Physiological Response of Miscanthus x giganteus to Plant Growth Regulators in Nutritionally Poor Soil
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
MYP G4687
NATO
UJEP-IGA-TC-2019-44-01-2
Internal grant agency of J. E. Purkyně University
LM2015073
NanoEnviCZ
UJEP-SGS-2017-44-003-3
UJEP grant agency
PubMed
32033420
PubMed Central
PMC7076640
DOI
10.3390/plants9020194
PII: plants9020194
Knihovny.cz E-zdroje
- Klíčová slova
- Miscanthus x giganteus, leaf fluorescence, nutritionally poor post-military soil, plant physiology, plant stress,
- Publikační typ
- časopisecké články MeSH
Miscanthus x giganteus (Mxg) is a promising second-generation biofuel crop with high production of energetic biomass. Our aim was to determine the level of plant stress of Mxg grown in poor quality soils using non-invasive physiological parameters and to test whether the stress could be reduced by application of plant growth regulators (PGRs). Plant fitness was quantified by measuring of leaf fluorescence using 24 indexes to select the most suitable fluorescence indicators for quantification of this type of abiotic stress. Simultaneously, visible stress signs were observed on stems and leaves and differences in variants were revealed also by microscopy of leaf sections. Leaf fluorescence analysis, visual observation and changes of leaf anatomy revealed significant stress in all studied subjects compared to those cultivated in good quality soil. Besides commonly used Fv/Fm (potential photosynthetic efficiency) and P.I. (performance index), which showed very low sensitivity, we suggest other fluorescence parameters (like dissipation, DIo/RC) for revealing finer differences. We can conclude that measurement of leaf fluorescence is a suitable method for revealing stress affecting Mxg in poor soils. However, none of investigated parameters proved significant positive effect of PGRs on stress reduction. Therefore, direct improvement of soil quality by fertilization should be considered for stress reduction and improving the biomass quality in this type of soils.
Zobrazit více v PubMed
United Nations Sustainable development knowledge platform. [(accessed on 7 August 2019)]; Available online: https://sustainabledevelopment.un.org/?menu=1300.
Gerwin W., Repmann F., Galatsidas S., Vlachaki D., Gounaris N., Baumgarten W., Volkmann C., Keramitzis D., Kiourtsis F., Freese D. Assessment and quantification of marginal lands for biomass production in Europe using soil-quality indicators. Soil. 2018;4:267–290. doi: 10.5194/soil-4-267-2018. DOI
Hodkinson T.R., Renvoize S. Nomenclature of Miscanthus xgiganteus (Poaceae) Kew Bull. 2001;56:759. doi: 10.2307/4117709. DOI
Dohleman F.G., Long S.P. More productive than maize in the Midwest: How does miscanthus do it? PLANT Physiol. 2009;150:2104–2115. doi: 10.1104/pp.109.139162. PubMed DOI PMC
Christian D.G., Riche A.B., Yates N.E. Growth, yield and mineral content of Miscanthus×giganteus grown as a biofuel for 14 successive harvests. Ind. Crops Prod. 2008;28:320–327. doi: 10.1016/j.indcrop.2008.02.009. DOI
Devrije T. Pretreatment of Miscanthus for hydrogen production by Thermotoga elfii. Int. J. Hydrogen Energy. 2002;27:1381–1390. doi: 10.1016/S0360-3199(02)00124-6. DOI
Lewandowski I., Clifton-Brown J.C., Scurlock J.M.O., Huisman W. Miscanthus: European experience with a novel energy crop. Biomass and Bioenergy. 2000;19:209–227. doi: 10.1016/S0961-9534(00)00032-5. DOI
Wanat N., Austruy A., Joussein E., Soubrand M., Hitmi A., Gauthier-Moussard C., Lenain J.-F., Vernay P., Munch J.C., Pichon M. Potentials of Miscanthus×giganteus grown on highly contaminated Technosols. J. Geochemical Explor. 2013;126–127:78–84. doi: 10.1016/j.gexplo.2013.01.001. DOI
Pogrzeba M., Rusinowski S., Sitko K., Krzyżak J., Skalska A., Małkowski E., Ciszek D., Werle S., McCalmont J.P., Mos M., et al. Relationships between soil parameters and physiological status of Miscanthus x giganteus cultivated on soil contaminated with trace elements under NPK fertilisation vs. microbial inoculation. Environ. Pollut. 2017;225:163–174. doi: 10.1016/j.envpol.2017.03.058. PubMed DOI
Nsanganwimana F., Pourrut B., Mench M., Douay F. Suitability of Miscanthus species for managing inorganic and organic contaminated land and restoring ecosystem services. A review. J. Environ. Manage. 2014;143:123–134. doi: 10.1016/j.jenvman.2014.04.027. PubMed DOI
Pidlisnyuk V., Erickson L., Kharchenko S., Stefanovska T. Sustainable land management: Growing Miscanthus in soils contaminated with heavy metals. J. Environ. Prot. (Irvine,. Calif) 2014;05:723–730. doi: 10.4236/jep.2014.58073. DOI
Rusinowski S., Krzyżak J., Sitko K., Kalaji H.M., Jensen E., Pogrzeba M. Cultivation of C4 perennial energy grasses on heavy metal contaminated arable land: Impact on soil, biomass, and photosynthetic traits. Environ. Pollut. 2019;250:300–311. doi: 10.1016/j.envpol.2019.04.048. PubMed DOI
Beale C.V., Long S.P. Can perennial C4 grasses attain high efficiencies of radiant energy conversion in cool climates? Plant, Cell Environ. 1995;18:641–650. doi: 10.1111/j.1365-3040.1995.tb00565.x. DOI
Dohleman F.G., Heaton E.A., Leakey A.D.B., Long S.P. Does greater leaf-level photosynthesis explain the larger solar energy conversion efficiency of Miscanthus relative to switchgrass? Plant. Cell Environ. 2009;32:1525–1537. doi: 10.1111/j.1365-3040.2009.02017.x. PubMed DOI
Jiao X., Kørup K., Andersen M.N., Sacks E.J., Zhu X.-G., Laerke P.E., Jørgensen U. Can miscanthus C 4 photosynthesis compete with festulolium C 3 photosynthesis in a temperate climate? GCB Bioenergy. 2017;9:18–30. doi: 10.1111/gcbb.12342. DOI
Stavridou E., Webster R.J., Robson P.R.H. Novel Miscanthus genotypes selected for different drought tolerance phenotypes show enhanced tolerance across combinations of salinity and drought treatments. Ann. Bot. 2019;124:653–674. doi: 10.1093/aob/mcz009. PubMed DOI PMC
Lewandowski I., Clifton-Brown J., Trindade L.M., Van Der Linden G.C., Schwarz K.U., Müller-Sämann K., Anisimov A., Chen C.L., Dolstra O., Donnison I.S., et al. Progress on optimizing miscanthus biomass production for the european bioeconomy: Results of the EU FP7 project OPTIMISC. Front. Plant Sci. 2016;7 doi: 10.3389/fpls.2016.01620. PubMed DOI PMC
Wagner M., Mangold A., Lask J., Petig E., Kiesel A., Lewandowski I. Economic and environmental performance of miscanthus cultivated on marginal land for biogas production. GCB Bioenergy. 2019;11:34–49. doi: 10.1111/gcbb.12567. DOI
Nebeská D., Pidlisnyuk V., Stefanovska T., Trögl J., Shapoval P., Popelka J., Černý J., Medkow A., Kvak V., Malinská H. Impact of plant growth regulators and soil properties on Miscanthus x giganteus biomass parameters and uptake of metals in military soils. Rev. Environ. Health. 2019;34:283–291. doi: 10.1515/reveh-2018-0088. PubMed DOI
Ponomarenko S.P., Terek O.I., Grytsaenko Z.M., Babayants O.V., Moiseeva T.V., Wenxiu H., Eakin D. Bioregulation of growth and development of plants: Plant growth regulators in crop science. In: Ponomarenko S.P., Iutynska H.O., editors. Bioregulyatsiya mikrobnorastitel’nykh system [Bioregulation of microbial-plant systems] Nichlava; Kiev, Ukraine: 2010. pp. 251–291. [in Russian]
Baker N.R. A possible role for photosystem II in environmental perturbations of photosynthesis. Physiol. Plant. 1991;81:563–570. doi: 10.1111/j.1399-3054.1991.tb05101.x. DOI
Shulaev V., Cortes D., Miller G., Mittler R. Metabolomics for plant stress response. Physiol. Plant. 2008;132:199–208. doi: 10.1111/j.1399-3054.2007.01025.x. PubMed DOI
Verma V., Ravindran P., Kumar P.P. Plant hormone-mediated regulation of stress responses. BMC Plant Biol. 2016;16:86. doi: 10.1186/s12870-016-0771-y. PubMed DOI PMC
Barton L., Hemming B.C. Iron chelation in plants and soil microorganisms. Academic Press; Cambridge, MA, USA: 1993.
Lichtenthaler H.K. Vegetation stress: An introduction to the stress concept in plants. J. Plant Physiol. 1996;148:4–14. doi: 10.1016/S0176-1617(96)80287-2. DOI
Lichtenthaler H.K., Rinderle U. The role of chlorophyll fluorescence in the detection of stress conditions in plants. CRC Crit. Rev. Anal. Chem. 1988;19:S29–S85. doi: 10.1080/15476510.1988.10401466. DOI
Murchie E.H., Lawson T. Chlorophyll fluorescence analysis: A guide to good practice and understanding some new applications. J. Exp. Bot. 2013;64:3983–3998. doi: 10.1093/jxb/ert208. PubMed DOI
Krause G.H., Weis E. Chlorophyll fluorescence and photosynthesis: The basics. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1991;42:313–349. doi: 10.1146/annurev.pp.42.060191.001525. DOI
Kalaji H.M., Jajoo A., Oukarroum A., Brestic M., Zivcak M., Samborska I.A., Cetner M.D., Łukasik I., Goltsev V., Ladle R.J. Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. Acta Physiol. Plant. 2016;38:102. doi: 10.1007/s11738-016-2113-y. DOI
Lazár D. Chlorophyll a fluorescence induction. Biochim. Biophys. Acta - Bioenerg. 1999;1412:1–28. doi: 10.1016/S0005-2728(99)00047-X. PubMed DOI
Butler W.L. Energy Distribution in the Photochemical Apparatus of Photosynthesis. Annu. Rev. Plant Physiol. 1978;29:345–378. doi: 10.1146/annurev.pp.29.060178.002021. DOI
Strasser R.J., Srivastava A.G. Polyphasic chlorophyll a fluorescence transient in plants and cyanobacteriatle. Photochem. Photobiol. 1995;61:32–42. doi: 10.1111/j.1751-1097.1995.tb09240.x. DOI
Strasser R.J., Greppin H. Primary reactions of photochemistry in higher plants. In: Akoyunoglou G., editor. Photosynthesis III. Balaban International Science Services; Philadelphia, PA, USA: 1981. pp. 717–726.
Strasser R.J., Tsimilli-Michael M., Srivastava A. Analysis of the Chlorophyll a Fluorescence Transient. In: Papageorgiou G.C., Govindjee , editors. Chlorophyll a Fluorescence. Springer; Dordrecht, the Netherlands: 2004. pp. 321–362.
Butler W.L., Strasser R.J. Tripartite model for the photochemical apparatus of green plant photosynthesis. Proc. Natl. Acad. Sci. USA. 1977;74:3382–3385. doi: 10.1073/pnas.74.8.3382. PubMed DOI PMC
Krause G.H., Weis E. Chlorophyll fluorescence as a tool in plant physiology. Photosynth. Res. 1984;5:139–157. doi: 10.1007/BF00028527. PubMed DOI
Stirbet A., Lazár D., Kromdijk J. Govindjee Chlorophyll a fluorescence induction: Can just a one-second measurement be used to quantify abiotic stress responses? Photosynthetica. 2018;56:86–104. doi: 10.1007/s11099-018-0770-3. DOI
Jiang C.-D., Wang X., Gao H.-Y., Shi L., Chow W.S. Systemic regulation of leaf anatomical structure, photosynthetic performance, and high-light tolerance in sorghum. Plant Physiol. 2011;155:1416–1424. doi: 10.1104/pp.111.172213. PubMed DOI PMC
Lopez F.B., Barclay G.F. Plant Anatomy and Physiology. In: Badal S., Delgoda R., editors. Pharmacognosy. Elsevier; Amsterdam, the Netherlands: 2017. pp. 45–60.
Bilska-Kos A., Panek P., Szulc-Głaz A., Ochodzki P., Cisło A., Zebrowski J. Chilling-induced physiological, anatomical and biochemical responses in the leaves of Miscanthus × giganteus and maize (Zea mays L.) J. Plant Physiol. 2018;228:178–188. doi: 10.1016/j.jplph.2018.05.012. PubMed DOI
Brestic M., Zivcak M. PSII fluorescence techniques for measurement of drought and high temperature stress signal in crop plants: Protocols and applications. In: Rout G., Das A., editors. Molecular Stress Physiology of Plants. Springer; New Delhi, India: 2013. pp. 87–131.
DSTU . DSTU ISO 11464-2001: Soil quality. Preliminary preparation of samples for physicalchemical analysis. DSTU; Kyiv, Ukraine: 2001.
Zbíral J., Čižmárová E., Elena O., Rychlý M., Vilamová V., Srnková J., Žalmanová A. Jednotné pracovní postupy: Analýza půd I. Central Institute for Supervising and Testing in Agriculture; Brno, Czech Republic: 2016. [in Czech]
Zbíral J., Malý S., Váňa M., Čuhel J., Fojtlová E., Čižmár D., Žalmanová A., Srnková J., Obdržálková E. Jednotné pracovní postupy: Analýza půd III. Central Institute for Supervising and Testing in Agriculture; Brno, Czech Republic: 2011. [in Czech]
Research Institute for Soil and Water Conservation eKatalog BPEJ. [(accessed on 30 March 2019)]; Available online: https://bpej.vumop.cz.
Trögl J., Jirková I., Zemánková P., Pilařová V., Dáňová P., Pavlorková J., Kuráň P., Popelka J., Křiklavová L. Estimation of the quantity of bacteria encapsulated in Lentikats Biocatalyst via phospholipid fatty acids content: A preliminary study. Folia Microbiol. (Praha.) 2013;58:135–140. doi: 10.1007/s12223-012-0189-3. PubMed DOI
Kuráň P., Trögl J., Nováková J., Pilařová V., Dáňová P., Pavlorková J., Kozler J., Novák F., Popelka J. Biodegradation of spilled diesel fuel in agricultural soil: Effect of humates, zeolite, and bioaugmentation. Sci. World J. 2014;2014:1–8. doi: 10.1155/2014/642427. PubMed DOI PMC
Kaur A., Chaudhary A., Kaur A., Choudhary R., Kaushik R. Phospholipid fatty acid – A bioindicator of environment monitoring and assessment in soil ecosystem. Curr. Sci. 2005 doi: 10.2307/24110962. DOI
Oukarroum A., Saïd S., Madidi E., Schansker G., Strasser R.J., El Madidi S., Schansker G. Probing the responses of barley cultivars (Hordeum vulgare L.) by chlorophyll a fluorescence OLKJIP under drought stress and re-watering. Environ. Exp. Bot. 2007;60:438–446. doi: 10.1016/j.envexpbot.2007.01.002. DOI
Kruskal W.H., Wallis W.A. Use of ranks in one-criterion variance analysis. J. Am. Stat. Assoc. 1952;47:583–621. doi: 10.1080/01621459.1952.10483441. DOI
Porter M.M., Niksiar P. Multidimensional mechanics: Performance mapping of natural biological systems using permutated radar charts. PLoS ONE. 2018;13:e0204309. doi: 10.1371/journal.pone.0204309. PubMed DOI PMC
Strašil Z., Weger J., Hutla P., Kára J. Biopaliva z pohledu energetiky a vlivu na životní prostředí. eAGRI Ministerstvo zemědělství; Prague, Czech Republic: 2015. The cultivation of Miscanthus determined for energy use (a summary of long-term monitoring) pp. 29–41. [in Czech]
Cadoux S., Riche A.B., Yates N.E., Machet J.-M. Nutrient requirements of Miscanthus x giganteus: Conclusions from a review of published studies. Biomass Bioenergy. 2012;38:14–22. doi: 10.1016/j.biombioe.2011.01.015. DOI
Gordana D., Jelena M., Jela I., Ivana P. Influence of fertilization on Miscanthus × giganteus (Greef et Deu) yield and biomass traits in three experiments in Serbia. Plant Soil Environ. 2017;63:189–193. doi: 10.17221/156/2017-PSE. DOI
Jeżowski S., Mos M., Buckby S., Cerazy-Waliszewska J., Owczarzak W., Mocek A., Kaczmarek Z., McCalmont J.P. Establishment, growth, and yield potential of the perennial grass Miscanthus × giganteus on degraded coal mine soils. Front. Plant Sci. 2017;8 doi: 10.3389/fpls.2017.00726. PubMed DOI PMC
da Costa R.M.F., Simister R., Roberts L.A., Timms-Taravella E., Cambler A.B., Corke F.M.K., Han J., Ward R.J., Buckeridge M.S., Gomez L.D., et al. Nutrient and drought stress: Implications for phenology and biomass quality in miscanthus. Ann. Bot. 2019;124:553–566. doi: 10.1093/aob/mcy155. PubMed DOI PMC
Guha A., Sengupta D., Reddy A.R. Polyphasic chlorophyll a fluorescence kinetics and leaf protein analyses to track dynamics of photosynthetic performance in mulberry during progressive drought. J. Photochem. Photobiol. B. 2013;119:71–83. doi: 10.1016/j.jphotobiol.2012.12.006. PubMed DOI
Strasser R.J., Stirbet A.D. Heterogeneity of photosystem II probed by the numerically simulated chlorophyll a fluorescence rise (O-J-I-P) Math. Comput. Simul. 1998;48:3–9. doi: 10.1016/S0378-4754(98)00150-5. DOI
Smethurst C.F., Garnett T., Shabala S. Nutritional and chlorophyll fluorescence responses of lucerne (Medicago sativa) to waterlogging and subsequent recovery. Plant Soil. 2005;270:31–45. doi: 10.1007/s11104-004-1082-x. DOI
Kalaji H.M., Oukarroum A., Alexandrov V., Kouzmanova M., Brestic M., Zivcak M., Samborska I.A., Cetner M.D., Allakhverdiev S.I., Goltsev V. Identification of nutrient deficiency in maize and tomato plants by in vivo chlorophyll a fluorescence measurements. Plant Physiol. Biochem. 2014;81:16–25. doi: 10.1016/j.plaphy.2014.03.029. PubMed DOI
Gindel I. Stomata constellation in the leaves of cotton, maize and wheat plants as a function of soil moisture and environment. Physiol. Plant. 1969;22:1143–1151. doi: 10.1111/j.1399-3054.1969.tb09103.x. PubMed DOI
Vaithilingam C.B.M. Effect of potash on sclerenchyma thickness and silica content in rice. Indian Potash J. 1976;1:17–23.
Beaton J.D., Sekhon G.S. Potassium Nutrition of Wheat and Other Small Grains. In: Munson R.D., editor. Potassium in Agriculture. American Society of Agronomy, Crop Science Society of America, Soil Science Society of America; Madison, WI, USA: 1985.
Sharma S.R., Kolte S.J. Effect of soil-applied NPK fertilizers on severity of black spot disease (Alternaria brassicae) and yield of oilseed rape. Plant Soil. 1994;167:313–320. doi: 10.1007/BF00007958. DOI
Pitman W.D., Holt E.C., Conrad B.E., Bashaw E.C. Histological differences in moisture-stressed and nonstressed kleingrass forage. Crop Sci. 1983;23:793. doi: 10.2135/cropsci1983.0011183X002300040046x. DOI
Makbul S., Saruhan Güler N., Durmuş N. Changes in anatomical and physiological parameters of soybean under drought stress. Turk J Bot. 2011;35:369–377. doi: 10.3906/bot-1002-7. DOI
Kharytonov M., Pidlisnyuk V., Stefanovska T., Babenko M., Martynova N., Rula I. The estimation of Miscanthus×giganteus’ adaptive potential for cultivation on the mining and post-mining lands in Ukraine. Environ. Sci. Pollut. Res. 2019;26:2974–2986. doi: 10.1007/s11356-018-3741-0. PubMed DOI
Clifton-Brown J., Schwarz K.-U., Awty-Carroll D., Iurato A., Meyer H., Greef J., Gwyn J., Mos M., Ashman C., Hayes C., et al. Breeding strategies to improve Miscanthus as a sustainable source of biomass for bioenergy and biorenewable products. Agronomy. 2019;9:673. doi: 10.3390/agronomy9110673. DOI
Björkman O., Demmig B. Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins. Planta. 1987;170:489–504. doi: 10.1007/BF00402983. PubMed DOI