Atmospheric Pressure Microwave Plasma Jet for Organic Thin Film Deposition

. 2020 Feb 06 ; 12 (2) : . [epub] 20200206

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32041244

Grantová podpora
01N00516 Universiteit Gent

In this work, the potential of a microwave (MW)-induced atmospheric pressure plasma jet (APPJ) in film deposition of styrene and methyl methacrylate (MMA) precursors is investigated. Plasma properties during the deposition and resultant coating characteristics are studied. Optical emission spectroscopy (OES) results indicate a higher degree of monomer dissociation in the APPJ with increasing power and a carrier gas flow rate of up to 250 standard cubic centimeters per minute (sccm). Computational fluid dynamic (CFD) simulations demonstrate non-uniform monomer distribution near the substrate and the dependency of the deposition area on the monomer-containing gas flow rate. A non-homogeneous surface morphology and topography of the deposited coatings is also observed using atomic force microscopy (AFM) and SEM. Coating chemical analysis and wettability are studied by XPS and water contact angle (WCA), respectively. A lower monomer flow rate was found to result in a higher C-O/C-C ratio and a higher wettability of the deposited coatings.

Zobrazit více v PubMed

Desmet T., Morent R., De Geyter N., Leys C., Schacht E., Dubruel P. Nonthermal plasma technology as a versatile strategy for polymeric biomaterials surface modification: A review. Biomacromolecules. 2009;10:2351–2378. doi: 10.1021/bm900186s. PubMed DOI

Liston E., Martinu L., Wertheimer M. Plasma surface modification of polymers for improved adhesion: A critical review. J. Adhes. Sci. Technol. 1993;7:1091–1127. doi: 10.1163/156856193X00600. DOI

Fanelli F., Fracassi F. Atmospheric pressure non-equilibrium plasma jet technology: General features, specificities and applications in surface processing of materials. Surf. Coat. Technol. 2017;322:174–201. doi: 10.1016/j.surfcoat.2017.05.027. DOI

Paunovic M., Schlesinger M. Fundamentals of Electrochemical Eeposition. John Wiley & Sons; New York, NY, USA: 1998.

Sherman A. Chemical Vapor Deposition for Microelectronics: Principles, Technology, and Applications. Elsevier Science; Park Ridge, NJ, USA: 1987.

Smith D.L. Thin-Film Deposition: Principles and Practice. McGraw Hill Professional; New York, NY, USA: 1995.

Kumar V., Kim J.H., Pendyala C., Chernomordik B., Sunkara M.K. Gas-phase, bulk production of metal oxide nanowires and nanoparticles using a microwave plasma jet reactor. J. Phys. Chem. C. 2008;112:17750–17754. doi: 10.1021/jp8078315. DOI

Li S.-Z., Hong Y.C., Uhm H.S., Li Z.-K. Synthesis of nanocrystalline iron oxide particles by microwave plasma jet at atmospheric pressure. Jpn. J. Appl. Phys. 2004;43:7714. doi: 10.1143/JJAP.43.7714. DOI

Van Vrekhem S., Morent R., De Geyter N. Deposition of a PMMA coating with an atmospheric pressure plasma jet. J. Coat. Technol. Res. 2018;15:679–690. doi: 10.1007/s11998-018-0049-4. DOI

Sankaran R.M., Giapis K.P. Hollow cathode sustained plasma microjets: Characterization and application to diamond deposition. J. Appl. Phys. 2002;92:2406–2411. doi: 10.1063/1.1497719. DOI

Schäfer J., Foest R., Quade A., Ohl A., Weltmann K. Local deposition of SiOx plasma polymer films by a miniaturized atmospheric pressure plasma jet (APPJ) J. Phys. D Appl. Phys. 2008;41:194010. doi: 10.1088/0022-3727/41/19/194010. DOI

Carton O., Ben Salem D., Bhatt S., Pulpytel J., Arefi-Khonsari F. Plasma polymerization of acrylic acid by atmospheric pressure nitrogen plasma jet for biomedical applications. Plasma Process. Polym. 2012;9:984–993. doi: 10.1002/ppap.201200044. DOI

Donegan M., Dowling D.P. Protein adhesion on water stable atmospheric plasma deposited acrylic acid coatings. Surf. Coat. Technol. 2013;234:53–59. doi: 10.1016/j.surfcoat.2013.03.002. DOI

Ben Salem D., Carton O., Fakhouri H., Pulpytel J., Arefi-Khonsari F. Deposition of water stable plasma polymerized acrylic acid/MBA organic coatings by atmospheric pressure air plasma jet. Plasma Process. Polym. 2014;11:269–278. doi: 10.1002/ppap.201300064. DOI

Farhat S., Gilliam M., Rabago-Smith M., Baran C., Walter N., Zand A. Polymer coatings for biomedical applications using atmospheric pressure plasma. Surf. Coat. Technol. 2014;241:123–129. doi: 10.1016/j.surfcoat.2013.10.077. DOI

Horvath G., Moravsky L., Krcma F., Matejcik Š. Characterization of a low-cost kilohertz-driven plasma pen operated in Ar gas. IEEE IEEE Trans. Plasma Sci. 2013;41:613–619. doi: 10.1109/TPS.2012.2234140. DOI

Guaitella O., Sobota A. The impingement of a kHz helium atmospheric pressure plasma jet on a dielectric surface. J. Phys. D Appl. Phys. 2015;48:255202. doi: 10.1088/0022-3727/48/25/255202. DOI

Chen X. Modelling of a radio-frequency plasma torch including a self-consistent electromagnetic field formulation. J. Phys. D Appl. Phys. 1989;22:361. doi: 10.1088/0022-3727/22/2/021. DOI

van der Mullen J., Jonkers J. Fundamental comparison between non-equilibrium aspects of ICP and MIP discharges. Spectrochim. Acta Part B. 1999;54:1017–1044. doi: 10.1016/S0584-8547(99)00042-7. DOI

Krčma F., Tsonev I., Smejkalová K., Truchlá D., Kozáková Z., Zhekova M., Marinova P., Bogdanov T., Benova E. Microwave micro torch generated in argon based mixtures for biomedical applications. J. Phys. D Appl. Phys. 2018;51:414001. doi: 10.1088/1361-6463/aad82b. DOI

Wang C., Srivastava N. OH number densities and plasma jet behavior in atmospheric microwave plasma jets operating with different plasma gases (Ar, Ar/N2, and Ar/O2) Eur. Phys. J. D. 2010;60:465–477. doi: 10.1140/epjd/e2010-00275-4. DOI

Tsonev I., Atanasov N., Atanasova G., Krčma F., Bogdanov T. Atmospheric Pressure Microwave Plasma Torch for Biomedical Applications. Plasma Med. 2018;8 doi: 10.1615/PlasmaMed.2019028816. DOI

Schäfer J., Hnilica J., Šperka J., Quade A., Kudrle V., Foest R., Vodák J., Zajίčková L. Tetrakis (trimethylsilyloxy) silane for nanostructured SiO2-like films deposited by PECVD at atmospheric pressure. Surf. Coat. Technol. 2016;295:112–118. doi: 10.1016/j.surfcoat.2015.09.047. DOI

Ting J.A.S., Rosario L.M.D., Lee H.V., Jr., Ramos H.J., Tumlos R.B. Hydrophobic coating on glass surfaces via application of silicone oil and activated using a microwave atmospheric plasma jet. Surf. Coat. Technol. 2014;259:7–11. doi: 10.1016/j.surfcoat.2014.08.008. DOI

Choudhury A., Kakati H., Pal A., Patil D., Chutia J. Synthesis and characterization of plasma polymerized styrene films by rf discharge. Proc. J. Phys. Conf. Ser. 2010;208:012104. doi: 10.1088/1742-6596/208/1/012104. DOI

Kinzig B., Smardzewski R. Plasma-polymerized thin coatings from methyl-methacrylate, styrene and tetrafluoroethylene. Surf. Technol. 1981;14:3–16. doi: 10.1016/0376-4583(81)90003-0. DOI

Geckeler K., Gebhardt R., Grünwald H. Surface modification of polyethylene by plasma grafting with styrene for enhanced biocompatibility. Naturwissenschaften. 1997;84:150–151. doi: 10.1007/s001140050367. PubMed DOI

Morita S., Tamano J., Hattori S., Ieda M. Plasma polymerized methyl-methacrylate as an electron-beam resist. J. Appl. Phys. 1980;51:3938–3941. doi: 10.1063/1.328170. DOI

Bogdanov T., Tsonev I., Marinova P., Benova E., Rusanov K., Rusanova M., Atanassov I., Kozáková Z., Krčma F. Microwave plasma torch generated in argon for small berries surface treatment. Appl. Sci. 2018;8:1870. doi: 10.3390/app8101870. DOI

Chen W.-K., Huang J.-C., Chen Y.-C., Lee M.-T., Juang J.-Y. Deposition of highly transparent and conductive Ga-doped zinc oxide films on tilted substrates by atmospheric pressure plasma jet. J. Alloys Compd. 2019;802:458–466. doi: 10.1016/j.jallcom.2019.06.213. DOI

Belmonte T., Henrion G., Gries T. Nonequilibrium atmospheric plasma deposition. J. Therm. Spray Technol. 2011;20:744. doi: 10.1007/s11666-011-9642-0. DOI

Obrusník A., Jelínek P., Zajíčková L. Modelling of the gas flow and plasma co-polymerization of two monomers in an atmospheric-pressure dielectric barrier discharge. Surf. Coat. Technol. 2017;314:139–147. doi: 10.1016/j.surfcoat.2016.10.068. DOI

Yusoff H.M., Abrahamson J., Shastry R. Influence of anode surface temperature in a continuously-fed arc discharge depositing carbon nanotubes; Proceedings of the 2006 International Conference on Nanoscience and Nanotechnology; Brisbane, Australia. 3–7 July 2006.

Juang J.-Y., Lin H.-T., Liang C.-T., Li P.-R., Chen W.-K., Chen Y.-Y., Pan K.-L. Effect of ambient air flow on resistivity uniformity of transparent Ga-doped ZnO film deposited by atmospheric pressure plasma jet. J. Alloys Compd. 2018;766:868–875. doi: 10.1016/j.jallcom.2018.07.030. DOI

Onyshchenko I., De Geyter N., Morent R. Improvement of the plasma treatment effect on PET with a newly designed atmospheric pressure plasma jet. Plasma Process. Polym. 2017;14:1600200. doi: 10.1002/ppap.201600200. DOI

COMSOL Multiphysics Reference Guide. COMSOL AB; Stockholm, Sweden: 2011.

Kramida A., Ralchenko Y., Reader J. Team 2018 NIST Atomic Spectra Database (ver. 5.5. 3) National Institute of Standards and Technology; Gaithersburg, MD, USA: 2018.

Gilmore F.R., Laher R.R., Espy P.J. Franck–Condon factors, r-centroids, electronic transition moments, and Einstein coefficients for many nitrogen and oxygen band systems. J. Phys. Chem. Ref. Data. 1992;21:1005–1107. doi: 10.1063/1.555910. DOI

Cools P., Sainz-García E., Geyter N.D., Nikiforov A., Blajan M., Shimizu K., Alba-Elías F., Leys C., Morent R. Influence of DBD Inlet Geometry on the Homogeneity of Plasma-Polymerized Acrylic Acid Films: The Use of a Microplasma–Electrode Inlet Configuration. Plasma Process. Polym. 2015;12:1153–1163. doi: 10.1002/ppap.201500007. DOI

Yasuda H. Glow discharge polymerization. J. Polym. Sci. Macromol. Rev. 1981;16:199–293. doi: 10.1002/pol.1981.230160104. DOI

Thompson L., Mayhan K. The plasma polymerization of vinyl monomers. II. A detailed study of the plasma polymerization of styrene. J. Appl. Polym. Sci. 1972;16:2317–2341. doi: 10.1002/app.1972.070160912. DOI

Mackie N.M., Castner D.G., Fisher E.R. Characterization of pulsed-plasma-polymerized aromatic films. Langmuir. 1998;14:1227–1235. doi: 10.1021/la970953j. DOI

Liguori A., Pollicino A., Stancampiano A., Tarterini F., Focarete M.L., Colombo V., Gherardi M. Deposition of Plasma-Polymerized Polyacrylic Acid Coatings by a Non-Equilibrium Atmospheric Pressure Nanopulsed Plasma Jet. Plasma Process. Polym. 2016;13:375–386. doi: 10.1002/ppap.201500080. DOI

Dong B., Manolache S., Somers E.B., Lee Wong A.C., Denes F.S. Generation of antifouling layers on stainless steel surfaces by plasma-enhanced crosslinking of polyethylene glycol. J. Appl. Polym. Sci. 2005;97:485–497. doi: 10.1002/app.21766. DOI

France R.M., Short R.D. Plasma treatment of polymers: The effects of energy transfer from an argon plasma on the surface chemistry of polystyrene, and polypropylene. A high-energy resolution X-ray photoelectron spectroscopy study. Langmuir. 1998;14:4827–4835. doi: 10.1021/la9713053. DOI

Noeske M., Degenhardt J., Strudthoff S., Lommatzsch U. Plasma jet treatment of five polymers at atmospheric pressure: Surface modifications and the relevance for adhesion. Int. J. Adhes. Adhes. 2004;24:171–177. doi: 10.1016/j.ijadhadh.2003.09.006. DOI

Beamson G., Briggs D. High Resolution XPS of Organic Polymers: The Scienta ESCA300 Database. Wiley; Hoboken, NJ, USA: 1992.

Casserly T.B., Gleason K.K. Effect of substrate temperature on the plasma polymerization of poly (methyl methacrylate) Chem. Vap. Depos. 2006;12:59–66. doi: 10.1002/cvde.200506409. DOI

Merche D., Poleunis C., Bertrand P., Sferrazza M., Reniers F. Synthesis of polystyrene thin films by means of an atmospheric-pressure plasma torch and a dielectric barrier discharge. IEEE Trans. Plasma Sci. 2009;37:951–960. doi: 10.1109/TPS.2009.2014165. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Polymer Biointerfaces

. 2020 Apr 02 ; 12 (4) : . [epub] 20200402

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...