Atmospheric Pressure Microwave Plasma Jet for Organic Thin Film Deposition
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
01N00516
Universiteit Gent
PubMed
32041244
PubMed Central
PMC7077475
DOI
10.3390/polym12020354
PII: polym12020354
Knihovny.cz E-zdroje
- Klíčová slova
- Comsol MultiPhysics, atmospheric pressure plasma jet (APPJ), methyl methacrylate (MMA), microwave (MW) discharge, optical emission spectroscopy (OES), styrene, thin film deposition,
- Publikační typ
- časopisecké články MeSH
In this work, the potential of a microwave (MW)-induced atmospheric pressure plasma jet (APPJ) in film deposition of styrene and methyl methacrylate (MMA) precursors is investigated. Plasma properties during the deposition and resultant coating characteristics are studied. Optical emission spectroscopy (OES) results indicate a higher degree of monomer dissociation in the APPJ with increasing power and a carrier gas flow rate of up to 250 standard cubic centimeters per minute (sccm). Computational fluid dynamic (CFD) simulations demonstrate non-uniform monomer distribution near the substrate and the dependency of the deposition area on the monomer-containing gas flow rate. A non-homogeneous surface morphology and topography of the deposited coatings is also observed using atomic force microscopy (AFM) and SEM. Coating chemical analysis and wettability are studied by XPS and water contact angle (WCA), respectively. A lower monomer flow rate was found to result in a higher C-O/C-C ratio and a higher wettability of the deposited coatings.
Zobrazit více v PubMed
Desmet T., Morent R., De Geyter N., Leys C., Schacht E., Dubruel P. Nonthermal plasma technology as a versatile strategy for polymeric biomaterials surface modification: A review. Biomacromolecules. 2009;10:2351–2378. doi: 10.1021/bm900186s. PubMed DOI
Liston E., Martinu L., Wertheimer M. Plasma surface modification of polymers for improved adhesion: A critical review. J. Adhes. Sci. Technol. 1993;7:1091–1127. doi: 10.1163/156856193X00600. DOI
Fanelli F., Fracassi F. Atmospheric pressure non-equilibrium plasma jet technology: General features, specificities and applications in surface processing of materials. Surf. Coat. Technol. 2017;322:174–201. doi: 10.1016/j.surfcoat.2017.05.027. DOI
Paunovic M., Schlesinger M. Fundamentals of Electrochemical Eeposition. John Wiley & Sons; New York, NY, USA: 1998.
Sherman A. Chemical Vapor Deposition for Microelectronics: Principles, Technology, and Applications. Elsevier Science; Park Ridge, NJ, USA: 1987.
Smith D.L. Thin-Film Deposition: Principles and Practice. McGraw Hill Professional; New York, NY, USA: 1995.
Kumar V., Kim J.H., Pendyala C., Chernomordik B., Sunkara M.K. Gas-phase, bulk production of metal oxide nanowires and nanoparticles using a microwave plasma jet reactor. J. Phys. Chem. C. 2008;112:17750–17754. doi: 10.1021/jp8078315. DOI
Li S.-Z., Hong Y.C., Uhm H.S., Li Z.-K. Synthesis of nanocrystalline iron oxide particles by microwave plasma jet at atmospheric pressure. Jpn. J. Appl. Phys. 2004;43:7714. doi: 10.1143/JJAP.43.7714. DOI
Van Vrekhem S., Morent R., De Geyter N. Deposition of a PMMA coating with an atmospheric pressure plasma jet. J. Coat. Technol. Res. 2018;15:679–690. doi: 10.1007/s11998-018-0049-4. DOI
Sankaran R.M., Giapis K.P. Hollow cathode sustained plasma microjets: Characterization and application to diamond deposition. J. Appl. Phys. 2002;92:2406–2411. doi: 10.1063/1.1497719. DOI
Schäfer J., Foest R., Quade A., Ohl A., Weltmann K. Local deposition of SiOx plasma polymer films by a miniaturized atmospheric pressure plasma jet (APPJ) J. Phys. D Appl. Phys. 2008;41:194010. doi: 10.1088/0022-3727/41/19/194010. DOI
Carton O., Ben Salem D., Bhatt S., Pulpytel J., Arefi-Khonsari F. Plasma polymerization of acrylic acid by atmospheric pressure nitrogen plasma jet for biomedical applications. Plasma Process. Polym. 2012;9:984–993. doi: 10.1002/ppap.201200044. DOI
Donegan M., Dowling D.P. Protein adhesion on water stable atmospheric plasma deposited acrylic acid coatings. Surf. Coat. Technol. 2013;234:53–59. doi: 10.1016/j.surfcoat.2013.03.002. DOI
Ben Salem D., Carton O., Fakhouri H., Pulpytel J., Arefi-Khonsari F. Deposition of water stable plasma polymerized acrylic acid/MBA organic coatings by atmospheric pressure air plasma jet. Plasma Process. Polym. 2014;11:269–278. doi: 10.1002/ppap.201300064. DOI
Farhat S., Gilliam M., Rabago-Smith M., Baran C., Walter N., Zand A. Polymer coatings for biomedical applications using atmospheric pressure plasma. Surf. Coat. Technol. 2014;241:123–129. doi: 10.1016/j.surfcoat.2013.10.077. DOI
Horvath G., Moravsky L., Krcma F., Matejcik Š. Characterization of a low-cost kilohertz-driven plasma pen operated in Ar gas. IEEE IEEE Trans. Plasma Sci. 2013;41:613–619. doi: 10.1109/TPS.2012.2234140. DOI
Guaitella O., Sobota A. The impingement of a kHz helium atmospheric pressure plasma jet on a dielectric surface. J. Phys. D Appl. Phys. 2015;48:255202. doi: 10.1088/0022-3727/48/25/255202. DOI
Chen X. Modelling of a radio-frequency plasma torch including a self-consistent electromagnetic field formulation. J. Phys. D Appl. Phys. 1989;22:361. doi: 10.1088/0022-3727/22/2/021. DOI
van der Mullen J., Jonkers J. Fundamental comparison between non-equilibrium aspects of ICP and MIP discharges. Spectrochim. Acta Part B. 1999;54:1017–1044. doi: 10.1016/S0584-8547(99)00042-7. DOI
Krčma F., Tsonev I., Smejkalová K., Truchlá D., Kozáková Z., Zhekova M., Marinova P., Bogdanov T., Benova E. Microwave micro torch generated in argon based mixtures for biomedical applications. J. Phys. D Appl. Phys. 2018;51:414001. doi: 10.1088/1361-6463/aad82b. DOI
Wang C., Srivastava N. OH number densities and plasma jet behavior in atmospheric microwave plasma jets operating with different plasma gases (Ar, Ar/N2, and Ar/O2) Eur. Phys. J. D. 2010;60:465–477. doi: 10.1140/epjd/e2010-00275-4. DOI
Tsonev I., Atanasov N., Atanasova G., Krčma F., Bogdanov T. Atmospheric Pressure Microwave Plasma Torch for Biomedical Applications. Plasma Med. 2018;8 doi: 10.1615/PlasmaMed.2019028816. DOI
Schäfer J., Hnilica J., Šperka J., Quade A., Kudrle V., Foest R., Vodák J., Zajίčková L. Tetrakis (trimethylsilyloxy) silane for nanostructured SiO2-like films deposited by PECVD at atmospheric pressure. Surf. Coat. Technol. 2016;295:112–118. doi: 10.1016/j.surfcoat.2015.09.047. DOI
Ting J.A.S., Rosario L.M.D., Lee H.V., Jr., Ramos H.J., Tumlos R.B. Hydrophobic coating on glass surfaces via application of silicone oil and activated using a microwave atmospheric plasma jet. Surf. Coat. Technol. 2014;259:7–11. doi: 10.1016/j.surfcoat.2014.08.008. DOI
Choudhury A., Kakati H., Pal A., Patil D., Chutia J. Synthesis and characterization of plasma polymerized styrene films by rf discharge. Proc. J. Phys. Conf. Ser. 2010;208:012104. doi: 10.1088/1742-6596/208/1/012104. DOI
Kinzig B., Smardzewski R. Plasma-polymerized thin coatings from methyl-methacrylate, styrene and tetrafluoroethylene. Surf. Technol. 1981;14:3–16. doi: 10.1016/0376-4583(81)90003-0. DOI
Geckeler K., Gebhardt R., Grünwald H. Surface modification of polyethylene by plasma grafting with styrene for enhanced biocompatibility. Naturwissenschaften. 1997;84:150–151. doi: 10.1007/s001140050367. PubMed DOI
Morita S., Tamano J., Hattori S., Ieda M. Plasma polymerized methyl-methacrylate as an electron-beam resist. J. Appl. Phys. 1980;51:3938–3941. doi: 10.1063/1.328170. DOI
Bogdanov T., Tsonev I., Marinova P., Benova E., Rusanov K., Rusanova M., Atanassov I., Kozáková Z., Krčma F. Microwave plasma torch generated in argon for small berries surface treatment. Appl. Sci. 2018;8:1870. doi: 10.3390/app8101870. DOI
Chen W.-K., Huang J.-C., Chen Y.-C., Lee M.-T., Juang J.-Y. Deposition of highly transparent and conductive Ga-doped zinc oxide films on tilted substrates by atmospheric pressure plasma jet. J. Alloys Compd. 2019;802:458–466. doi: 10.1016/j.jallcom.2019.06.213. DOI
Belmonte T., Henrion G., Gries T. Nonequilibrium atmospheric plasma deposition. J. Therm. Spray Technol. 2011;20:744. doi: 10.1007/s11666-011-9642-0. DOI
Obrusník A., Jelínek P., Zajíčková L. Modelling of the gas flow and plasma co-polymerization of two monomers in an atmospheric-pressure dielectric barrier discharge. Surf. Coat. Technol. 2017;314:139–147. doi: 10.1016/j.surfcoat.2016.10.068. DOI
Yusoff H.M., Abrahamson J., Shastry R. Influence of anode surface temperature in a continuously-fed arc discharge depositing carbon nanotubes; Proceedings of the 2006 International Conference on Nanoscience and Nanotechnology; Brisbane, Australia. 3–7 July 2006.
Juang J.-Y., Lin H.-T., Liang C.-T., Li P.-R., Chen W.-K., Chen Y.-Y., Pan K.-L. Effect of ambient air flow on resistivity uniformity of transparent Ga-doped ZnO film deposited by atmospheric pressure plasma jet. J. Alloys Compd. 2018;766:868–875. doi: 10.1016/j.jallcom.2018.07.030. DOI
Onyshchenko I., De Geyter N., Morent R. Improvement of the plasma treatment effect on PET with a newly designed atmospheric pressure plasma jet. Plasma Process. Polym. 2017;14:1600200. doi: 10.1002/ppap.201600200. DOI
COMSOL Multiphysics Reference Guide. COMSOL AB; Stockholm, Sweden: 2011.
Kramida A., Ralchenko Y., Reader J. Team 2018 NIST Atomic Spectra Database (ver. 5.5. 3) National Institute of Standards and Technology; Gaithersburg, MD, USA: 2018.
Gilmore F.R., Laher R.R., Espy P.J. Franck–Condon factors, r-centroids, electronic transition moments, and Einstein coefficients for many nitrogen and oxygen band systems. J. Phys. Chem. Ref. Data. 1992;21:1005–1107. doi: 10.1063/1.555910. DOI
Cools P., Sainz-García E., Geyter N.D., Nikiforov A., Blajan M., Shimizu K., Alba-Elías F., Leys C., Morent R. Influence of DBD Inlet Geometry on the Homogeneity of Plasma-Polymerized Acrylic Acid Films: The Use of a Microplasma–Electrode Inlet Configuration. Plasma Process. Polym. 2015;12:1153–1163. doi: 10.1002/ppap.201500007. DOI
Yasuda H. Glow discharge polymerization. J. Polym. Sci. Macromol. Rev. 1981;16:199–293. doi: 10.1002/pol.1981.230160104. DOI
Thompson L., Mayhan K. The plasma polymerization of vinyl monomers. II. A detailed study of the plasma polymerization of styrene. J. Appl. Polym. Sci. 1972;16:2317–2341. doi: 10.1002/app.1972.070160912. DOI
Mackie N.M., Castner D.G., Fisher E.R. Characterization of pulsed-plasma-polymerized aromatic films. Langmuir. 1998;14:1227–1235. doi: 10.1021/la970953j. DOI
Liguori A., Pollicino A., Stancampiano A., Tarterini F., Focarete M.L., Colombo V., Gherardi M. Deposition of Plasma-Polymerized Polyacrylic Acid Coatings by a Non-Equilibrium Atmospheric Pressure Nanopulsed Plasma Jet. Plasma Process. Polym. 2016;13:375–386. doi: 10.1002/ppap.201500080. DOI
Dong B., Manolache S., Somers E.B., Lee Wong A.C., Denes F.S. Generation of antifouling layers on stainless steel surfaces by plasma-enhanced crosslinking of polyethylene glycol. J. Appl. Polym. Sci. 2005;97:485–497. doi: 10.1002/app.21766. DOI
France R.M., Short R.D. Plasma treatment of polymers: The effects of energy transfer from an argon plasma on the surface chemistry of polystyrene, and polypropylene. A high-energy resolution X-ray photoelectron spectroscopy study. Langmuir. 1998;14:4827–4835. doi: 10.1021/la9713053. DOI
Noeske M., Degenhardt J., Strudthoff S., Lommatzsch U. Plasma jet treatment of five polymers at atmospheric pressure: Surface modifications and the relevance for adhesion. Int. J. Adhes. Adhes. 2004;24:171–177. doi: 10.1016/j.ijadhadh.2003.09.006. DOI
Beamson G., Briggs D. High Resolution XPS of Organic Polymers: The Scienta ESCA300 Database. Wiley; Hoboken, NJ, USA: 1992.
Casserly T.B., Gleason K.K. Effect of substrate temperature on the plasma polymerization of poly (methyl methacrylate) Chem. Vap. Depos. 2006;12:59–66. doi: 10.1002/cvde.200506409. DOI
Merche D., Poleunis C., Bertrand P., Sferrazza M., Reniers F. Synthesis of polystyrene thin films by means of an atmospheric-pressure plasma torch and a dielectric barrier discharge. IEEE Trans. Plasma Sci. 2009;37:951–960. doi: 10.1109/TPS.2009.2014165. DOI