifactorial climate manipulation experiment. Soil Biol. Biochem. 2020;142:107704. doi: 10.1016/j.soilbio.2020.107704. DOI
Plassart P., Prévost-Bouré N.C., Uroz S., Dequiedt S., Stone D., Creamer R., Griffiths R.I., Bailey M.J., Ranjard L., Lemanceau P. Soil parameters, land use, and geographical distance drive soil bacterial communities along a European transect. Sci. Rep. 2019;9:605. doi: 10.1038/s41598-018-36867-2. PubMed DOI PMC
Zhang H., Liu W., Kang X., Cui X., Wang Y., Zhao H., Qian X., Hao Y. Changes in soil microbial community response to precipitation events in a semi-arid steppe of the Xilin River Basin, China. J. Arid. Land. 2019;11:97–110. doi: 10.1007/s40333-018-0071-5. DOI
Holík L., Hlisnikovský L., Honzík R., Trögl J., Burdová H., Popelka J. Soil Microbial Communities and Enzyme Activities after Long-Term Application of Inorganic and Organic Fertilizers at Different Depths of the Soil Profile. Sustainability. 2019;11:3251. doi: 10.3390/su11123251. DOI
Willers C., Jansen van Rensburg P.J., Claassens S. Phospholipid fatty acid profiling of microbial communities—A review of interpretations and recent applications. J. Appl. Microbiol. 2015;119:1207–1218. doi: 10.1111/jam.12902. PubMed DOI
Kandeler E. Physiological and Biochemical Methods for Studying Soil Biota and Their Functions. In: Paul E.A., editor. Soil Microbiology, Ecology and Biochemistry. Elsevier; London, UK: 2015. pp. 187–222. DOI
Adetunji A.T., Lewu F.B., Mulidzi R., Ncube B. The biological activities of β-glucosidase, phosphatase and urease as soil quality indicators: A review. J. Soil Sci. Plant Nutr. 2017;17:794–807. doi: 10.4067/S0718-95162017000300018. DOI
Zothansiami C., Thakuria D. Effect of Burning, Cropping and Synthetic Microbial Community Inoculation on Soil Enzyme Activities in 5 Year Jhum Cycle. Int. J. Curr. Microbiol. Appl. Sci. 2019;9:2872–2884. doi: 10.20546/ijcmas.2020.902.327. DOI
Sudhakaran M., Ramamoorthy D., Savitha V., Kirubakaran N. Soil Enzyme Activities and Their Relationship with Soil Physico-Chemical Properties and Oxide Minerals in Coastal Agroecosystem of Puducherry. Geomicrobiol. J. 2019;36:452–459. doi: 10.1080/01490451.2019.1570396. DOI
Liu J., Chen J., Chen G., Guo J., Li Y. Enzyme stoichiometry indicates the variation of microbial nutrient requirements at different soil depths in subtropical forests. PLoS ONE. 2020;15:e0220599. doi: 10.1371/journal.pone.0220599. PubMed DOI PMC
Kuzyakova Y., Razavia B.S. Rhizosphere size and shape: Temporal dynamics and spatial stationarity. Soil Biol. Biochem. 2019;135:343–360. doi: 10.1016/j.soilbio.2019.05.011. DOI
Dotaniya M.L., Aparna K., Dotaniya C.K., Singh M., Regar K.L. Role of Soil Enzymes in Sustainable Crop Production. In: Mohammed K., editor. Enzymes in Food Biotechnology: Production, Applications, and Future Prospects. Elsevier; Amsterdam, The Netherlands: 2019. pp. 569–589. DOI
Avasilcai L., Bireescu G., Vieriu M., Bibire N., Crivoi F., Cioanca O., Morariu I.-D. Study on the Enzymatic Activity of the Soil in Racos Protected Area from Brasov. Rev. Chim. 2020;71:358–366. doi: 10.37358/RC.20.3.8009. DOI
Micuti M.-M., Bădulescu L., Israel-Roming F. A Review on the enzymatic indicators for monitoring soil quality. Sci. Bull. Ser. F Biotechnol. 2017;XXI:223–228.
Srinivasrao C., Grover M., Kundu S., Desai S. Soil Enzymes. In: Lal R., editor. Encyclopedia of Soil Science. CRC Press; Boca Raton, FL, USA: 2017. pp. 2100–2107. DOI
Mvila B.G., Pilar-Izquierdo M.C., Busto M.D., Perez-Mateos M., Ortega N. Barley seed coating with urease and phosphatase to improve N and P uptake. Sci. Agric. 2019;77:1–9. doi: 10.1590/1678-992x-2018-0227. DOI
Ouyang Y., Li X. Effect of repeated drying-rewetting cycles on soil extracellular enzyme activities and microbial community composition in arid and semi-arid ecosystems. Eur. J. Soil Biol. 2020;98:103187. doi: 10.1016/j.ejsobi.2020.103187. DOI
Shi B., Zhang J., Wang C., Ma J., Sun W. Responses of hydrolytic enzyme activities in saline-alkaline soil to mixed inorganic and organic nitrogen addition. Sci. Rep. 2018;8:4543. doi: 10.1038/s41598-018-22813-9. PubMed DOI PMC
Puissant J., Jones B., Goodall T., Mang D., Blaud A., Gweon H.S., Malik A., Jones D.L., Clark I.M., Hirsch P.R., et al. The pH optimum of soil exoenzymes adapt to long term changes in soil pH. Soil Biol. Biochem. 2019;138:107601. doi: 10.1016/j.soilbio.2019.107601. DOI
Yao X.H., Min H., Lu Z.H., Yuan H.P. Influence of acetamiprid on soil enzymatic activities and respiration. Eur. J. Soil Biol. 2006;42:120–126. doi: 10.1016/j.ejsobi.2005.12.001. DOI
Schneider K., Turrión M.B., Gallardo J.F. Modified method for measuring acid phosphatase activities in forest soils with high organic matter content. Commun. Soil Sci. Plant Anal. 2000;31:3077–3088. doi: 10.1080/00103620009370651. DOI
Thalmann A. Zur Metodik der Bestimmung der De-hydrogenaseaktivität im Boden mittels Triphenyltetrazo-liumchlorid (TTC) Landwirtsch. Forsch. 1968;21:249–258. (In German)
Szulc P., Bocianowski J. Quantitative relationships between dry matter production and N, P, K and Mg contents, and plant nutrition indices, depending on maize hybrids (Zea mays L.) Fresenius Environ. Bull. 2012;21:1740–1751.
Divito G.A., Echeverria H.E., Andrade F.H., Sadras V.O. N and S concentration and stoichiometry in soybean during vegetative growth: Dynamics of indices for diagnosing the S status. Field Crops Res. 2016;198:140–147. doi: 10.1016/j.fcr.2016.08.018. DOI
Ciampitti I.A., Camberato J.J., Murrell S.T., Vyn T.J. Maize nutrient accumulation and partitioning in response to plant density and nitrogen rate: I. Macronutrients. Agron. J. 2013;105:783–795. doi: 10.2134/agronj2012.0467. DOI
Cadot S., Belanger G., Ziadi N., Morel C., Sinaj S. Critical plant and soil phosphorus for wheat, maize, and rapeseed after 44 years of P fertilization. Nutr. Cycl. Agroecosys. 2018;112:417–433. doi: 10.1007/s10705-018-9956-0. DOI
Belanger G., Ziadi N., Pageau D., Grant C., Hognasbacka M., Virkajarvi P., Hu Z., Lu J., Lafond J., Nyiraneza J. A Model of critical phosphorus concentration in the shoot biomass of wheat. Agron. J. 2015;107:963–970. doi: 10.2134/agronj14.0451. DOI
Djaman K., Irmak S. Evaluation of critical nitrogen and phosphorus models for maize under full and limited irrigation conditions. Ital. J. Agron. 2018;13:80–92. doi: 10.4081/ija.2017.958. DOI
Belanger G., Claessens A., Ziadi N. Relationship between P and N concentrations in maize and wheat leaves. Field Crops Res. 2011;123:28–37. doi: 10.1016/j.fcr.2011.04.007. DOI
Sadras V.O., Lemaire G. Quantifying crop nitrogen status for comparisons of agronomic practices and genotypes. Field Crops Res. 2014;164:54–64. doi: 10.1016/j.fcr.2014.05.006. DOI
Zamuner E.C., Lloveras J., Echeverria H.E. Use of a critical phosphorus dilution curve to improve potato crop nutritional management. Am. J. Potato Res. 2016;93:392–403. doi: 10.1007/s12230-016-9514-8. DOI
Sedlář O., Balík J., Kulhánek M., Černý J., Suran P. Sulphur nutrition index in relation to nitrogen uptake and quality of winter wheat grain. Chil. J. Agric. Res. 2019;79:486–492. doi: 10.4067/S0718-58392019000300486. DOI
Lemaire G., Sinclair T., Sadras V., Belanger G. Allometric approach to crop nutrition and implications for crop diagnosis and phenotyping. A review. Agron. Sustain. Dev. 2019;39:27. doi: 10.1007/s13593-019-0570-6. DOI
Justes E., Mary B., Meynard J.M., Machet J.M., Thelierhuche L. Determination of a critical nitrogen dilution curve for winter-wheat crops. Ann. Bot. 1994;74:397–407. doi: 10.1006/anbo.1994.1133. DOI
Gomez M.I., Magnitskiy S., Rodriguez L.E. Critical dilution curves for nitrogen, phosphorus, and potassium in potato group Andigenum. Agron. J. 2019;111:419–427. doi: 10.2134/agronj2018.05.0357. DOI
Neuhaus A., Sadras V.O. Relationship between rainfall-adjusted nitrogen nutrition index and yield of wheat in Western Australia. J. Plant Nutr. 2018;41:2637–2643. doi: 10.1080/01904167.2018.1527934. DOI
Dordas C. Nitrogen nutrition index and leaf chlorophyll concentration and its relationship with nitrogen use efficiency in barley (Hordeum vulgare L.) J. Plant Nutr. 2017;40:1190–1203. doi: 10.1080/01904167.2016.1264596. DOI
Sedlář O., Balík J., Černý J., Kulhánek M., Vašák F. Relation between nitrogen nutrition index and production of spring malting barley. Int. J. Plant Prod. 2017;11:379–388. doi: 10.22069/ijpp.2017.3546. DOI
Blackwell M., Darch T., Haslam R. Phosphorus use efficiency and fertilizers: Future opportunities for improvements. Front. Agric. Sci. Eng. 2019;6:332–340. doi: 10.15302/J-FASE-2019274. DOI
Balík J., Černý J., Kulhánek M., Sedlář O., Suran P. Balance of potassium in two long-term field experiments with different fertilization treatments. Plant Soil Environ. 2019;65:225–232. doi: 10.17221/109/2019-PSE. DOI
Salvagiotti F., Castellarin J.M., Miralles D.J., Pedrol H.M. Sulfur fertilization improves nitrogen use efficiency in wheat by increasing nitrogen uptake. Field Crops Res. 2009;113:170–177. doi: 10.1016/j.fcr.2009.05.003. DOI
Skwierawska M., Benedycka Z., Jankowski K., Skwierawski A. Sulphur as a fertiliser component determining crop yield and quality. J. Elem. 2016;21:609–623. doi: 10.5601/jelem.2015.20.3.992. DOI
Ziadi N., Belanger G., Cambouris A.N., Tremblay N., Nolin M.C., Claessens A. Relationship between phosphorus and nitrogen concentrations in spring wheat. Agron. J. 2008;100:80–86. doi: 10.2134/agronj2007.0119. DOI
Liebisch F., Bunemann E.K., Huguenin-Elie O., Jeangros B., Frossard E., Oberson A. Plant phosphorus nutrition indicators evaluated in agricultural grasslands managed at different intensities. Eur. J. Agron. 2013;4:67–77. doi: 10.1016/j.eja.2012.08.004. DOI
Soratto R.P., Sandana P., Fernandes A.M., Martins J.D.L., Job A.L.G. Testing critical phosphorus dilution curves for potato cropped in tropical Oxisols of southeastern Brazil. Eur. J. Agron. 2020;115:126020. doi: 10.1016/j.eja.2020.126020. DOI
Sedlář O., Balík J., Kulhánek M., Černý J., Kos M. Mehlich 3 extractant used for evaluation of wheat available phosphorus and zinc in calcareous soils. Plant Soil Environ. 2018;64:53–57. doi: 10.17221/691/2017-PSE. DOI
Hejcman M., Száková J., Schellberg J., Tlustoš P. The Rengen Grassland Experiment: Relationship between soil and biomass chemical properties, amount of elements applied, and their uptake. Plant Soil. 2010;333:163–179. doi: 10.1007/s11104-010-0332-3. DOI
Jouany C., Cruz P., Theau J.P., Petibon P., Foucras J., Duru M. Diagnosis of the phosphate and the potash status of natural grasslands containing legumes (Diagnostic du statut de nutrition phosphatée et potassique des prairies naturelles en présence de légumineuses) Fourrages. 2005;184:547–555.
Garnier E., Lavorel S., Ansquer P., Castro H., Cruz P., Dolezal J., Eriksson O., Fortunel C., Freitas H., Golodets C., et al. Assessing the effects of land-use change on plant traits, communities and ecosystem functioning in grasslands: A standardized methodology and lessons from an application to 11 European sites. Ann. Bot. 2007;99:967–985. doi: 10.1093/aob/mcl215. PubMed DOI PMC
Ziadi N., Belanger G., Cambouris A.N., Tremblay N., Nolin M.C., Claessens A. Relationship between P and N concentrations in corn. Agron. J. 2007;99:833–841. doi: 10.2134/agronj2006.0199. DOI
Lemaire G., Jeuffroy M.H., Gastal F. Diagnosis tool for plant and crop N status in vegetative stage theory and practices for crop N management. Eur. J. Agron. 2008;28:614–624. doi: 10.1016/j.eja.2008.01.005. DOI
Luna E., Jouany C., Castaneda C. Soil composition and plant nutrients at the interface between crops and saline wetlands in arid environments in NE Spain. Catena. 2019;173:384–393. doi: 10.1016/j.catena.2018.10.032. DOI
Carciochi W.D., Wyngaard N., Calvo N.I.R., Pagani A., Divito G.A., Echeverria H.E., Ciampitti I.A. Critical sulfur dilution curve and sulfur nutrition index in maize. Agron. J. 2019;111:448–456. doi: 10.2134/agronj2018.07.0467. DOI
Cruz P., Jouany C., Theau J.P., Petibon P., Lecloux E., Duru M. Utilization of the nitrogen nutrition index in natural pastures containing legumes (L’utilisation de l’indice de nutrition azotée en prairies naturelles avec présence de légumineuses) Fourrages. 2006;187:369–376.
Ferreira G., Ernst O. Diagnosis of the nutritional status of rapeseed crop (Brassica napus) based on nitrogen and sulfur dilution curves. Agrociencia Urug. 2014;18:65–74.
Reussi N., Echeverria H.E., Rozas H.S. Stability of foliar nitrogen: Sulfur ratio in spring red wheat and sulfur dilution curve. J. Plant Nutr. 2012;35:990–1003. doi: 10.1080/01904167.2012.671403. DOI
Belanger G., Ziadi N. Phosphorus and nitrogen relationships during spring growth of an aging timothy sward. Agron. J. 2008;100:1757–1762. doi: 10.2134/agronj2008.0132. DOI
Salette J., Huche L. Diagnosis of the mineral nutrition status of a pasture through herbage analysis: Principles, implementation, examples (Diagnostic de l’état de nutrition minérale d’une prairie par l’analyse du vegetal: Principes, mise en oeuvre, exemples) Fourrages. 1991;125:3–18.
Duru M., Ducrocq H. A nitrogen and phosphorus herbage nutrient index as a tool for assessing the effect of N and P supply on the dry matter yield of permanent pastures. Nutr. Cycl. Agroecosys. 1997;47:59–69. doi: 10.1007/BF01985719. DOI
Belanger G., Ziadi N., Lajeunesse J., Jouany C., Virkajarvi P., Sinaj S., Nyiraneza J. Shoot growth and phosphorus-nitrogen relationship of grassland swards in response to mineral phosphorus fertilization. Field Crops Res. 2017;204:31–41. doi: 10.1016/j.fcr.2016.12.006. DOI
Cogo C.M., Andriolo J.L., Bisognin D.A., Godoi R.D., Bortolotto O.C., da Luz G.L. Nitrogen-potassium relationship for diagnosis of plant nutritional status and fertilization of the potato crop. Pesqui. Agropecu. Bras. 2006;4:1781–1786. doi: 10.1590/S0100-204X2006001200013. DOI
Belanger G., Ziadi N., Pageau D., Grant C., Lafond J., Nyiraneza J. Shoot growth, phosphorus-nitrogen relationships, and yield of canola in response to mineral phosphorus fertilization. Agron. J. 2015;107:1458–1464. doi: 10.2134/agronj15.0050. DOI
Lowry G.V., Avellan A., Gilbertson L.M. Opportunities and challenges for nanotechnology in the agri-tech revolution. Nat. Nanotechnol. 2019;14:517–522. doi: 10.1038/s41565-019-0461-7. PubMed DOI
Lynch J.P. Roots of the second green revolution. Aust. J. Bot. 2007;55:493–512. doi: 10.1071/BT06118. DOI
Parihar M., Meena V.S., Mishra P.K., Rakshit A., Choudhary M., Yadav R.P., Rana K., Bisht J.K. Arbuscular mycorrhiza: A viable strategy for soil nutrient loss reduction. Arch. Microbiol. 2019;201:723–735. doi: 10.1007/s00203-019-01653-9. PubMed DOI
Jones D.L., Nguyen C., Finlay R.D. Carbon flow in the rhizosphere: Carbon trading at the soil-root interface. Plant Soil. 2009;321:5–33. doi: 10.1007/s11104-009-9925-0. DOI
Postma J., Lynch J.P. Theoretical evidence for the functional benefit of root cortical aerenchyma in soils with low phosphorus availability. Ann. Bot. 2010;107:829–841. doi: 10.1093/aob/mcq199. PubMed DOI PMC
Shen Y.F., Zhang Y., Li S.Q. Nutrient effects on diurnal variation and magnitude of hydraulic lift in winter wheat. Agric. Water Manag. 2011;98:1589–1594. doi: 10.1016/j.agwat.2011.05.012. DOI
Cordell D., Drangerta J.O., White S. The story of phosphorus: Global food security and food for thought. Glob. Environ. Chang. 2009;19:292–305. doi: 10.1016/j.gloenvcha.2008.10.009. DOI
Ghannoum O., Paul M.J., Ward J.L., Beale M.H., Corol D.I., Conroy J.P. The sensitivity of photosynthesis to phosphorus deficiency differs between C3 and C4 tropical grasses. Funct. Plant Biol. 2008;35:213–221. doi: 10.1071/FP07256. PubMed DOI
Bingham F.T.C. 23. Phosphorus. In: Chapman H.D., editor. Diagnostic Criteria for Plants and Soils. University of California; Berkeley, CA, USA: 1996. pp. 324–361.
Sylvester-Bradley R., Berry P., Blake J., Kindred D., Spink J., Bingham I., McVittie J., Foulkes J. The Wheat Growth Guide. 2nd ed. Home-Grown Cereals Authority; London, UK: 2008. 32p
Withers P.J.A., Neal C., Jarvie H.P., Doody D.G. Agriculture and eutrophication: Where do we go from here? Sustainability. 2014;6:5853–5875. doi: 10.3390/su6095853. DOI
Veneklaas E.J., Lambers H., Bragg J., Finnegan P.M., Lovelock C.E. Opportunities for improving phosphorus-use efficiency in crop plants. New Phytol. 2012;195:306–320. doi: 10.1111/j.1469-8137.2012.04190.x. PubMed DOI
Reich P.B., Oleksyn J., Wright I.J., Niklas K.J., Hedin L., Elser J.J. Evidence of a general 2/3-power law of scaling leaf nitrogen to phosphorus among major plant groups and biomes. Proc. Biol. Sci. 2010;277:877–883. doi: 10.1098/rspb.2009.1818. PubMed DOI PMC
Nadeem M., Mollier A., Morel C., Vives A., Pruud’homme L., Pellerin S. Relative contribution of seed phosphorus reserves and exogenous phosphorus uptake to maize (Zea mays L.) nutrition during early growth stages. Plant Soil. 2011;346:231–244. doi: 10.1007/s11104-011-0814-y. DOI
Landoni M., Badone F.C., Haman N., Schiraldi A., Fessas D., Cesari V., Toschi I., Cremona R., Delogu C., Villa D., et al. Low phytic acid 1 mutation in maize modifies density, starch properties, cations, and fiber contents in the seed. J. Agric. Food Chem. 2013;61:4622–4630. doi: 10.1021/jf400259h. PubMed DOI
White P.J., Veneklaas E.J. Nature and nurture: The importance of seed phosphorus content. Plant Soil. 2012;357:1–8. doi: 10.1007/s11104-012-1128-4. DOI
Wang X., Shen J., Liao H. Acquisition or utilisation, which is more critical for enhancing phosphorus efficiency in modern crops? Plant Sci. 2010;179:302–306. doi: 10.1016/j.plantsci.2010.06.007. DOI
White P.J., Broadley M.R. Biofortification of crops with seven mineral elements often lacking in human diets−iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol. 2009;182:49–84. doi: 10.1111/j.1469-8137.2008.02738.x. PubMed DOI
Shi Y., Zhu Y., Wang X., Sun X., Ding Y., Cao W., Hu Z. Progress and development on biological information of crop phenotype research applied to real-time variable-rate fertilization. Plant Methods. 2020;16:11. doi: 10.1186/s13007-020-0559-9. PubMed DOI PMC
Mulla D.J. Twenty-five years of remote sensing in precision agriculture: Key advances and remaining knowledge gaps. Biosyst. Eng. 2013;114:358–371. doi: 10.1016/j.biosystemseng.2012.08.009. DOI
Späti K., Huber R., Finger R. Benefits of Increasing Information Accuracy in Variable Rate Technologies. Ecol. Econ. 2021;185:107047. doi: 10.1016/j.ecolecon.2021.107047. DOI
Balafoutis A., Beck B., Fountas S., Vangeyte J., Van Der Wal T., Soto I., Gómez-Barbero M., Barnes A., Eory V. Precision Agriculture Technologies Positively Contributing to GHG Emissions Mitigation, Farm Productivity and Economics. Sustainability. 2017;9:1339. doi: 10.3390/su9081339. DOI
Shaheb M.R., Sarker A., Shearer S.A., Shaheb M.R., Sarker A., Shearer S.A. Precision Agriculture for Sustainable Soil and Crop Management. IntechOpen; London, UK: 2022. DOI
Argento F., Anken T., Abt F., Vogelsanger E., Walter A., Liebisch F. Site-specific nitrogen management in winter wheat supported by low-altitude remote sensing and soil data. Precis. Agric. 2021;22:364–386. doi: 10.1007/s11119-020-09733-3. DOI
Haneklaus S., Schnug E. Decision-making strategies for the variable-rate application of compound fertilizers. Commun. Soil Sci. Plant Anal. 2000;31:1863–1873. doi: 10.1080/00103620009370543. DOI
USDA Precision Agricultural Technologies and Factors Affecting Their Adoption. [(accessed on 18 June 2023)];2016 Available online: https://www.ers.usda.gov/amber-waves/2016/december/precision-agriculture-technologies-and-factors-affecting-their-adoption/
Abu bakar B., Muslimin J., Abd Rani M.N., Bookeri M., Ahmad M.T., Abdullah M., Ismail R. On-The-Go Variable Rate Fertilizer Application Method for Rice Through Classification of Crop Nitrogen Nutrition Index (NNI) ASM Sci. J. 2021;15:1–10. doi: 10.32802/asmscj.2021.608. DOI
Araus J.L., Kefauver S.C., Zaman-Allah M., Olsen M.S., Cairns J.E. Translating High-Throughput Phenotyping into Genetic Gain. Trends Plant Sci. 2018;23:451–466. doi: 10.1016/j.tplants.2018.02.001. PubMed DOI PMC
Ninomiya S. High-throughput field crop phenotyping: Current status and challenges. Breed. Sci. 2022;72:3–18. doi: 10.1270/jsbbs.21069. PubMed DOI PMC
Mirzakhaninafchi H., Singh M., Dixit A.K., Prakash A., Sharda S., Kaur J., Nafchi A.M. Performance Assessment of a Sensor-Based Variable-Rate Real-Time Fertilizer Applicator for Rice Crop. Sustainability. 2022;14:11209. doi: 10.3390/su141811209. DOI
Ding S., Bai L., Yao Y., Yue B., Fu Z., Zheng Z., Huang Y. Discrete element modelling (DEM) of fertilizer dual-banding with adjustable rates. Comput. Electron. Agric. 2018;152:32–39. doi: 10.1016/j.compag.2018.06.044. DOI
Song C., Zhou Z., Zang Y., Zhao L., Yang W., Luo X., Jiang R., Ming R., Zang Y., Zi L., et al. Variable-rate control system for UAV-based granular fertilizer spreader. Comput. Electron. Agric. 2021;180:105832. doi: 10.1016/j.compag.2020.105832. DOI
Torbett J.C., Roberts R.K., Larson J.A., English B.C. Perceived improvements in nitrogen fertilizer efficiency from cotton precision farming. Comput. Electron. Agric. 2008;64:140–148. doi: 10.1016/j.compag.2008.04.003. DOI
Nahry A.H.E., Ali R.R., Baroudy A.A.E. An approach for precision farming under pivot irrigation system using remote sensing and GIS techniques. Agric. Water Manag. 2011;98:517–531. doi: 10.1016/j.agwat.2010.09.012. DOI
Canatoy R.C., Daquiado N.P. Fertilization influence on biomass yield and nutrient uptake of sweet corn in potentially hardsetting soil under no tillage. Bull. Natl. Res. Cent. 2021;45:61. doi: 10.1186/s42269-021-00526-w. DOI
Colaço A.F., Molin J.P. Variable rate fertilization in citrus: A long term study. Precis. Agric. 2017;18:169–191. doi: 10.1007/s11119-016-9454-9. DOI
Baligar V.C., Fageria N.K., He Z.L. Nutrient Use Efficiency in Plants. Commun. Soil Sci. Plant Anal. 2001;32:921–950. doi: 10.1081/CSS-100104098. DOI
Xue L., Yang L. Recommendations for nitrogen fertiliser topdressing rates in rice using canopy reflectance spectra. Biosyst. Eng. 2008;100:524–534. doi: 10.1016/j.biosystemseng.2008.05.005. DOI
Neumann G. EU-Funded Research Collaboration on Use of Bio-Effectors in Agriculture Launched. University of Hohenheim; Stuttgart, Germany: 2012. [(accessed on 15 April 2020)]. Press Release. Available online: http://www.biofector.info/about-biofector.html.
Hogenhout S.A., Van der Hoorn R.A.L., Terauchi R., Kamoun S. Emerging Concepts in Effector Biology of Plant-Associated Organisms. Mol. Plant-Microbe Interact. 2009;22:115–122. doi: 10.1094/MPMI-22-2-0115. PubMed DOI
Roy E. Phosphorus recovery and recycling with ecological engineering: A review. Ecol. Eng. 2017;98:213–227. doi: 10.1016/j.ecoleng.2016.10.076. DOI
Galletti S., Fornasier F., Cianchetta S., Lazzeri L. Soil incorporation of brassica materials and seed treatment with Trichoderma harzianum: Effects on melon growth and soil microbial activity. Ind. Crops Prod. 2015;75:73–78. doi: 10.1016/j.indcrop.2015.04.030. DOI
Ferrigo D., Raiola A., Rasera R., Causin R. Trichoderma harzianum seed treatment controls Fusarium verticillioides colonization and fumonisin contamination in maize under field conditions. Crop Prot. 2014;65:51–56. doi: 10.1016/j.cropro.2014.06.018. DOI
Yusran Y., Römheld V., Müller T. The Proceedings of the International Plant Nutrition Colloqium XVI. University of California; Davis, CA, USA: 2009. Effects of Pseudomonas sp. Proradix and Bacillus amyloliquefaciens FZB42 on the Establishment of AMF Infection, Nutrient Acquisition and Growth of Tomato Affected by Fusarium oxysporum Schlecht f.sp. Radicis-Lycopersici Jarvis and Shoemaker.11p
Gomez-Munoz B., Pittroff S.M., De Neergaard A., Jensen L.S., Nicolaisen M.H., Magid J. Penicillium bilaii effects on maize growth and P uptake from soil and localized sewage sludge in a rhizobox experiment. Biol. Fertil. Soil. 2017;53:23–35. doi: 10.1007/s00374-016-1149-x. DOI
Richardson A.E., Lynch J.P., Ryan P.R., Delhaize E., Smith F.A., Smith S.E., Harvey P.R., Ryan M.H., Veneklaas E.J., Lambers H., et al. Plant and microbial strategies to improve the phosphorus efficiency of agriculture. Plant Soil. 2011;349:121–156. doi: 10.1007/s11104-011-0950-4. DOI
Israr D., Mustafa G., Khan K.S., Shahzad M., Ahmad N., Masood S. Interactive effects of phosphorus and Pseudomonas putida on chickpea (Cicer arietinum L.) growth, nutrient uptake, antioxidant enzymes and organic acids exudation. Plant Physiol. Biochem. 2016;108:304–312. doi: 10.1016/j.plaphy.2016.07.023. PubMed DOI
Kröber M., Wibberg D., Grosch R., Eikmeyer F., Verwaaijen B., Chowdhury P., Hartmann A., Pühler A., Schlüter A. Effect of the strain Bacillus amyloliquefaciens FZB42 on the microbial community in the rhizosphere of lettuce under field conditions analyzed by whole metagenome sequencing. Front. Microbiol. 2014;5:252. doi: 10.3389/fmicb.2014.00252. PubMed DOI PMC
Lagerlöf J., Ayuke F., Bejai S., Jorge G., Lagerqvist E., Meijer J., JohnMuturi J., Söderlund S. Potential side effects of biocontrol and plant-growth promoting Bacillus amyloliquefaciens bacteria on earthworms. Appl. Soil Ecol. 2015;96:159–164. doi: 10.1016/j.apsoil.2015.08.014. DOI
He P., Hao K., Blom J., Rückert C., Vater J., Mao Z., Wu Y., Hou M., He P., He Y., et al. Genome sequence of the plant growth promoting strain Bacillus amyloliquefaciens subsp. plantarum B9601-Y2 and expression of mersacidin and other secondary metabolites. J. Biotechnol. 2013;164:281–291. doi: 10.1016/j.jbiotec.2012.12.014. PubMed DOI
Holečková Z., Kulhánek M., Balík J. Use of Active Microrganisms in Crop Production—A Review. J. Food Process. Technol. 2017;8:696. doi: 10.4172/2157-7110.1000696. DOI
Gravel V., Antoun H., Tweddell R.J. Growth stimulation and fruit yield improvement of greenhouse tomato plants by inoculation with Pseudomonas putida or Trichoderma atroviride: Possible role of indole acetic acid (IAA) Soil Biol. Biochem. 2007;39:1968–1977. doi: 10.1016/j.soilbio.2007.02.015. DOI
Holečková Z., Kulhánek M., Balík J. Influence of bioeffectors application on maize growth, yields and nutrient uptake. Int. J. Plant Sci. 2018;179:1041–1052.
Fröhlich A., Buddrus-Schiemann K., Durner J., Hartmann A., Von Rad U. Response of barley to root colonization by Pseudomonas sp. DSMZ 13134 under laboratory, greenhouse, and field conditions. J. Plant Int. 2012;7:1–9. doi: 10.1080/17429145.2011.597002. DOI
Gholami A., Shahsavani S., Nezarat S. The effect of plant growth promoting rhizobacteria (PGPR) on germination, seedling growth and yield of maize. Int. J. Biol. Biomol. Agric. Food Biotechnol. Eng. 2009;3:9–12. PubMed
Nezarat S., Gholami A. Screening plant growth promoting rhizobacteria for improving seed germination, seedling growth and yield of maize. Pak. J. Biol. Sci. 2009;12:26–32. doi: 10.3923/pjbs.2009.26.32. PubMed DOI
Kifle M.H., Laing M.D. Effects of selected diazotrophs on maize growth. Front. Plant Sci. 2016;7:1429. doi: 10.3389/fpls.2016.01429. PubMed DOI PMC
Valverde A., Burgos A., Fiscella T., Rivas R., Velazquez E., Rodríguez-Barrueco C., Cervantes E., Chamber M., Igual J.-M. Differential effects of coinoculations with Pseudomonas jessenii PS06 (a phosphatesolubilizing bacterium) and Mesorhizobium ciceri C-2/2 strains on the growth and seed yield of chickpea under greenhouse and field conditions. Plant Soil. 2007;287:43–50. doi: 10.1007/s11104-006-9057-8. DOI
Pereira S.I.A., Abreu D., Moreira H., Vega A., Castro P.M.L. Plant growth-promoting rhizobacteria (PGPR) improve the growth and nutrient use efficiency in maize (Zea mays L.) under water deficit conditions. Heliyon. 2020;6:e05106. doi: 10.1016/j.heliyon.2020.e05106. PubMed DOI PMC
Holečková Z., Kulhánek M., Hakl J., Balík J. Use of active microorganisms of the Pseudomonas genus during cultivation of maize in field conditions. Plant Soil Environ. 2018;64:26–31. doi: 10.17221/725/2017-PSE. DOI
Altuhaish A., Altuhaish A., Tjahjoleksono A. Biofertilizer effects in combination with different drying system and storage period on growth and production of tomato plant under field conditions. Emir. J. Food Agric. 2014;26:716–722. doi: 10.9755/ejfa.v26i8.17178. DOI
Turan M., Ekinci M., Yildirim E., Gunes A., Karagoz K., Kotan R., Dursun A. Plant growthpromoting rhizobacteria improved growth, nutrient, and hormone content of cabbage (Brassica oleracea) seedlings. Turk. J. Agric. For. 2014;38:327–333. doi: 10.3906/tar-1308-62. DOI
Ali A.A., Awad M.Y.M., Hegab S.A., Abd El Gawad A.M., Eissa M.A. Effect of potassium solubilizing bacteria (Bacillus cereus) on growth and yield of potato. J. Plant Nutr. 2021;44:411–420. doi: 10.1080/01904167.2020.1822399. DOI
Breedt G., Labuschagne N., Coutinho T.A. Seed treatment with selected plant growth-promoting rhizobacteria increases maize yield in the field. Ann. Appl. Biol. 2017;171:229–236. doi: 10.1111/aab.12366. DOI
Wang P., Wu S.H., Wen M.X., Wang Y., Wu Q.S. Effects of combined inoculation with Rhizophagus intraradices and Paenibacillus mucilaginosus on plant growth, root morphology, and physiological status of trifoliate orange (Poncirus trifoliata L. Raf.) seedlings under different levels of phosphorus. Sci. Hortic. 2016;205:97–105. doi: 10.1016/j.scienta.2016.04.023. DOI
Mercl F., Tejnecký V., Ságová-Marečková M., Dietel K., Kopecký J., Břendová K., Kulhánek M., Košnář Z., Száková J., Tlustoš P. Co-application of wood ash and Paenibacillus mucilaginosus to soil: The effect on maize nutritional status, root exudation and composition of soil solution. Plant Soil. 2018;428:105–122. doi: 10.1007/s11104-018-3664-z. DOI
Paradiso R., Arena C., De Micco V., Giordano M., Aronne G., DePascale S. Changes in leaf anatomical traits enhanced photosynthetic activity of soybean grown in hydroponics with plant growth-promoting microorganisms. Front. Plant Sci. 2017;8:674. doi: 10.3389/fpls.2017.00674. PubMed DOI PMC
Chagas L.F.B., De Castro H.G., Colonia B.S.O., De Carvalho M.R., Miller L.D., Chagas A.F.J. Efficiency of Trichoderma spp. as a growth promoter of cowpea (Vigna unguiculata) and analysis of phosphate solubilization and indole acetic acid synthesis. Braz. J. Bot. 2016;39:437–445. doi: 10.1007/s40415-015-0247-6. DOI
El-Gremi S.M., Draz I.S., Youssef W.A.E. Biological control of pathogens associated with kernel black point disease of wheat. Crop Prot. 2017;91:13–19. doi: 10.1016/j.cropro.2016.08.034. DOI
Gupta U.C. Tissue sulfur levels and additional sulfur needs for various crops. Can. J. Plant Sci. 1976;56:651–657. doi: 10.4141/cjps76-104. DOI
Mercl F., García Sánchez M., Kulhánek M., Košnář Z., Száková J., Tlustoš P. Improved phosphorus fertilisation efficiency of wood ash by fungal strains Penicillium sp. PK112 and Trichoderma harzianum OMG08 on acidic soil. Appl. Soil Ecol. 2020;147:103360. doi: 10.1016/j.apsoil.2019.09.010. DOI
Ahmad P., Hashem A., Abd-Allah E.F., Alqarawi A.A., John R., Egamberdieva D., Gucel S. Role of Trichoderma harzianum in mitigating NaCl stress in Indian mustard (Brassica juncea L) through antioxidative defense system. Front. Plant Sci. 2015;6:868. doi: 10.3389/fpls.2015.00868. PubMed DOI PMC
Buysens C., Cesar V., Ferrais F., de Boulois H.D., Declerck S. Inoculation of Medicago sativa cover crop with Rhizophagus irregularis and Trichoderma harzianum increases the yield of subsequently-grown potato under low nutrient conditions. Appl. Soil Ecol. 2016;105:137–143. doi: 10.1016/j.apsoil.2016.04.011. DOI
Beckie H.J., Schlechte D., Moulin A.P., Gleddie S.C., Pulkinen D.A. Response of alfalfa to inoculation with Penicillium bilaii (Provide) Can. J. Plant Sci. 1998;78:91–102. doi: 10.4141/P97-043. DOI
Ram H., Malik S.S., Dhaliwal S.S., Kumar B., Singh Y. Growth and productivity of wheat affected by phosphorus-solubilizing fungi and phosphorus levels. Plant Soil Environ. 2015;61:122–126. doi: 10.17221/982/2014-PSE. DOI
Vessey K.J., Heisinger K.G. Effect of Penicillium bilaii inoculation and phosphorus fertilisation on root and shoot parameters of field-grown pea. Can. J. Plant Sci. 2001;81:361–366. doi: 10.4141/P00-083. DOI
Sharma D., Kayang H. Effects of arbuscular mycorrhizal fungi (amf) on camellia sinensis (l.) o. kuntze under greenhouse conditions. J. Exp. Biol. Agric. Sci. 2017;5:235–241. doi: 10.18006/2017.5(2).235.241. DOI
Mohamed H.A., Barry K.M., Measham P.F. The role of arbuscular mycorrhizal fungi in establishment and water balance of tomato seedlings and sweet cherry cuttings in low phosphorous soil. Acta Hortic. 2016;1112:109–115. doi: 10.17660/ActaHortic.2016.1112.15. DOI
Do Vale L.H.F., Gómez-Mendoza D.P., Kim M.S., Pandey A., Ricart C.A.O., Filho E.X.F., Sousa M.V. Secretome analysis of the fungus Trichoderma harzianum grown on cellulose. Proteomics. 2012;12:2716–2728. doi: 10.1002/pmic.201200063. PubMed DOI
Yedidia I., Srivastva A.K., Kapulnik Y., Chet I. Effect of Trichoderma harzianum on microelement concentrations and increased growth of cucumber plants. Plant Soil. 2001;235:235–242. doi: 10.1023/A:1011990013955. DOI
Karamanos R.E., Flore N.A., Harapiak T.J. Re-visiting use of Penicillium bilaii with phosphorus fertilization of hard red spring wheat. Can. J. Plant Sci. 2010;90:265–277. doi: 10.4141/CJPS09123. DOI
Cunningham J.E., Kuiack C. Production of citric and oxalic acids and solubilization of calcium phosphate by Penicillium bilaii. Appl. Environ. Microbiol. 1992;58:1451–1458. doi: 10.1128/aem.58.5.1451-1458.1992. PubMed DOI PMC
Smitte D. Seaweeds comes ashore. Fine Gard. Nov./Dec. 1991;22:31–33.
Zhang X., Ervin E.H., Schmidt E.R. Plant growt regulator can enhance the recovery of Kentucky bluegrass sod from heat injury. Crop Sci. 2003;43:952–956. doi: 10.2135/cropsci2003.9520. DOI
Tandon S., Dubey A. Effects of biozyme (Ascophyllum nodosum) biostimulant on growth and development of soybean (Glycine Max (L.) Merill) Commun. Soil Sci. Plant Anal. 2015;46:861–874. doi: 10.1080/00103624.2015.1011749. DOI
Turan M., Köse C. Seaweed extracts improve copper uptake of grapevine. Soil Plant Sci. 2004;54:213–220. doi: 10.1080/09064710410030311. DOI
Lekfeldt J.D.S., Rex M., Mercl F., Kulhánek M., Tlustoš P., Magid J., de Neergaard A. Effect of bioeffectors and recycled P-fertilizer products on the growth of spring wheat. Chem. Biol. Technol. Agric. 2016;3:22. doi: 10.1186/s40538-016-0074-4. DOI
World Bank Global Waste Generation Could Increase 70% by 2050. 2018. [(accessed on 16 November 2022)]. Available online: https://www.wastedive.com/news/world-bank-global-waste-generation-2050/533031/
Huygens D., Saveyn H.G.M. Agronomic efficiency of selected phosphorus fertilisers derived from secondary raw materials for European agriculture. A meta-analysis. Agron. Sustain. Dev. 2018;38:52. doi: 10.1007/s13593-018-0527-1. DOI
Cordell D., Rosemarin A., Schroder J.J., Smit A. Towards global phosphorus security: A systems framework for phosphorus recovery and reuse. Chemosphere. 2011;84:747–758. doi: 10.1016/j.chemosphere.2011.02.032. PubMed DOI
FAO . Lessons Learned on the Sustainability and Replicability of Integrated Food-Energy Systems in Ghana and Mozambique. Part 2: Analysis of Case Studies. FAO; Rome, Italy: 2018.
Ochecová P., Mercl F., Košnář Z., Tlustoš P. Fertilization efficiency of wood ash pellets amended by gypsum and superphosphate in the ryegrass growth. Plant Soil Environ. 2017;63:47–54. doi: 10.17221/142/2016-PSE. DOI
Demeyer A., Nkana J.C.V., Verloo M.G. Characteristics of wood ash and influence on soil properties and nutrient uptake: An overview. Bioresour. Technol. 2001;77:287–295. doi: 10.1016/S0960-8524(00)00043-2. PubMed DOI
Ochecová P., Tlustoš P., Száková J. Wheat and soil response to wood fly ash application in contaminated soils. Agron. J. 2014;106:995–1002. doi: 10.2134/agronj13.0363. DOI
Pesonen J., Kuokkanen T., Rautio P., Lassi U. Bioavailability of nutrients and harmful elements in ash fertilizers: Effect of granulation. Biomass Bioenergy. 2017;100:92–97. doi: 10.1016/j.biombioe.2017.03.019. DOI
Lu Q., He Z.L., Stoffella P.J. Land application of biosolids in the USA: A review. Appl. Environ. Soil Sci. 2012;2012:201462. doi: 10.1155/2012/201462. DOI
Kowaljow E., Mazzarino M.J., Satti P., Jiménez-Rodríguez C. Organic and inorganic fertilizer effects on a degraded Patagonian rangeland. Plant Soil. 2010;332:135–145. doi: 10.1007/s11104-009-0279-4. DOI
García-Orenes F., Guerrero C., Mataix-Solera J., Navarro-Pedreño J., Gómez I., Mataix-Beneyto J. Factors controlling the aggregate stability and bulk density in two different degraded soils amended with biosolids. Soil Tillage Res. 2005;82:65–76. doi: 10.1016/j.still.2004.06.004. DOI
Kulhánek M., Balík J., Černý J., Vašák F., Shejbalová Š. Influence of long-term fertilizer application on changes of the content of Mehlich-3 estimated soil macronutrients. Plant Soil Environ. 2014;60:151–157. doi: 10.17221/930/2013-PSE. DOI
Cieślik B.M., Konieczka P., Namieśnik J. Review of sewage sludge management: Standards, regulations and analytical methods. J. Clean. Prod. 2014;90:1–15. doi: 10.1016/j.jclepro.2014.11.031. DOI
Dean R.B., Suess M.J. The risk to health of chemicals in sewage sludge applied to land. Waste Manag. Res. 1985;3:251–278. doi: 10.1177/0734242X8500300131. DOI
Cieślik B.M., Konieczka P. A review phosphorus recovery methods at various steps of wastewater treatment and sewage sludge management. The concept of “no solid waste generation” and analytical methods. J. Clean. Prod. 2016;142:1728–1740. doi: 10.1016/j.jclepro.2016.11.116. DOI
Yuan Z., Pratt S., Batstone D.J. Phosphorus recovery from wastewater through microbial processes. Curr. Opin. Biotechnol. 2012;23:878–883. doi: 10.1016/j.copbio.2012.08.001. PubMed DOI
Kataki S., West H., Clarke M., Baruah D.C. Phosphorus recovery as struvite: Recent concerns for use of seed, alternative Mg source, nitrogen conservation and fertilizer potential. Resour. Conserv. Recycl. 2016;107:142–156. doi: 10.1016/j.resconrec.2015.12.009. DOI
Havukainen J., Nguyen M., Hermann L., Horttanainen M., Mikkilä M., Linnanen L. Potential of phosphorus recovery from sewage sludge and manure ash by thermochemical treatment. Waste Manag. 2016;89:401–410. doi: 10.1016/j.wasman.2016.01.020. PubMed DOI
Shafii M.A., Ling E.C.M., Shaffie E. The use of sewage sludge ash and its ash in construction and agriculture industry. J. Teknol. 2019;81:81–90. doi: 10.11113/jt.v81.13486. DOI
Jeon S., Kim D.J. Enhanced phosphorus bioavailability and heavy metal removal from sewage sludge ash through thermochemical treatment with chlorine donors. J. Ind. Eng. Chem. 2018;58:216–221. doi: 10.1016/j.jiec.2017.09.028. DOI
El-Ramady H., Abdalla N., Alshaal T., El-Henawy A., Elmahrouk M. In: Nanotechnology, Food Security and Water Treatment. Gothandam K.M., Ranjan S., Dasgupta N., Ramalingam N., Lichtfouse E., editors. Springer; Cham, Switzerland: 2018. pp. 129–161. Environmental Chemistry for a Sustainable World. DOI
Zahedi S.M., Karimi M., Teixeira da Silva J.A. The use of nanotechnology to increase quality and yield of fruit crops. J. Sci. Food Agric. 2019;100:25–31. doi: 10.1002/jsfa.10004. PubMed DOI
Manjunatha R.L., Naik D., Usharani K.V. Nanotechnology application in agriculture: A review. J. Pharmacogn. Phytochem. 2019;8:1073–1083.
Marchiol L. Nanotechnology in Agriculture: New Opportunities and Perspectives. In: Çelik Ö., editor. New Visions in Plant Science. IntechOpen; London, UK: 2018. pp. 122–141. DOI
Husen A. Introduction and techniques in nanomaterial formulation. In: Husen A., Jawid M., editors. Nanomaterials for Agriculture and Forest Applications. Elsevier; Amsterdam, The Netherlands: 2020. pp. 1–14. DOI
Rose D.C., Chilvers J. Agriculture 4.0: Broadening Responsible Innovation in an Era of Smart Farming. Front. Sustain. Food Syst. 2018;2:87. doi: 10.3389/fsufs.2018.00087. DOI
Mahil E.I.T., Kumar B.N.A. Foliar application of nanofertilizers in agricultural crops—A review. J. Farm Sci. 2019;32:239–249.
Singh R.P. Application of Nanomaterials Toward Development of Nanobiosensors and Their Utility in Agriculture. In: Prasad R., Kumar M., Kumar V., editors. Nanotechnology. Springer Nature; Singapore: 2017. pp. 292–303. DOI
Mahanta N., Dambale A., Rajkhowa M. Nutrient use efficiency through Nano fertilizers. Int. J. Chem. Stud. 2019;7:2839–2842.
Jampílek J., Kráľová K. Nanomaterials for Delivery of Nutrients and Growth-Promoting Compounds to Plants. In: Prasad R., Kumar M., Kumar V., editors. Nanotechnology. Springer; Singapore: 2017. pp. 177–226. DOI
Sanzari I., Leone A., Ambrosone A. Nanotechnology in Plant Science: To Make a Long Story Short. Front. Bioeng. Biotechnol. 2019;7:120. doi: 10.3389/fbioe.2019.00120. PubMed DOI PMC
Khalid M.F., Hussain S., Ahmad S., Ejaz S., Zakir I. Impacts of Abiotic Stresses on Growth and Development of Plants. In: Hasanuzzaman M., Fujita M., Oku H., Islam M.T., editors. Plant Tolerance to Environmental Stress: Role of Phytoprotectants. CRC Press-Taylor & Francis; Boca Raton, FL, USA: 2019. pp. 1–26. DOI
Mustafa G., Akhtar M.S., Abdullah R. Global Concern for Salinity on Various Agro-Ecosystems. In: Akhtar M.S., editor. Salt Stress, Microbes, and Plant Interactions: Causes and Solution. Springer Nature; Singapore: 2019. pp. 1–19. DOI
Bidalia A., Vikram K., Yamal G., Rao K.S. Effect of Salinity on Soil Nutrients and Plant Health. In: Akhtar M.S., editor. Salt Stress, Microbes, and Plant Interactions: Causes and Solution. Springer; Singapore: 2019. pp. 273–297.
Evelin H., Devi T.S., Gupta S., Kapoor R. Mitigation of Salinity Stress in Plants by Arbuscular Mycorrhizal Symbiosis: Current Understanding and New Challenges. Front. Plant Sci. 2019;10:470. doi: 10.3389/fpls.2019.00470. PubMed DOI PMC
Hniličková H., Hnilička F., Orsák M., Hejnák V. Effect of salt stress on growth, electrolyte leakage, Na+ and K+ content in selected plant species. Plant Soil Environ. 2019;65:90–96. doi: 10.17221/620/2018-PSE. DOI
Parihar P., Bora M. Plants Growing Under Salinity Stress Can Be Eased Through Mycorrhizal Association. In: Akhtar M.S., editor. Salt Stress, Microbes, and Plant Interactions: Causes and Solution. Springer Nature; Singapore: 2019. pp. 237–248. DOI
Nadeem H., Ahmad F. Soil-Plant and Microbial Interaction in Improving Salt Stress. In: Akhtar M.S., editor. Salt Stress, Microbes, and Plant Interactions: Causes and Solution. Springer Nature; Singapore: 2019. pp. 217–235. DOI
Saxena R., Kumar M., Tomar R.S. Plant responses and resilience towards drought and salinity stress. Plant Arch. 2019;19:50–58.
Yousefi H., Dalir N., Rahnemaie R., Babaei A. The alleviation of salinity-induced stress by using boron in soilless grown rose. J. Plant Nutr. 2020;43:526–537. doi: 10.1080/01904167.2019.1685103. DOI
Mahmoud A.W.M., Abdeldaym E.A., Abdelaziz S.M., El-Sawy M.B.I., Mottale S.A. Synergetic Effects of Zinc, Boron, Silicon, and Zeolite Nanoparticles on Confer Tolerance in Potato Plants Subjected to Salinity. Agronomy. 2019;10:19. doi: 10.3390/agronomy10010019. DOI
Rahman M.M., Mostofa M.G., Rahman M.A., Islam M.R., Keya S.S., Das A.K., Miah G., Kawser A.Q.M.R., Ahsan S.M., Hashem A., et al. Acetic acid: A cost-effective agent for mitigation of seawater-induced salt toxicity in mung bean. Sci. Rep. 2019;9:15186. doi: 10.1038/s41598-019-51178-w. PubMed DOI PMC
Hasan R., Miyake H. Salinity Stress Alters Nutrient Uptake and Causes the Damage of Root and Leaf Anatomy in Maize. KnE Life Sci. 2017;3:219–225. doi: 10.18502/kls.v3i4.708. DOI
Nadeem M., Li J., Yahya M., Sher A., Ma C., Wang X., Qiu L. Research Progress and Perspective on Drought Stress in Legumes: A Review. Int. J. Mol. Sci. 2019;20:2541. doi: 10.3390/ijms20102541. PubMed DOI PMC
Cole D.L., Woolley R.K., Tyler A., Buck R.L., Hopkins B.G. Mineral nutrient deficiencies in quinoa grown in hydroponics with single nutrient salt/acid/chelate sources. J. Plant Nutr. 2020;43:1661–1673. doi: 10.1080/01904167.2020.1739304. DOI