Comparing Morphological and Molecular Estimates of Species Diversity in the Freshwater Genus Synura (Stramenopiles): A Model for Understanding Diversity of Eukaryotic Microorganisms
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.
PubMed
32065394
DOI
10.1111/jpy.12978
Knihovny.cz E-zdroje
- Klíčová slova
- Synura, algae, biogeography, chrysophytes, diversity, molecular phylogeny, morphology, protists, taxonomy,
- MeSH
- fylogeneze MeSH
- Heterokontophyta * genetika MeSH
- sekvenční analýza DNA MeSH
- sladká voda MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Geografické názvy
- Kanada MeSH
We performed a comparison of molecular and morphological diversity in a freshwater colonial genus Synura (Chrysophyceae, Stramenopiles), using the island of Newfoundland (Canada) as a case study. We examined the morphological species diversity in collections from 79 localities, and compared these findings to diversity based on molecular characters for 150 strains isolated from the same sites. Of 27 species or species-level lineages identified, only one third was recorded by both molecular and morphological techniques, showing both approaches are complementary in estimating species diversity within this genus. Eight taxa, each representing young evolutionary lineages, were recovered only by sequencing of isolated colonies, whereas ten species were recovered only microscopically. Our complex investigation, involving both morphological and molecular examinations, indicates that our knowledge of Synura diversity is still poor, limited only to a few well-studied areas. We revealed considerable cryptic diversity within the core S. petersenii and S. leptorrhabda lineages. We further resolved the phylogenetic position of two previously described taxa, S. kristiansenii and S. petersenii f. praefracta, propose species-level status for S. petersenii f. praefracta, and describe three new species, S. vinlandica, S. fluviatilis, and S. cornuta. Our findings add to the growing body of literature detailing distribution patterns observed in the genus, ranging from cosmopolitan species, to highly restricted taxa, to species such as S. hibernica found along coastal regions on multiple continents. Finally, our study illustrates the usefulness of combining detailed morphological information with gene sequence data to examine species diversity within chrysophyte algae.
Department of Botany Connecticut College New London 06320 4196 Connecticut USA
Department of Botany Faculty of Science Charles University Benátská 2 128 00 Praha 2 Czech Republic
Institute of Plant Physiology Russian Academy of Sciences Botanical Street 35 127276 Moscow Russia
Zobrazit více v PubMed
Abad, D., Albaina, A., Aguirre, M., Laza-Martínez, A., Uriarte, I., Iriarte, A., Villate, F. & Estonba, A. 2016. Is metabarcoding suitable for estuarine plankton monitoring? A comparative study with microscopy. Mar. Biol. 163:149.
Adl, S. M., Bass, D., Lane, C. E., Lukeš, J., Schoch, C. L., Smirnov, A., Agatha, S. et al. 2019. Revisions to the classification, nomenclature, and diversity of eukaryotes. J. Eukaryot. Microbiol. 66:4-119.
Adl, S. M., Simpson, A. G. B., Lane, C. E., Lukeš, J., Bass, D., Bowser, S. S., Brown, M. W. et al. 2012. The revised classification of eukaryotes. J. Eukaryot. Microbiol. 59:429-93.
Andersen, R., Berges, J., Harirson, P. & Watanabe, M. 2005. Appendix A - recipes for freshwater and seawater media. In Andersen, R. A. [Ed.] Algal Culturing Techniques. Elsevier, Amsterdam, the Netherlands, pp. 429-538.
Ankenbrand, M. J., Keller, A., Wolf, M., Schultz, J. & Förster, F. 2015. ITS2 database V: twice as much. Mol. Biol. Evol. 32:3030-2.
Asmund, B. 1968. Studies on chrysophyceae from some ponds and lakes in Alaska VI. Occurrence of Synura species. Hydrobiologia 31:497-515.
Bachy, C., Dolan, J. R., López-García, P., Deschamps, P. & Moreira, D. 2013. Accuracy of protist diversity assessments: morphology compared with cloning and direct pyrosequencing of 18S rRNA genes and ITS regions using the conspicuous tintinnid ciliates as a case study. ISME J. 7:244-55.
Balonov, I. M. 1976. Rod Synura Ehr. (Chrysophyta), biologija, ekologija, sistematika. Akad. Nauk SSSR, Inst. Biol. Vnutr. Vod, Tr. 31:61-82.
Barreto, S. 2005. The silica-scaled chrysophyte flora of Hungary. Nova Hedwigia. 128:11-41.
Bazin, P., Jouenne, F., Friedl, T., Deton-Cabanillas, A. F., Le Roy, B. & Véron, B. 2014. Phytoplankton diversity and community composition along the estuarine gradient of a temperate macrotidal ecosystem: combined morphological and molecular approaches. PLoS ONE 9:e94110.
Behnke, A., Engel, M., Christen, R., Nebel, M., Klein, R. R. & Stoeck, T. 2011. Depicting more accurate pictures of protistan community complexity using pyrosequencing of hypervariable SSU rRNA gene regions. Environ. Microbiol. 13:340-9.
Bock, C., Chatzinotas, A. & Boenigk, J. 2017. Genetic diversity in chrysophytes: comparison of different gene markers. Fottea 17:209-21.
Boenigk, J., Wodniok, S., Bock, C., Beisser, D., Hempel, C., Grossmann, L., Lange, A. & Jensen, M. 2018. Geographic distance and mountain ranges structure freshwater protist communities on a European scale. Metabarcoding and Metagenomics 2:e21519.
Boo, S. M., Kim, H. S., Shin, W., Boo, G. H., Cho, S. M., Jo, B. Y., Kim, J. et al. 2010. Complex phylogeographic patterns in the freshwater alga Synura provide new insights into ubiquity vs. endemism in microbial eukaryotes. Mol. Ecol. 19:4328-38.
Caron, D. A. 2009. Past presidents address: protistan biogeography: why all the fuss? J. Eukaryot. Microbiol. 56:105-12.
Caron, D. A. & Hu, S. K. 2019. Are we overestimating protistan diversity in Nature? Trends Microbiol. 27:197-205.
Darriba, D., Taboada, G. L., Doallo, R. & Posada, D. 2012. JModelTest 2: more models, new heuristics and parallel computing. Nat. Methods 9:772.
De Vargas, C., Audic, S., Henry, N., Decelle, J., Mahé, F., Logares, R., Lara, E. et al. 2015. Eukaryotic plankton diversity in the sunlit ocean. Science 348:1261605.
Dürrschmidt, M. 1982. Studies on the Chrysophyceae from South Chilean inland waters by means of scanning and transmission electron microscopy, II. Algol. Stud. für Hydrobiol. Suppl. 63:121-63.
Fenchel, T. & Finlay, B. J. 2003. Is microbial diversity fundamentally different from biodiversity of larger animals and plants? Eur. J. Protistol. 39:486-90.
Foissner, W. 1999. Protist diversity: estimates of the near-imponderable. Protist 150:363-8.
Foissner, W. 2006. Biogeography and dispersal of micro-organisms: a review emphasizing protists. Acta Protozool. 45:111-36.
van der Gast, C. J. 2015. Microbial biogeography: the end of the ubiquitous dispersal hypothesis? Environ. Microbiol. 17:544-6.
Groendahl, S., Kahlert, M. & Fink, P. 2017. The best of both worlds: a combined approach for analyzing microalgal diversity via metabarcoding and morphology-based methods. PLoS ONE 12:e0172808.
Howe, A. T., Bass, D., Vickerman, K., Chao, E. E. & Cavalier-Smith, T. 2009. Phylogeny, taxonomy, and astounding genetic diversity of Glissomonadida ord. nov., the dominant gliding zooflagellates in soil (Protozoa: Cercozoa). Protist 160:159-89.
Jo, B. Y., Kim, J. I., Škaloud, P., Siver, P. A. & Shin, W. 2016. Multigene phylogeny of Synura (Synurophyceae) and descriptions of four new species based on morphological and DNA evidence. Eur. J. Phycol. 51:413-30.
Jost, S., Medinger, R. & Boenigk, J. 2010. Cultivation-independent species identification of Dinobryon species (Chrysophyceae) by means of multiplex single-cell PCR. J. Phycol. 46:901-6.
Katoh, K., Misawa, K., Kuma, K. & Miyata, T. 2002. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 30:3059-66.
Korshikov, A. A. 1929. Studies on the Chrysomonads, I. Arch. für Protistenkd. 67:253-90.
Krienitz, L., Bock, C., Luo, W. & Pröschold, T. 2010. Polyphyletic origin of the Dictyosphaerium morphotype within Chlorellaceae (Trebouxiophyceae). J. Phycol. 46:559-63.
Kristiansen, J. 2005. Golden algae: a biology of chrysophytes. A. R. G. Gantner Verlag K. G, Germany, 167 pp.
Kristiansen, J. & Lind, J. F. 1995. On the taxonomic relation between Synura curtispina and S. favus (Synurophyceae). Nord. J. Bot. 15:443-7.
Kristiansen, J. & Preisig, H. R. 2007. Chrysophyte and haptophyte algae, part 2: Synurophyceae. In Budel, B., Gärtner, G., Krienitz, L. & Preisig, H. R. [Eds.] Süsswasserflora von Mitteleuropa, Vol. 1/2. Springer-Verlag, Berlin, Heidelberg, Germany, 252 pp.
Kristiansen, J. & Škaloud, P. 2017. Chrysophyta. In Archibald, J. M., Simpson, A. G. B. & C. H., S. [Eds.] Handbook of the Protists: Second Edition. Springer International Publishing, Cham, Switzerland, pp. 331-66.
Larsen, B. B., Miller, E. C., Rhodes, M. K. & Wiens, J. J. 2017. Inordinate fondness multiplied and redistributed: the number of species on earth and the new pie of life. Q. Rev. Biol. 92:229-65.
Leadbeater, B. S. C. 1990. Ultrastructure and assembly of the scale case in Synura (Synurophyceae Andersen). Br. Phycol. J. 25:117-32.
Leray, M. & Knowlton, N. 2015. DNA barcoding and metabarcoding of standardized samples reveal patterns of marine benthic diversity. Proc. Natl. Acad. Sci. USA 112:2076-81.
Lücking, R., Lawrey, J. D., Gillevet, P. M., Sikaroodi, M., Dal-Forno, M. & Berger, S. A. 2014. Multiple ITS haplotypes in the genome of the lichenized basidiomycete Cora inversa (Hygrophoraceae): fact or artifact? J. Mol. Evol. 78:148-62.
Mahé, F., De Vargas, C., Bass, D., Czech, L., Stamatakis, A., Lara, E., Singer, D. et al. 2017. Parasites dominate hyperdiverse soil protist communities in Neotropical rainforests. Nat. Ecol. Evol. 1:0091.
Martiny, J. B. H., Bohannan, B. J. M., Brown, J. H., Colwell, R. K., Fuhrman, J. A., Green, J. L., Horner-Devine, M. C. et al. 2006. Microbial biogeography: putting microorganisms on the map. Nat. Rev. Microbiol. 4:102-12.
Miller, M. A., Pfeiffer, W. & Schwartz, T. 2010. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. Proc. Gateway Comp. Environ. Workshop. 2010; 14 Nov. 2010: 1-8.
Nicholls, K. H. & Gerrath, J. F. 1985. The taxonomy of Synura (Chrysophyceae) in Ontario with special reference to taste and odour in water supplies. Can. J. Bot. 63:1482-93.
Pawlowski, J., Audic, S., Adl, S., Bass, D., Belbahri, L., Berney, C., Bowser, S. S. et al. 2012. CBOL protist working group: barcoding eukaryotic richness beyond the animal, plant, and fungal kingdoms. PLoS Biol. 10:e1001419.
Pinseel, E., Kulichová, J., Scharfen, V., Urbánková, P., Van de Vijver, B. & Vyverman, W. 2019. Extensive cryptic diversity in the terrestrial diatom Pinnularia borealis (Bacillariophyceae). Protist 170:121-40.
Revell, L. J. 2012. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3:217-23.
Řezáčová, M. & Škaloud, P. 2005. Silica-scaled chrysophytes of Ireland. With an appendix: geographic variation of scale shape of Mallomonas caudata. Nova Hedwigia. 128:101-24.
Rippin, M., Borchhardt, N., Williams, L., Colesie, C., Jung, P., Büdel, B., Karsten, U. & Becker, B. 2018. Genus richness of microalgae and Cyanobacteria in biological soil crusts from Svalbard and Livingston Island: morphological versus molecular approaches. Polar Biol. 41:909-23.
Roijackers, R. M. M. & Kessels, H. 1981. Chrysophyceae from freshwater localities near Nijmegen, The Netherlands. II. Hydrobiologia 80:231-9.
Ryšánek, D., Hrčková, K. & Škaloud, P. 2015. Global ubiquity and local endemism of free-living terrestrial protists: Phylogeographic assessment of the streptophyte alga Klebsormidium. Environ. Microbiol. 17:689-98.
Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. 2012. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9:671-5.
Siver, P. A. 1987. The distribution of Synura species (Chrysophyceae) in Connecticut, U.S.A. including the description of a new form. Nordic J. Bot. 7:107-16.
Siver, P. A. 2015. The Synurophyceae. In Wehr, J. D., Sheath, R. G. & Kociolek, J. P. [Eds.] Freshwater Algae of North America: Ecology and Classification, 2nd edn. Academic Press, San Diego, CA, USA, pp. 605-50.
Siver, P. A., Jo, B. Y., Kim, J. I., Shin, W., Lott, A. M. & Wolfe, A. P. 2015. Assessing the evolutionary history of the class Synurophyceae (Heterokonta) using molecular, morphometric, and paleobiological approaches. Am. J. Bot. 102:1-21.
Siver, P. A., Kapustin, D. & Gusev, E. 2018. Investigations of two-celled colonies of Synura formerly described as Chrysodidymus with descriptions of two new species. Eur. J. Phycol. 53:245-55.
Siver, P. A. & Lott, A. M. 2012. Biogeographic patterns in scaled chrysophytes from the east coast of North America. Freshwater Biol. 57:451-67.
Siver, P. A. & Lott, A. M. 2016. Descriptions of two new species of Synurophyceae from a bog in Newfoundland, Canada: Mallomonas baskettii sp. nov. and Synura kristiansenii sp. nov. Nova Hedwigia 102:501-11.
Siver, P. A. & Lott, A. M. 2017. The scaled Chrysophyte flora in freshwater ponds and lakes from Newfoundland, Canada, and their relationship to environmental variables. Cryptogam. Algol. 38:325-47.
Siver, P. A., Lott, A. M. & Wolfe, A. P. 2013. A summary of Synura taxa in early Cenozoic deposits from northern Canada. Nova Hedwigia 142:181-90.
Siver, P. A., Pelczar, J. M., Lott, A. M. & Pisera, A. 2010. The Giraffe Pipe database project: a web-based database for siliceous microfossils from a freshwater Eocene waterbody. Nova Hedwigia. 136:325-31.
Škaloud, P., Kristiansen, J. & Škaloudová, M. 2013a. Developments in the taxonomy of silica-scaled chrysophytes - from morphological and ultrastructural to molecular approaches. Nord. J. Bot. 31:385-402.
Škaloud, P., Kynčlová, A., Benada, O., Kofroňová, O. & Škaloudová, M. 2012. Towards a revision of the genus Synura, section Petersenianae (Synurophyceae, Heterokontophyta): morphological characterization of six pseudo-cryptic species. Phycologia 51:303-29.
Škaloud, P. & Rindi, F. 2013. Ecological differentiation of cryptic species within an asexual protist morphospecies: a case study of filamentous green alga Klebsormidium (Streptophyta). J. Eukaryot. Microbiol. 60:350-62.
Škaloud, P., Škaloudová, M., Pichrtová, M., Němcová, Y., Kreidlová, J. & Pusztai, M. 2013b. www.chrysophytes.eu - a database on distribution and ecology of silica-scaled chrysophytes in Europe. Nova Hedwigia. 142:141-6.
Škaloud, P., Škaloudová, M., Procházková, A. & Němcová, Y. 2014. Morphological delineation and distribution patterns of four newly described species within the Synura petersenii species complex (Chrysophyceae, Stramenopiles). Eur. J. Phycol. 49:213-29.
Šlapeta, J., Moreira, D. & López-García, P. 2005. The extent of protist diversity: insights from molecular ecology of freshwater eukaryotes. P. Roy. Soc. B-Biol. Sci. 272:2073-81.
Smith, G. M. 1924. Ecology of the plankton algae in the Palisades Interstate Park, including the relation of control methods to fish culture. Roosevelt Wild Life Bull. 2:94-195.
Suchard, M. A., Lemey, P., Baele, G., Ayres, D. L., Drummond, A. J. & Rambaut, A. 2018. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evol. 4:vey016.
Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30:2725-9.
Venables, W. N. & Ripley, B. D. 2002. Modern Applied Statistics With S, 4th edn. Springer, New York, 504 pp.
Von Der Heyden, S., Chao, E. E., Vickerman, K. & Cavalier-Smith, T. 2004. Ribosomal RNA phylogeny of bodonid and diplonemid flagellates and the evolution of Euglenozoa. J. Eukaryot. Microbiol. 51:402-16.
Wawrzyniak, L. A. & Andersen, R. A. 1985. Silica-scaled Chrysophyceae from North American boreal forest regions in Northern Michigan, U.S.A. and Newfoundland, Canada Nova Hedwigia 41:127-45.
Whitford, L. A. & Schumacher, G. J. 1973. A manual of fresh-water algae. Sparks Press, Raleigh, NC, USA, 324 pp.
Wujek, D. E. & Igoe, M. J. 1989. Studies on Michigan Chrysophyceae, VII. Nova Hedwigia 95:269-80.
Wujek, D. E. & Van Der Veer, J. 1976. Scaled Chrysophytes from the Netherlands including a description of a new variety. Acta Bot. Neerl. 25:179-90.
GENBANK
HG514166.1, AF308832.1, FM178506.1, FM178508.1, HG514174.1, FM178511, FM178494.1, EF577176, EF577170, HE586522, MN782206, MN783119, MN783144, MN782209, MN783121, MN783146, MN782210, MN783122, MN783147