Developmental and sexual divergence in the olfactory system of the marine insect Clunio marinus
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32034235
PubMed Central
PMC7005812
DOI
10.1038/s41598-020-59063-7
PII: 10.1038/s41598-020-59063-7
Knihovny.cz E-zdroje
- MeSH
- biologická adaptace fyziologie MeSH
- bulbus olfactorius metabolismus fyziologie MeSH
- Chironomidae metabolismus fyziologie MeSH
- čich fyziologie MeSH
- čichové buňky metabolismus MeSH
- hmyz metabolismus fyziologie MeSH
- hmyzí proteiny metabolismus MeSH
- kladení vajíček fyziologie MeSH
- kukla metabolismus fyziologie MeSH
- larva metabolismus MeSH
- pohlavní dimorfismus * MeSH
- receptory pachové metabolismus MeSH
- sensilla metabolismus fyziologie MeSH
- vodní organismy metabolismus fyziologie MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- hmyzí proteiny MeSH
- odorant-binding protein MeSH Prohlížeč
- receptory pachové MeSH
An animal's fitness strongly depends on successful feeding, avoidance of predators and reproduction. All of these behaviours commonly involve chemosensation. As a consequence, when species' ecological niches and life histories differ, their chemosensory abilities need to be adapted accordingly. The intertidal insect Clunio marinus (Diptera: Chironomidae) has tuned its olfactory system to two highly divergent niches. The long-lived larvae forage in a marine environment. During the few hours of terrestrial adult life, males have to find the female pupae floating on the water surface, free the cryptic females from their pupal skin, copulate and carry the females to the oviposition sites. In order to explore the possibility for divergent olfactory adaptations within the same species, we investigated the chemosensory system of C. marinus larvae, adult males and adult females at the morphological and molecular level. The larvae have a well-developed olfactory system, but olfactory gene expression only partially overlaps with that of adults, likely reflecting their marine vs. terrestrial lifestyles. The olfactory system of the short-lived adults is simple, displaying no glomeruli in the antennal lobes. There is strong sexual dimorphism, the female olfactory system being particularly reduced in terms of number of antennal annuli and sensilla, olfactory brain centre size and gene expression. We found hints for a pheromone detection system in males, including large trichoid sensilla and expression of specific olfactory receptors and odorant binding proteins. Taken together, this makes C. marinus an excellent model to study within-species evolution and adaptation of chemosensory systems.
Zobrazit více v PubMed
Hansson BS, Anton S. Function and Morphology of the Antennal Lobe: New Developments. Annual Review of Entomology. 2000;45:203–231. doi: 10.1146/annurev.ento.45.1.203. PubMed DOI
Neumann D. Die lunare und tägliche Schlüpfperiodik der Mücke Clunio - Steuerung und Abstimmung auf die Gezeitenperiodik. Zeitschrift für Vergleichende. Physiologie. 1966;53:1–61.
Kaiser, T. S. In Annual, Lunar, and Tidal Clocks (eds Hideharu Numata & Barbara Helm) Ch. 7, 121–141 (Springer Japan, 2014).
Caspers H. Rhythmische Erscheinungen in der Fortpflanzung von Clunio marinus (Dipt. Chiron.) und das Problem der lunaren Periodizitaet bei Organismen. Archiv für Hydrobiologie. 1951;Supplement 18:415–594.
Neumann, D. In Annual, Lunar, and Tidal Clocks (eds Hideharu Numata & Barbara Helm) Ch. 1, 3–24 (Springer Japan, 2014).
Kaiser TS, et al. The genomic basis of circadian and circalunar timing adaptations in a midge. Nature. 2016;540:69–73. doi: 10.1038/nature20151. PubMed DOI PMC
Hashimoto H. Peculiar mode of emergence in the marine Chironomid Clunio (Diptera, Chironomidae) Science reports of the Tokyo Kyoiku Daigaku (B) 1957;8:217–226.
Dordel HJ. The Process of Copulation in Marine Chironomid Clunio marinus (Diptera) Canadian Entomologist. 1971;103:404–406. doi: 10.4039/Ent103404-3. DOI
Mciver SB. Sensilla of Mosquitos (Diptera, Culicidae) Journal of Medical Entomology. 1982;19:489–535. doi: 10.1093/jmedent/19.5.489. PubMed DOI
Venkatesh S, Singh RN. Sensilla on the 3rd Antennal Segment of Drosophila melanogaster Meigen (Diptera, Drosophilidae) Int. J. Insect. Morphol. 1984;13:51–63. doi: 10.1016/0020-7322(84)90032-1. DOI
Fernandes FF, Pimenta PFP, Linardi PM. Antennal sensilla of the new world screwworm fly, Cochliomyia hominivorax (Diptera: Calliphoridae) Journal of Medical Entomology. 2004;41:545–551. doi: 10.1603/0022-2585-41.4.545. PubMed DOI
Isaac C, Ravaiano SV, Pascini TV, Martins GF. The Antennal Sensilla of Species of the Palpalis Group (Diptera: Glossinidae) Journal of Medical Entomology. 2015;52:614–621. doi: 10.1093/jme/tjv050. PubMed DOI
Sengupta, S. & Smith, D. P. How Drosophila Detect Volatile Pheromones. (2014). PubMed
Saether OA. Glossary of chironomid morphology terminology (Diptera: Chironomidae) Entomol. Scand. 1980;14:1–51.
Nolte Andreas, Gawalek Petra, Koerte Sarah, Wei HongYing, Schumann Robin, Werckenthin Achim, Krieger Jürgen, Stengl Monika. No Evidence for Ionotropic Pheromone Transduction in the Hawkmoth Manduca sexta. PLOS ONE. 2016;11(11):e0166060. doi: 10.1371/journal.pone.0166060. PubMed DOI PMC
Wicher D, et al. Drosophila odorant receptors are both ligand-gated and cyclic-nucleotide-activated cation channels. Nature. 2008;452:1007–U1010. doi: 10.1038/nature06861. PubMed DOI
Sato K, et al. Insect olfactory receptors are heteromeric ligand-gated ion channels. Nature. 2008;452:1002–U1009. doi: 10.1038/nature06850. PubMed DOI
Krieger J, Klink O, Mohl C, Raming K, Breer H. A candidate olfactory receptor subtype highly conserved across different insect orders. Journal of Comparative Physiology A. 2003;189:519–526. doi: 10.1007/s00359-003-0427-x. PubMed DOI
Couto A, Alenius M, Dickson BJ. Molecular, anatomical, and functional organization of the Drosophila olfactory system. Current Biology. 2005;15:1535–1547. doi: 10.1016/j.cub.2005.07.034. PubMed DOI
Hansson BS, Stensmyr MC. Evolution of Insect Olfaction. Neuron. 2011;72:698–711. doi: 10.1016/j.neuron.2011.11.003. PubMed DOI
Klagges BR, et al. Invertebrate synapsins: a single gene codes for several isoforms in Drosophila. Journal of Neuroscience. 1996;16:3154–3165. doi: 10.1523/JNEUROSCI.16-10-03154.1996. PubMed DOI PMC
Benton R, Sachse S, Michnick SW, Vosshall LB. Atypical membrane topology and heteromeric function of Drosophila odorant receptors in vivo. Plos Biology. 2006;4:240–257. doi: 10.1371/journal.pbio.0040020. PubMed DOI PMC
Butterwick Joel A., del Mármol Josefina, Kim Kelly H., Kahlson Martha A., Rogow Jackson A., Walz Thomas, Ruta Vanessa. Cryo-EM structure of the insect olfactory receptor Orco. Nature. 2018;560(7719):447–452. doi: 10.1038/s41586-018-0420-8. PubMed DOI PMC
Vosshall LB, Hansson BS. A Unified Nomenclature System for the Insect Olfactory Coreceptor. Chemical Senses. 2011;36:497–498. doi: 10.1093/chemse/bjr022. PubMed DOI
Stensmyr MC, et al. A conserved dedicated olfactory circuit for detecting harmful microbes in Drosophila. Cell. 2012;151:1345–1357. doi: 10.1016/j.cell.2012.09.046. PubMed DOI
Jones WD, Cayirlioglu P, Kadow IG, Vosshall LB. Two chemosensory receptors together mediate carbon dioxide detection in Drosophila. Nature. 2007;445:86–90. doi: 10.1038/nature05466. PubMed DOI
Kwon JY, Dahanukar A, Weiss LA, Carlson JR. The molecular basis of CO2 reception in Drosophila. Proceedings of the National Academy of Sciences of the United States of America. 2007;104:3574–3578. doi: 10.1073/pnas.0700079104. PubMed DOI PMC
Weiss LA, Dahanukar A, Kwon JY, Banerjee D, Carlson JR. The Molecular and Cellular Basis of Bitter Taste in Drosophila. Neuron. 2011;69:258–272. doi: 10.1016/j.neuron.2011.01.001. PubMed DOI PMC
Freeman EG, Wisotsky Z, Dahanukar A. Detection of sweet tastants by a conserved group of insect gustatory receptors. Proceedings of the National Academy of Sciences of the United States of America. 2014;111:1598–1603. doi: 10.1073/pnas.1311724111. PubMed DOI PMC
Eirín-López, J., Rebordinos, L., Rooney, A. & Rozas, J. In Repetitive DNA Vol. 7, 170–196 (Karger Publishers, 2012).
Benton R, Vannice KS, Gomez-Diaz C, Vosshall LB. Variant ionotropic glutamate receptors as chemosensory receptors in Drosophila. Cell. 2009;136:149–162. doi: 10.1016/j.cell.2008.12.001. PubMed DOI PMC
Koh T-W, et al. The Drosophila IR20a clade of ionotropic receptors are candidate taste and pheromone receptors. Neuron. 2014;83:850–865. doi: 10.1016/j.neuron.2014.07.012. PubMed DOI PMC
Croset V, et al. Ancient protostome origin of chemosensory ionotropic glutamate receptors and the evolution of insect taste and olfaction. PLoS Genetics. 2010;6:e1001064. doi: 10.1371/journal.pgen.1001064. PubMed DOI PMC
Stewart, S., Koh, T.-W., Ghosh, A. C. & Carlson, J. R. Candidate ionotropic taste receptors in the Drosophila larva. Proceedings of the National Academy of Sciences, 201503292 (2015). PubMed PMC
Zhang YV, Ni J, Montell C. The molecular basis for attractive salt-taste coding in Drosophila. Science. 2013;340:1334–1338. doi: 10.1126/science.1234133. PubMed DOI PMC
Ni L, et al. The ionotropic receptors IR21a and IR25a mediate cool sensing in Drosophila. Elife. 2016;5:e13254. doi: 10.7554/eLife.13254. PubMed DOI PMC
Knecht ZA, et al. Distinct combinations of variant ionotropic glutamate receptors mediate thermosensation and hygrosensation in Drosophila. eLIFE. 2016;5:e17879. doi: 10.7554/eLife.17879. PubMed DOI PMC
Silbering AF, et al. Complementary function and integrated wiring of the evolutionarily distinct Drosophila olfactory subsystems. Journal of Neuroscience. 2011;31:13357–13375. doi: 10.1523/JNEUROSCI.2360-11.2011. PubMed DOI PMC
Hansell, D. A. & Carlson, C. A. Biogeochemistry of marine dissolved organic matter. (Academic Press, 2014).
Rytz R, Croset V, Benton R. Ionotropic receptors (IRs): chemosensory ionotropic glutamate receptors in Drosophila and beyond. Insect Biochemistry and Molecular Biology. 2013;43:888–897. doi: 10.1016/j.ibmb.2013.02.007. PubMed DOI
Abuin L, et al. Functional architecture of olfactory ionotropic glutamate receptors. Neuron. 2011;69:44–60. doi: 10.1016/j.neuron.2010.11.042. PubMed DOI PMC
Pelosi P, Calvello M, Ban LP. Diversity of odorant-binding proteins and chemosensory proteins in insects. Chemical Senses. 2005;30:I291–i292. doi: 10.1093/chemse/bjh229. PubMed DOI
Angeli S, et al. Purification, structural characterization, cloning and immunocytochemical localization of chemoreception proteins from Schistocerca gregaria. European Journal of Biochemistry. 1999;262:745–754. doi: 10.1046/j.1432-1327.1999.00438.x. PubMed DOI
Galindo K, Smith DP. A large family of divergent Drosophila odorant-binding proteins expressed in gustatory and olfactory sensilla. Genetics. 2001;159:1059–1072. PubMed PMC
Celorio-Mancera MD, et al. Chemosensory proteins, major salivary factors in caterpillar mandibular glands. Insect Biochemistry and Molecular Biology. 2012;42:796–805. doi: 10.1016/j.ibmb.2012.07.008. PubMed DOI
Furusawa T, et al. Systematic investigation of the hemolymph proteome of Manduca sexta at the fifth instar larvae stage using one- and two-dimensional proteomics platforms. J Proteome Res. 2008;7:938–959. doi: 10.1021/pr070405j. PubMed DOI
Iovinella I, et al. Differential Expression of Odorant-Binding Proteins in the Mandibular Glands of the Honey Bee According to Caste and Age. J Proteome Res. 2011;10:3439–3449. doi: 10.1021/pr2000754. PubMed DOI
Pelosi P, Zhou JJ, Ban LP, Calvello M. Soluble proteins in insect chemical communication. Cellular and Molecular Life Sciences. 2006;63:1658–1676. doi: 10.1007/s00018-005-5607-0. PubMed DOI PMC
Vieira FG, Rozas J. Comparative Genomics of the Odorant-Binding and Chemosensory Protein Gene Families across the Arthropoda: Origin and Evolutionary History of the Chemosensory System. Genome Biology and Evolution. 2011;3:476–490. doi: 10.1093/Gbe/Evr033. PubMed DOI PMC
McKenzie Sean K, Oxley Peter R, Kronauer Daniel JC. Comparative genomics and transcriptomics in ants provide new insights into the evolution and function of odorant binding and chemosensory proteins. BMC Genomics. 2014;15(1):718. doi: 10.1186/1471-2164-15-718. PubMed DOI PMC
Zhou JJ, et al. Genome annotation and comparative analyses of the odorant-binding proteins and chemosensory proteins in the pea aphid Acyrthosiphon pisum. Insect Molecular Biology. 2010;19:113–122. doi: 10.1111/j.1365-2583.2009.00919.x. PubMed DOI
Smith DP. Volatile pheromone signalling in Drosophila. Physiological Entomology. 2012;37:19–24. doi: 10.1111/j.1365-3032.2011.00813.x. PubMed DOI PMC
Pelletier J, Leal WS. Characterization of olfactory genes in the antennae of the Southern house mosquito, Culex quinquefasciatus. Journal of Insect Physiology. 2011;57:915–929. doi: 10.1016/j.jinsphys.2011.04.003. PubMed DOI
Liu R, et al. Expression of chemosensory proteins in the tsetse fly Glossina morsitans morsitans is related to female host-seeking behaviour. Insect Molecular Biology. 2012;21:41–48. doi: 10.1111/j.1365-2583.2011.01114.x. PubMed DOI PMC
Sclafani A, Ackroff K, Abumrad NA. CD36 gene deletion reduces fat preference and intake but not post-oral fat conditioning in mice. Am J Physiol-Reg I. 2007;293:R1823–R1832. doi: 10.1152/ajpregu.00211.2007. PubMed DOI
Silverstein, R. L. & Febbraio, M. CD36, a Scavenger Receptor Involved in Immunity, Metabolism, Angiogenesis, and Behavior. Science Signaling2, doi:ARTN re3 10.1126/scisignal.272re3 (2009). PubMed PMC
Benton R, Vannice KS, Vosshall LB. An essential role for a CD36-related receptor in pheromone detection in Drosophila. Nature. 2007;450:289–U213. doi: 10.1038/nature06328. PubMed DOI
Jin X, Ha TS, Smith DP. SNMP is a signaling component required for pheromone sensitivity in Drosophila. Proceedings of the National Academy of Sciences of the United States of America. 2008;105:10996–11001. doi: 10.1073/pnas.0803309105. PubMed DOI PMC
Vogt, R. G. In Insect Pheromone Biochemistry and Molecular Biology 391–445 (Elsevier, 2003).
Hashimoto, H. In Marine Insects (ed L. Cheng) 377–414 (North-Holland, 1976).
Sparks JT, Bohbot JD, Dickens JC. The genetics of chemoreception in the labella and tarsi of Aedes aegypti. Insect Biochemistry and Molecular Biology. 2014;48:8–16. doi: 10.1016/j.ibmb.2014.02.004. PubMed DOI
Xia Y, et al. The molecular and cellular basis of olfactory-driven behavior in Anopheles gambiae larvae. Proceedings of the National Academy of Sciences. 2008;105:6433–6438. doi: 10.1073/pnas.0801007105. PubMed DOI PMC
Singh, Y. N. & Singh, M. Metamorphic Changes in the Brain of Chironomus dolichotomus (Diptera, Chironomidae). J Hirnforsch21, 561–568 (1980). PubMed
Mysore K, Flannery EM, Tomchaney M, Severson DW, Duman-Scheel M. Disruption of Aedes aegypti olfactory system development through chitosan/siRNA nanoparticle targeting of semaphorin-1a. Plos Neglect Trop D. 2013;7:e2215. doi: 10.1371/journal.pntd.0002215. PubMed DOI PMC
Corkum LD, Belanger RM. Use of chemical communication in the management of freshwater aquatic species that are vectors of human diseases or are invasive. General and Comparative Endocrinology. 2007;153:401–417. doi: 10.1016/j.ygcen.2007.01.037. PubMed DOI
Schachtner J, Schmidt M, Homberg U. Organization and evolutionary trends of primary olfactory brain centers in Tetraconata (Crustacea + Hexapoda). Arthropod Structure &. Development. 2005;34:257–299.
Strausfeld NJ, Sinakevitch I, Brown SM, Farris SM. Ground Plan of the Insect Mushroom Body: Functional and Evolutionary Implications. Journal of Comparative Neurology. 2009;513:265–291. doi: 10.1002/cne.21948. PubMed DOI PMC
Klinner, C. F. et al. Functional Olfactory Sensory Neurons Housed in Olfactory Sensilla on the Ovipositor of the Hawkmoth Manduca sexta. Front Ecol Evol4, doi:ARTN 13010.3389/fevo.2016.00130 (2016).
Katoh K, Kuma K, Toh H, Miyata T. MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Research. 2005;33:511–518. doi: 10.1093/nar/gki198. PubMed DOI PMC
Katoh K, Standley DM. MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Molecular Biology and Evolution. 2013;30:772–780. doi: 10.1093/molbev/mst010. PubMed DOI PMC
Price MN, Dehal PS, Arkin AP. FastTree: Computing Large Minimum Evolution Trees with Profiles instead of a Distance Matrix. Molecular Biology and Evolution. 2009;26:1641–1650. doi: 10.1093/molbev/msp077. PubMed DOI PMC
Liu Kevin, Linder C. Randal, Warnow Tandy. RAxML and FastTree: Comparing Two Methods for Large-Scale Maximum Likelihood Phylogeny Estimation. PLoS ONE. 2011;6(11):e27731. doi: 10.1371/journal.pone.0027731. PubMed DOI PMC
Vogel H, Badapanda C, Knorr E, Vilcinskas A. RNA-sequencing analysis reveals abundant developmental stage-specific and immunity-related genes in the pollen beetle Meligethes aeneus. Insect Molecular Biology. 2014;23:98–112. doi: 10.1111/imb.12067. PubMed DOI
Gotz S, et al. High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Research. 2008;36:3420–3435. doi: 10.1093/nar/gkn176. PubMed DOI PMC
Jacobs, C. G. C. et al. Sex, offspring and carcass determine antimicrobial peptide expression in the burying beetle. Scientific Reports6, 25409, 10.1038/srep25409, https://www.nature.com/articles/srep25409#supplementary-information (2016). PubMed PMC