• This record comes from PubMed

A Maltol-Containing Ruthenium Polypyridyl Complex as a Potential Anticancer Agent

. 2020 Apr 16 ; 26 (22) : 4997-5009. [epub] 20200326

Language English Country Germany Media print-electronic

Document type Journal Article

Grant support
ANR-10-IDEX-0001-02 PSL Agence Nationale de la Recherche
PP00P2_133568 Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
PP00P2_157545 Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
Universität Zürich
Novartis Jubilee Foundation
Forschungskredit of the University of Zurich
UBS Promedica Stiftung
Ile de France Region
GINOP-2.3.2-15-2016-00038, FK 124240 National Research, Development and Innovation Office-NKFIA
17-02080S Czech Science Foundation
GA 681679 European Research Council - International

Cancer is one of the main causes of death worldwide. Chemotherapy, despite its severe side effects, is to date one of the leading strategies against cancer. Metal-based drugs present several potential advantages when compared to organic compounds and they have gained trust from the scientific community after the approval on the market of the drug cisplatin. Recently, we reported the ruthenium complex ([Ru(DIP)2 (sq)](PF6 ) (where DIP is 4,7-diphenyl-1,10-phenantroline and sq is semiquinonate) with a remarkable potential as chemotherapeutic agent against cancer, both in vitro and in vivo. In this work, we analyse a structurally similar compound, namely [Ru(DIP)2 (mal)](PF6 ), carrying the flavour-enhancing agent approved by the FDA, maltol (mal). To possess an FDA approved ligand is crucial for a complex, whose mechanism of action might include ligand exchange. Herein, we describe the synthesis and characterisation of [Ru(DIP)2 (mal)](PF6 ), its stability in solutions and under conditions that resemble the physiological ones, and its in-depth biological investigation. Cytotoxicity tests on different cell lines in 2D model and on HeLa MultiCellular Tumour Spheroids (MCTS) demonstrated that our compound has higher activity than cisplatin, inspiring further tests. [Ru(DIP)2 (mal)](PF6 ) was efficiently internalised by HeLa cells through a passive transport mechanism and severely affected the mitochondrial metabolism.

See more in PubMed

G. Gasser, I. Ott, N. Metzler-Nolte, J. Med. Chem. 2011, 54, 3-25.

B. B. Rosenberg, Platinum Met. Rev. 1971, 15, 42-51.

E. Wong, C. M. Giandomenico, Chem. Rev. 1999, 99, 2451-2466.

E. S. Antonarakis, A. Emadi, Cancer Chemother. Pharmacol. 2010, 66, 1-9.

E. Alessio, Eur. J. Inorg. Chem. 2017, 1549-1560.

L. Zeng, P. Gupta, Y. Chen, E. Wang, L. Ji, H. Chao, Z.-S. Chen, Chem. Soc. Rev. 2017, 46, 5771-5804.

E. Alessio, L. Messori, Molecules 2019, 24, 1995.

G. Sava, I. Capozzi, K. Clerici, G. Gagliardi, E. Alessio, G. Mestroni, Clin. Exp. Metastasis 1997, 16, 371-379.

F. Lentz, A. Drescher, A. Lindauer, M. Henke, R. A. Hilger, C. G. Hartinger, M. E. Scheulen, C. Dittrich, B. K. Keppler, U. Jaehde, Anticancer Drugs 2009, 20, 97-103.

R. Trondl, P. Heffeter, C. R. Kowol, M. A. Jakupec, W. Berger, B. K. Keppler, Chem. Sci. 2014, 5, 2925-2932.

C. G. Hartinger, S. Zorbas-Seifried, M. A. Jakupec, B. Kynast, H. Zorbas, B. K. Keppler, J. Inorg. Biochem. 2006, 100, 891-904.

H. Yin, J. Roque, P. Konda, S. Monro, K. L. Colo, S. Gujar, R. P. Thummel, L. Lilge, C. G. Cameron, S. A. Mcfarland, Chem. Rev. 2019, 119, 797-828.

https://clinicaltrials.gov/ct2/show/NCT03945162?term=TLD-1433&rank=1; (accessed the 27.09.2019).

C. A. Griffith, A. Dayoub, T. Janaratne, N. Alatrash, K. Abayan, A. Mohamedi, Z. Breitbach, D. W. Armstrong, F. M. MacDonnell, Chem. Sci. 2017, 8, 3726-3740.

F. E. Poynton, S. A. Bright, S. Blasco, D. C. Williams, J. M. Kelly, T. Gunnlaugsson, Chem. Soc. Rev. 2017, 46, 7706-7756.

A. Notaro, G. Gasser, Chem. Soc. Rev. 2017, 46, 7317-7337.

A. Notaro, A. Frei, R. Rubbiani, M. Jakubaszek, U. Basu, S. Koch, C. Mari, M. Dotou, O. Blacque, J. Gouyon, F. Bedioui, N. Rotthowe, R. Winter, B. Goud, F. Ferrari, M. Tharaud, M. Řezáčová, J. Humajová, P. Tomšík, G. Gasser, ChemRxiv. Prepr. 2019, https://doi.org/10.26434/chemrxiv.9582527.v1.

L. F. Bjeldanes, H. Chew, Mutat. Res. 1979, 67, 367-371.

H. Ito, Agric. Biol. Chem. 1977, 41, 1307-1308.

Food and Drugs, 21 C.F.R. § 3 (2018).

A. F. Bingham, G. G. Birch, C. De Graaf, J. M. Behan, K. D. Perring, Chem. Senses 1990, 15, 447-456.

V. Kahn, F. Schved, P. Lindner, J. Food Biochem. 1993, 17, 217-233.

W. O. Nelson, T. B. Karpishin, S. J. Rettig, C. Orvig, Inorg. Chem. 1988, 27, 1045-1051.

P. C. Lucio, G. Nicholas, G. F. Geoffrey, H. Huali, J. H. Mcneill, S. J. Rettig, I. A. Setyawati, E. Shuter, Y. Sun, A. S. Tracey, et al., J. Am. Chem. Soc. 1995, 117, 12759-12770.

K. Murakami, K. Ishida, K. Watakabe, R. Tsubouchi, M. Naruse, M. Yoshino, Toxicol. Lett. 2006, 161, 102-107.

B. L. Ellis, A. K. Duhme, R. C. Hider, M. B. Hossain, S. Rizvi, J. Med. Chem. 1996, 39, 3659-3670.

S. J. Lord, N. A. Epstein, R. L. Paddock, C. M. Vogels, T. L. Hennigar, M. J. Zaworotko, N. J. Taylor, W. R. Driedzic, T. L. Broderick, S. A. Westcott, Can. J. Chem. 1999, 77, 1249-1261.

K. H. Thompson, C. A. Barta, C. Orvig, K. Thompson, Chem. Soc. Rev. 2006, 35, 545-556.

K. H. Thompson, J. Chiles, V. G. Yuen, J. Tse, J. H. Mcneill, C. Orvig, J. Inorg. Biochem. 2004, 98, 683-690.

O. Dömötör, S. Aicher, M. Schmidlehner, M. S. Novak, A. Roller, M. A. Jakupec, W. Kandioller, C. G. Hartinger, B. K. Keppler, É. A. Enyedy, J. Inorg. Biochem. 2014, 134, 57-65.

W. Kandioller, C. G. Hartinger, A. A. Nazarov, C. Bartel, M. Skocic, M. A. Jakupec, V. B. Arion, B. K. Keppler, Chem. Eur. J. 2009, 15, 12283-12291.

L. Fang, S. Ming, H. Ling, K. Soo, R. Vikneswaran, S. Guan, M. Ahmad, S. Alan, M. Jamil, C. Hee, J. Inorg. Biochem. 2011, 105, 339-347.

V. D. Reddy, D. Dayal, D. J. Szalda, S. C. Cosenza, M. V. R. Reddy, J. Organomet. Chem. 2012, 700, 180-187.

M. Hironishi, R. Kordek, R. Yanagihara, R. M. Garruto, Neurodegeneration 1996, 5, 325-329.

E. Yasumoto, K. Nakano, T. Nakayachi, S. R. Morshed, K. E. N. Hashimoto, H. Kikuchi, H. Nishikawa, M. Kawase, H. Sakagami, Anticancer Res. 2004, 24, 755-762.

M. A. Barrand, B. A. Callingham, Br. J. Pharmacol. 1991, 102, 408-414.

M. A. Barrand, R. C. Hider, B. A. Callingham, J. Pharm. Pharmacol. 1990, 42, 279.

K. H. Thompson, J. Lichter, C. Lebel, M. C. Scaife, J. H. Mcneill, C. Orvig, J. Inorg. Biochem. 2009, 103, 554-558.

K. H. Thompson, B. D. Liboiron, Y. Sun, B. O. Patrick, V. Karunaratne, G. Rawji, C. Cassidy, J. H. Mcneill, V. G. Yuen, J. Biol. Inorg. Chem. 2003, 8, 66-74.

K. H. Thompson, C. Orvig, J. Chem. Soc. Dalton Trans. 2000, 2885-2892.

D. C. Crans, S. Schoeberl, D. A. Roess, J. Biol. Inorg. Chem. 2011, 16, 961-972.

L. R. Bernstein, T. Tanner, C. Godfrey, B. Noll, W. Road, M. Park, Met.-Based Drugs 2000, 7, 33-47.

M. A. Jakupec, B. K. Keppler, Curr. Top. Med. Chem. 2004, 4, 1575-1583.

C. R. Chitambar, D. P. Purpi, J. Woodliff, M. Yang, J. P. Wereley, J. Pharmacol. Exp. Ther. 2007, 322, 1228-1236.

É. A. Enyedy, O. Dömötör, K. Bali, B. K. Keppler, J. Biol. Inorg. Chem. 2015, 20, 77-88.

K. Deleon, F. Balldin, C. Watters, A. Hamood, J. Griswold, S. Sreedharan, K. P. Rumbaugh, Antimicrob. Agents Chemother. 2009, 53, 1331-1337.

L. G. Id, L. R. B. Id, A. M. Haynes, C. Godornes, G. Ciccarese, F. Drago, A. Parodi, S. Valdevit, L. Anselmi, C. F. Tomasini, et al., PLoS Negl. Trop. Dis. 2019, 1-14.

C. R. Chitambar, M. M. Al-gizawiy, H. S. Alhajala, K. R. Pechman, J. P. Wereley, R. Wujek, P. A. Clark, J. S. Kuo, W. E. Antholine, K. M. Schmainda, Mol. Cancer Ther. 2018, 12, 1-12.

M. Chua, L. R. Bernstein, R. U. I. Li, S. K. S. So, Anticancer Res. 2006, 26, 1739-1743.

W. Kandioller, C. G. Hartinger, A. A. Nazarov, J. Kasser, R. John, M. A. Jakupec, V. B. Arion, P. J. Dyson, B. K. Keppler, J. Organomet. Chem. 2009, 694, 922-929.

C. G. Hartinger, R. E. Eichinger, N. Stolyarova, K. Severin, M. A. Jakupec, A. A. Nazarov, B. K. Keppler, Organometallics 2008, 27, 2405-2407.

I. Brastos, E. Alessio, M. E. Ringenberg, T. B. Rauchfuss, Inorg. Synth. 2010, 35, 148-163.

R. Caspar, C. Cordier, J. B. Waern, C. Guyard-Duhayon, M. Gruselle, P. Le Floch, H. Amouri, Inorg. Chem. 2006, 45, 4071-4078.

M. Haga, E. S. Dodsworth, A. B. P. Lever, Inorg. Chem. 1986, 25, 447-453.

S. L. H. Higgins, T. A. White, B. S. J. Winkel, K. J. Brewer, Inorg. Chem. 2011, 50, 463-470.

P. Sobota, K. Przybylak, J. Utko, L. B. Jerzykiewicz, A. J. L. Pombeiro, M. F. C. Guedes Da Silva, K. Szczegot, Chem. Eur. J. 2001, 7, 951-958.

M. Patra, T. Joshi, V. Pierroz, K. Ingram, M. Kaiser, Chem. Eur. J. 2013, 19, 14768-14772.

M. D. Hall, K. A. Telma, K.-E. Chang, T. D. Lee, J. P. Madigan, J. R. Lloyd, I. S. Goldlust, J. Hoeschele, D. M. M. Gottesman, Cancer Res. 2014, 74, 3913-3922.

H. Huang, N. Humbert, V. Bizet, M. Patra, H. Chao, J. Organomet. Chem. 2017, 839, 15-18.

J. R. Lakowicz, Principles of Fluorescence Spectroscopy, Springer, Heidelberg, 2006.

O. Dömötör, C. G. Hartinger, A. K. Bytzek, T. Kiss, B. K. Keppler, E. A. Enyedy, J. Biol. Inorg. Chem. 2013, 18, 9-17.

A. Bijelic, S. Theiner, B. K. Keppler, A. Rompel, J. Med. Chem. 2016, 59, 5894-5903.

J. Sun, Y. Huang, C. Zheng, Y. Zhou, Y. Liu, J. Liu, Biol. Trace Elem. Res. 2015, 163, 266-274.

A. V. Rudnev, S S. Aleksenko, O. Semenova, C. G. Hartinger, A. R. Timerbaev, B. K. Keppler, J. Sep. Sci. 2005, 28, 121-127.

V. Pierroz, T. Joshi, A. Leonidova, C. Mari, J. Schur, I. Ott, L. Spiccia, S. Ferrari, G. Gasser, J. Am. Chem. Soc. 2012, 134, 20376-20387.

S. J. Bruce, I. Tavazzi, S. Rezzi, S. Kochhar, P. A. Guy, Anal. Chem. 2009, 81, 3285-3296.

A. Frei, R. Rubbiani, S. Tubafard, O. Blacque, P. Anstaett, A. Felgenträger, T. Maisch, L. Spiccia, G. Gasser, J. Med. Chem. 2014, 57, 7280-7292.

V. Cepeda, M. Fuertes, J. Castilla, C. Alonso, C. Quevedo, J. Perez, Anticancer Agents Med. Chem. 2007, 7, 3-18.

H. G. Keizer, H. M. Pinedo, G. J. Schuurhuis, H. Joenje, Pharmacol. Ther. 1990, 47, 219-231.

J. M. Kelm, N. E. Timmins, C. J. Brown, M. Fussenegger, L. K. Nielsen, Biotechnol. Bioeng. 2003, 83, 173-180.

H. Ma, Q. Jiang, S. Han, Y. Wu, J. C. Tomshine, D. Wang, Y. Gan, G. Zou, Mol. Imaging 2012, 11, 487-498.

M. Kapałczyńska, T. Kolenda, W. Przybyła, M. Zajączkowska, A. Teresiak, V. Filas, M. Ibbs, R. Bliźniak, Ł. Łuczewski, K. Lamperska, Arch. Med. Sci. 2018, 14, 890-909.

J. Friedrich, C. Seidel, R. Ebner, L. A. Kunz-Schughart, Nat. Protoc. 2009, 4, 309-324.

N. H. Baek, O. W. Seo, M. S. Kim, J. Hulme, S. S. A. An, Oncol. Targets Ther. 2016, 9, 7207-7218.

A. S. Mikhail, S. Eetezadi, C. Allen, PLoS One 2013, 8.

A. C. Belmokhtar, J. Hillion, E. Ségal-Bendirdjian, Oncogene 2001, 20, 3354-3362.

L. Zeng, Y. Chen, H. Huang, J. Wang, D. Zhao, L. Ji, H. Chao, Chem. Eur. J. 2015, 21, 15308-15319.

J. Zisowsky, S. Koegel, S. Leyers, K. Devarakonda, M. U. Kassack, M. Osmak, U. Jaehde, Biochem. Pharmacol. 2007, 73, 298-307.

V. N. Dedov, G. C. Cox, B. D. Roufogalis, Micron 2001, 32, 653-660.

L. D. Zorova, V. A. Popkov, E. Y. Plotnikov, D. N. Silachev, B. Pevzner, S. S. Jankauskas, V. A. Babenko, S. D. Zorov, A. V. Balakireva, M. Juhaszova, et al., Anal. Biochem. 2018, 552, 50-59.

S. Sakamuru, M. S. Attene-Ramos, M. Xia, Methods Mol. Biol. 2016, 1473, 17-22.

H. Terada, Environ. Health Perspect. 1990, 87, 213-218.

G. R. Fulmer, A. J. M. Miller, N. H. Sherden, H. E. Gottlieb, A. Nudelman, B. M. Stoltz, J. E. Bercaw, K. I. Goldberg, Organometallics 2010, 29, 2176-2179.

M. Krachler, J. Environ. Monit. 2007, 9, 790-804.

C. Mari, V. Pierroz, R. Rubbiani, M. Patra, J. Hess, B. Spingler, L. Oehninger, J. Schur, I. Ott, L. Salassa, S. Ferrari, G. Gasser, Chem. Eur. J. 2014, 20, 14421-14436.

G. H. Beaven, S. Chen, A. D. Albis, W. B. Gratzer, Eur. J. Biochem. 1974, 41, 539-546.

P. Gans, A. Sabatini, A. Vacca, Talanta 1996, 43, 1739-1753.

https://rockland-inc.com/Nuclear-Extract-Protocol.aspx (accessed 03.10.2019).

M. Tharaud, S. Gardoll, O. Khelifi, M. F. Benedetti, Y. Sivry, Microchem. J. 2015, 121, 32-40.

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...