Cold plasma treatment influences the physiological parameters of millet
Status PubMed-not-MEDLINE Jazyk angličtina Země Česko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39650629
PubMed Central
PMC11609773
DOI
10.32615/ps.2024.010
PII: PS62126
Knihovny.cz E-zdroje
- Klíčová slova
- cold plasma treatment, electron transport, millet, photosynthesis efficiency,
- Publikační typ
- časopisecké články MeSH
In recent years, cold plasma treatment has emerged as a promising method to positively impact early seed growth. This study aimed to investigate the effects of cold plasma treatment on millet seeds with ambient air plasma discharge at pressures of 100 Pa and power ranging from 40 to 250 W. Results indicated that cold plasma treatment significantly increased radicle length by up to 112.5% (250 W) after 48 h and up to 57% (120 W) after 72 h compared to nontreated plants. The study also found that cold plasma treatment influenced electron transport during the primary phase of photosynthesis, with the effect varying with the power of discharge. However, high levels of discharge resulted in a significantly higher chlorophyll synthesis. These results suggest that cold plasma treatment may be used to reduce plant stress and improve growing properties.
Zobrazit více v PubMed
Apel K., Hirt H.: Reactive oxygen species: metabolism, oxidative stress, and signal transduction. – Annu. Rev. Plant Biol. 55: 373-399, 2004. 10.1146/ANNUREV.ARPLANT.55.031903.141701 PubMed DOI
Arpagaus C., Rossi A., von Rohr P.R.: Short-time plasma surface modification of HDPE powder in a Plasma Downer Reactor – process, wettability improvement and ageing effects. – Appl. Surf. Sci. 252: 1581-1595, 2005. 10.1016/j.apsusc.2005.02.099 DOI
Atkinson N.J., Urwin P.E.: The interaction of plant biotic and abiotic stresses: from genes to the field. – J. Exp. Bot. 63: 3523-3543, 2012. 10.1093/JXB/ERS100 PubMed DOI
Auer Malinská H., Vaněk M., Nebeská D. et al.: Plant priming changes physiological properties and lignin content in Miscanthus × giganteus. – Ind. Crop. Prod. 174: 114185, 2021. 10.1016/j.indcrop.2021.114185 DOI
Bafoil M., Le Ru A., Merbahi N. et al.: New insights of low-temperature plasma effects on germination of three genotypes of Arabidopsis thaliana seeds under osmotic and saline stresses. – Sci. Rep.-UK 9: 8649, 2019. 10.1038/s41598-019-44927-4 PubMed DOI PMC
Baker N.R.: Chlorophyll fluorescence: a probe of photosynthesis in vivo. – Annu. Rev. Plant Biol. 59: 89-113, 2008. 10.1146/ANNUREV.ARPLANT.59.032607.092759 PubMed DOI
Bès A., Koo M., Phan T.L. et al.: Oxygen plasma etching of hydrocarbon-like polymers: Part II experimental validation. –2 Plasma Process. Polym. 15: e1800037, 2018. 10.1002/PPAP.201800037 DOI
Bormashenko E., Grynyov R., Bormashenko Y., Drori E.: Cold radiofrequency plasma treatment modifies wettability and germination speed of plant seeds. – Sci. Rep.-UK 2: 741, 2012. 10.1038/srep00741 PubMed DOI PMC
Brestic M., Zivcak M.: PSII fluorescence techniques for measurement of drought and high temperature stress signal in crop plants: Protocols and applications. – In: Rout G., Das A. (ed.): Molecular Stress Physiology of Plants. Pp. 87-131. Springer, India: 2013. 10.1007/978-81-322-0807-5_4 DOI
Bussotti F., Gerosa G., Digrado A., Pollastrini M.: Selection of chlorophyll fluorescence parameters as indicators of photosynthetic efficiency in large scale plant ecological studies. – Ecol. Indic. 108: 105686, 2020. 10.1016/j.ecolind.2019.105686 DOI
Chen F.F.: Introduction to Plasma Physics and Controlled Fusion. Pp. 490. Springer, Cham: 2016. 10.1007/978-3-319-22309-4 DOI
Dasan B.G., Boyaci I.H., Mutlu M.: Inactivation of aflatoxigenic fungi (Aspergillus spp.) on granular food model, maize, in an atmospheric pressure fluidized bed plasma system. – Food Control 70: 1-8, 2016. 10.1016/J.FOODCONT.2016.05.015 PubMed DOI
Dhayal M., Lee S.-Y., Park S.-U.: Using low-pressure plasma for Carthamus tinctorium L. seed surface modification. – Vacuum 80: 499-506, 2006. 10.1016/J.VACUUM.2005.06.008 DOI
Dobrin D., Magureanu M., Mandache N.B., Ionita M.D.: The effect of non-thermal plasma treatment on wheat germination and early growth. – Innov. Food Sci. Emerg. Technol. 29: 255-260, 2015. 10.1016/J.IFSET.2015.02.006 DOI
Ehlbeck J., Schnabel U., Polak M. et al.: Low temperature atmospheric pressure plasma sources for microbial decontamination. – J. Phys. D. Appl. Phys. 44: 013002, 2011. 10.1088/0022-3727/44/1/013002 DOI
Fahad S., Bajwa A.A., Nazir U. et al.: Crop production under drought and heat stress: Plant responses and management options. – Front. Plant Sci. 8: 1147, 2017. 10.3389/fpls.2017.01147 PubMed DOI PMC
Ferrero F.: Wettability measurements on plasma treated synthetic fabrics by capillary rise method. – Polym. Test. 22: 571-578, 2003. 10.1016/S0142-9418(02)00153-8 DOI
Foyer C.H., Noctor G.: Ascorbate and glutathione: the heart of the redox hub. – Plant Physiol. 155: 2-18, 2011. 10.1104/PP.110.167569 PubMed DOI PMC
Fridovich I.: Oxygen toxicity: a radical explanation. – J. Exp. Biol. 201: 1203-1209, 1998. 10.1242/JEB.201.8.1203 PubMed DOI
Gierczik K., Vukušić T., Kovács L. et al.: Plasma-activated water to improve the stress tolerance of barley. – Plasma Process. Polym. 17: 1900123, 2020. 10.1002/PPAP.201900123 DOI
Godic A., Poljšak B., Adamic M., Dahmane R.: The role of antioxidants in skin cancer prevention and treatment. – Oxid. Med. Cell. Longev. 2014: 860479, 2014. 10.1155/2014/860479 PubMed DOI PMC
İlik E., Durmuş Ç., Akan T.: Investigation on optical properties of atmospheric pressure plasma jets of N2 gas. – Adyu J. Sci. 10: 326-338, 2020. 10.37094/adyujsci.701884 DOI
Jadoon S., Karim S., Asad M.H.H.B. et al.: Anti-aging potential of phytoextract loaded-pharmaceutical creams for human skin cell longetivity. – Oxid. Med. Cell. Longev. 2015: 709628, 2015. 10.1155/2015/709628 PubMed DOI PMC
Jiang J., Lu Y., Li J. et al.: Effect of seed treatment by cold plasma on the resistance of tomato to Ralstonia solanacearum (bacterial wilt). – PLoS ONE 9: e97753, 2014. 10.1371/JOURNAL.PONE.0097753 PubMed DOI PMC
Kabir A.H., Rahman M.M., Das U. et al.: Reduction of cadmium toxicity in wheat through plasma technology. – PLoS ONE 14: e0214509, 2019. 10.1371/JOURNAL.PONE.0214509 PubMed DOI PMC
Leti L.I., Gerber I.C., Mihaila I. et al.: The modulatory effects of non-thermal plasma on seed’s morphology, germination and genetics – a review. – Plants-Basel 11: 2181, 2022. 10.3390/PLANTS11162181 PubMed DOI PMC
Li L., Jiang J., Li J. et al.: Effects of cold plasma treatment on seed germination and seedling growth of soybean. – Sci. Rep.-UK 41: 5859, 2014. 10.1038/srep05859 PubMed DOI PMC
Lichtenthaler H.K.: Vegetation stress: an introduction to the stress concept in plants. – J. Plant Physiol. 148: 4-14, 1996. 10.1016/s0176-1617(96)80287-2 DOI
Lichtenthaler H.K., Burkart S.: Photosynthesis and high light stress. – Bulg. J. Plant Physiol. 25: 3-16, 1999. http://www.bio21.bas.bg/ipp/gapbfiles/v-25/99_3-4_03-16.pdf
Lin S.-P., Khumsupan D., Chou Y.-J. et al.: Applications of atmospheric cold plasma in agricultural, medical, and bioprocessing industries. – Appl. Microbiol. Biot. 106: 7737-7750, 2022. 10.1007/S00253-022-12252-Y PubMed DOI PMC
Malinská H., Pidlisnyuk V., Nebeská D. et al.: Physiological response of Miscanthus × giganteus to plant growth regulators in nutritionally poor soil. – Plants-Basel 9: 194, 2020. 10.3390/plants9020194 PubMed DOI PMC
Maxwell K., Johnson G.N.: Chlorophyll fluorescence – a practical guide. – J. Exp. Bot. 51: 659-668, 2000. 10.1093/jexbot/51.345.659 PubMed DOI
Mildažienė V., Aleknavičiūtė V., Žūkienė R. et al.: Treatment of common sunflower (Helianthus annus L.) seeds with radio-frequency electromagnetic field and cold plasma induces changes in seed phytohormone balance, seedling development and leaf protein expression. – Sci. Rep.-UK 9: 6437, 2019. 10.1038/s41598-019-42893-5 PubMed DOI PMC
Mildaziene V., Ivankov A., Sera B., Baniulis D.: Biochemical and physiological plant processes affected by seed treatment with non-thermal plasma. – Plants-Basel 11: 856, 2022. 10.3390/PLANTS11070856 PubMed DOI PMC
Miller G., Suzuki N., Ciftci-Yilmaz S., Mittler R.: Reactive oxygen species homeostasis and signalling during drought and salinity stresses. – Plant Cell Environ. 33: 453-467, 2010. 10.1111/J.1365-3040.2009.02041.X PubMed DOI
Mittler R.: Oxidative stress, antioxidants and stress tolerance. – Trends Plant Sci. 7: 405-410, 2002. 10.1016/S1360-1385(02)02312-9 PubMed DOI
Mittler R., Blumwald E.: Genetic engineering for modern agriculture: challenges and perspectives. – Annu. Rev. Plant Biol. 61: 443-462, 2010. 10.1146/ANNUREV-ARPLANT-042809-112116 PubMed DOI
Moustakas M., Sperdouli I., Kouna T. et al.: Exogenous proline induces soluble sugar accumulation and alleviates drought stress effects on photosystem II functioning of Arabidopsis thaliana leaves. – Plant Growth Regul. 65: 315-325, 2011. 10.1007/s10725-011-9604-z DOI
Murchie E.H., Lawson T.: Chlorophyll fluorescence analysis: a guide to good practice and understanding some new applications. – J. Exp. Bot. 64: 3983-3998, 2013. 10.1093/JXB/ERT208 PubMed DOI
Nakai K., Tsuruta D.: What are reactive oxygen species, free radicals, and oxidative stress in skin diseases? – Int. J. Mol. Sci. 22: 10799, 2021. 10.3390/IJMS221910799 PubMed DOI PMC
Pańka D., Jeske M., Łukanowski A. et al.: Can cold plasma be used for boosting plant growth and plant protection in sustainable plant production? – Agronomy 12: 841, 2022. 10.3390/agronomy12040841 DOI
Randeniya L.K., de Groot G.J.J.B.: Non-thermal plasma treatment of agricultural seeds for stimulation of germination, removal of surface contamination and other benefits: a review. – Plasma Process. Polym. 12: 608-623, 2015. 10.1002/PPAP.201500042 DOI
Ranieri P., Sponsel N., Kizer J. et al.: Plasma agriculture: Review from the perspective of the plant and its ecosystem. – Plasma Process. Polym. 18: 2000162, 2021. 10.1002/PPAP.202000162 DOI
Scholtz V., Šerá B., Khun J. et al.: Effects of nonthermal plasma on wheat grains and products. – J. Food Quality 2019: 7917825, 2019. 10.1155/2019/7917825 DOI
Šerá B., Gajdová I., Šerý M., Špatenka P.: New physicochemical treatment method of poppy seeds for agriculture and food industries. – Plasma Sci. Technol. 15: 935, 2013. 10.1088/1009-0630/15/9/19 DOI
Šerá B., Špatenka P., Šerý M. et al.: Influence of plasma treatment on wheat and oat germination and early growth. – IEEE Trans. Plasma Sci. 38: 2963-2968, 2010. 10.1109/TPS.2010.2060728 DOI
Shelar A., Nile S.H., Singh A.V. et al.: Recent advances in nano-enabled seed treatment strategies for sustainable agriculture: challenges, risk assessment, and future perspectives. – Nano-Micro Lett. 15: 54, 2023. 10.1007/S40820-023-01025-5 PubMed DOI PMC
Shelar A., Singh A.V., Dietrich P. et al.: Emerging cold plasma treatment and machine learning prospects for seed priming: a step towards sustainable food production. – RSC Adv. 12: 10467-10488, 2022. 10.1039/d2ra00809b PubMed DOI PMC
Shelar A., Singh A.V., Maharjan R.S. et al.: Sustainable agriculture through multidisciplinary seed nanopriming: prospects of opportunities and challenges. – Cells 10: 2428, 2021. 10.3390/CELLS10092428 PubMed DOI PMC
Shibusawa K., Funatsu M.: Radiative characteristics of N2 first positive band in visible and near-infrared regions for microwave-discharged nitrogen plasma. – T. Jpn. Soc. Aeronaut. S. 62: 86-92, 2019. 10.2322/TJSASS.62.86 DOI
Sidik M.A.B., Buntat Z., Nawawi Z. et al.: Effects of cold plasma treatment on the growth rate of corn and eggplant plants. – In: 2018 International Conference on Electrical Engineering and Computer Science (ICECOS), Pangkal, Indonesia. Pp. 441-446. IEEE, 2018. 10.1109/ICECOS.2018.8605250 DOI
Sivachandiran L., Khacef A.: Enhanced seed germination and plant growth by atmospheric pressure cold air plasma: combined effect of seed and water treatment. – RSC Adv. 7: 1822-1832, 2017. 10.1039/C6RA24762H DOI
Stirbet A., Govindjee: Chlorophyll a fluorescence induction: a personal perspective of the thermal phase, the J–I–P rise. – Photosynth. Res. 113: 15-61, 2012. 10.1007/s11120-012-9754-5 PubMed DOI
Stirbet A., Govindjee, Strasser B.J., Strasser R.J.: Chlorophyll a fluorescence induction in higher plants: modelling and numerical simulation. – J. Theor. Biol. 193: 131-151, 1998. 10.1006/jtbi.1998.0692 DOI
Strasser R.J., Srivastava A., Govindjee: Polyphasic chlorophyll a fluorescence transient in plants and cyanobacteria. – Photochem. Photobiol. 61: 32-42, 1995. 10.1111/j.1751-1097.1995.tb09240.x DOI
Strasser R.J., Tsimilli-Michael M., Srivastava A.: Analysis of the chlorophyll a fluorescence transient. – In: Papageorgiou G.C., Govindjee (ed.): Chlorophyll a Fluorescence: A Signature of Photosynthesis. Advances in Photosynthesis and Respiration. Pp. 321-362. Springer, Dordrecht: 2004. 10.1007/978-1-4020-3218-9_12 DOI
Švubová R., Kyzek S., Medvecká V. et al.: Novel insight at the effect of cold atmospheric pressure plasma on the activity of enzymes essential for the germination of pea (Pisum sativum L. cv. Prophet) seeds. – Plasma Chem. Plasma Process. 40: 1221-1240, 2020. 10.1007/s11090-020-10089-9 DOI
Švubová R., Slováková L., Holubová L. et al.: Evaluation of the impact of cold atmospheric pressure plasma on soybean seed germination. – Plants-Basel 10: 177, 2021. 10.3390/PLANTS10010177 PubMed DOI PMC
Takahashi S., Badger M.R.: Photoprotection in plants: a new light on photosystem II damage. – Trends Plant Sci. 16: 53-60, 2011. 10.1016/J.TPLANTS.2010.10.001 PubMed DOI
Takahashi S., Murata N.: How do environmental stresses accelerate photoinhibition? – Trends Plant Sci. 13: 178-182, 2008. 10.1016/J.TPLANTS.2008.01.005 PubMed DOI
Turner M.: Physics of cold plasma. – In: Misra N.N., Schlüter O.K., Cullen P.J. (ed.): Cold Plasma in Food and Agriculture: Fundamentals and Applications. Pp. 17-51. Academic Press, London: 2016. 10.1016/B978-0-12-801365-6.00002-0 DOI
Volin J.C., Denes F.S., Young R.A., Park S.M.T.: Modification of seed germination performance through cold plasma chemistry technology. – Crop Sci. 40: 1706-1718, 2000. 10.2135/CROPSCI2000.4061706X DOI
Whitehead J.C.: The chemistry of cold plasma. – In: Misra N.N., Schlüter O.K., Cullen P.J.: Cold Plasma in Food and Agriculture: Fundamentals and Applications. Pp. 53-81. Academic Press, London: 2016. 10.1016/B978-0-12-801365-6.00003-2 DOI
Zahoranová A., Hoppanová L., Šimončicová J. et al.: Effect of cold atmospheric pressure plasma on maize seeds: enhancement of seedlings growth and surface microorganisms inactivation. – Plasma Chem. Plasma Process. 38: 969-988, 2018. 10.1007/S11090-018-9913-3 DOI
Zarco-Tejada P.J., González-Dugo V., Berni J.A.J.: Fluorescence, temperature and narrow-band indices acquired from a UAV platform for water stress detection using a micro-hyperspectral imager and a thermal camera. – Remote Sens. Environ. 117: 322-337, 2012. 10.1016/J.RSE.2011.10.007 DOI
Zhang R., Sharkey T.D.: Photosynthetic electron transport and proton flux under moderate heat stress. – Photosynth. Res. 100: 29-43, 2009. 10.1007/S11120-009-9420-8 PubMed DOI
Zukiene R., Nauciene Z., Januskaitiene I. et al.: Dielectric barrier discharge plasma treatment-induced changes in sunflower seed germination, phytohormone balance, and seedling growth. – Appl. Phys. Express 12: 126003, 2019. 10.7567/1882-0786/ab5491 DOI
Živčák M., Brestič M., Olšovská K., Slamka P.: Performance index as a sensitive indicator of water stress in Triticum aestivum L. – Plant Soil Environ. 54: 133-139, 2008. 10.17221/392-pse DOI