Bipolar ablation with contact force-sensing of swine ventricles shows improved acute lesion features compared to sequential unipolar ablation
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu srovnávací studie, časopisecké články, práce podpořená grantem
PubMed
32083360
DOI
10.1111/jce.14407
Knihovny.cz E-zdroje
- Klíčová slova
- contact force bipolar ablation, radiofrequency catheter ablation, thermal lesion size, ventricular tachycardia,
- MeSH
- design vybavení MeSH
- katetrizační ablace škodlivé účinky přístrojové vybavení MeSH
- magnetická rezonanční tomografie MeSH
- měniče tlakové * MeSH
- myokard patologie MeSH
- srdeční katétry * MeSH
- srdeční komory diagnostické zobrazování patologie chirurgie MeSH
- Sus scrofa MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
INTRODUCTION: Despite technical progress, ventricular tachycardia (VT) recurrence after unipolar ablation remains relatively high (12%-47%). Bipolar ablation has been proposed as an appealing solution that may overcome limitations associated with unipolar ablation settings. We designed an animal study to compare bipolar (BPA) vs sequential unipolar ablation (UPA) using contact force-sensing technology on both ablation catheters. METHODS: Twenty large white female pigs (6-months-old, 50-60 kg) underwent multiple RF ablations (30 W, 60 seconds, 30 mL/min irrigation) on the ventricular myocardium from the epicardial and endocardial sides. The hearts were fixed and scanned with high-resolution cardiac magnetic resonance imaging. Thermal lesions were located and characterized in volume, depth, width, and transmurality. RESULTS: Lesion volume was calculated as the sum of epicardial or endocardial conjoined/isolated lesions at one location. Linear dimensions (width and depth) were measured twice for each location, on the endocardial and epicardial side. We evaluated 35 lesions across the intraventricular septum (UPA, N = 17 vs BPA, N = 18). No difference in volume, linear dimensions or impedance drop was observed in this area between UPA and BPA. However, BPA required half RF time and showed an increased transmurality trend. We then analyzed 73 lesions from the endocardial side (UPA, N = 35 vs BPA, N = 38) and 50 from the epicardial side (UPA, N = 11 vs BPA N = 39) of the ventricular free walls. Lesion transmurality was markedly improved by BPA (P = .030, odds ratio, 23.73 [4.71,31.96]). Ventricular BPA lesions were significantly deeper on the epicardial side (P < .0001) and endocardial side (P = .015). CONCLUSION: Bipolar ablation is more likely to create transmural and epicardial lesions in the ventricle wall. Half the time is needed for the creation of comparably deep and large lesions.
Department of Biology Faculty of Medicine Masaryk University Brno Czech Republic
Nanobiotechnology CEITEC Masaryk University Brno Czech Republic
Zobrazit více v PubMed
Aliot EM, Stevenson WG, Almendral-Garrote JM, et al. American Heart Association (AHA). EHRA/HRS expert consensus on catheter ablation of ventricular arrhythmias: developed in a partnership with the European Heart Rhythm Association (EHRA), a registered branch of the European Society of Cardiology (ESC), and the Heart Rhythm Society (HRS); in collaboration with the American College of Cardiology (ACC) and the American Heart Association (AHA). Heart Rhythm. 2009;6(6):886-933. https://doi.org/10.1016/j.hrthm.2009.04.030
Reddy VY, Reynolds MR, Neuzil P, et al. Prophylactic catheter ablation for the prevention of defibrillator therapy. N Engl J Med. 2007;357(26):2657-2665. https://doi.org/10.1056/NEJMoa065457
Sapp JL, Wells GA, Parkash R, et al. Ventricular tachycardia ablation versus escalation of antiarrhythmic drugs. N Engl J Med. 2016;375(2):111-121. https://doi.org/10.1056/NEJMoa1513614
Houmsse M, Daoud EG. Biophysics and clinical utility of irrigated-tip radiofrequency catheter ablation. Expert Rev Med Devices. 2012;9(1):59-70. https://doi.org/10.1586/erd.11.42
Koutalas E, Rolf S, Dinov B, et al. Contemporary mapping techniques of complex cardiac arrhythmias-identifying and modifying the arrhythmogenic substrate. Arrhythmia Electrophysiol Rev. 2015;4(1):19-27. https://doi.org/10.15420/aer.2015.4.1.19
Aryana A, d'Avila A. Contact force during VT ablation: vector orientation is key. Circ Arrhythm Electrophysiol. 2014;7(6):1009-1010. https://doi.org/10.1161/CIRCEP.114.002389
Ajijola OA, Tung R, Shivkumar K. Ventricular tachycardia in ischemic heart disease substrates. Indian Heart J. 2014;66(suppl 1):S24-S34. https://doi.org/10.1016/j.ihj.2013.12.039
Desjardins B, Morady F, Bogun F. Effect of epicardial fat on electroanatomical mapping and epicardial catheter ablation. J Am Coll Cardiol. 2010;56(16):1320-1327. https://doi.org/10.1016/j.jacc.2010.04.054
Stevenson WG, Wilber DJ, Natale A, et al. Irrigated radiofrequency catheter ablation guided by electroanatomic mapping for recurrent ventricular tachycardia after myocardial infarction: the multicenter thermocool ventricular tachycardia ablation trial. Circulation. 2008;118(25):2773-2782. https://doi.org/10.1161/CIRCULATIONAHA.108.788604
Nagashima K, Watanabe I, Okumura Y, et al. Lesion formation by ventricular septal ablation with irrigated electrodes. Circ J. 2011;75(3):565-570. https://doi.org/10.1253/circj.CJ-10-0870
Teh AW, Reddy VY, Koruth JS, et al. Bipolar radiofrequency catheter ablation for refractory ventricular outflow tract arrhythmias. J Cardiovasc Electrophysiol. 2014;25(10):1093-1099. https://doi.org/10.1111/jce.12460
Nguyen DT, Tzou WS, Brunnquell M, et al. Clinical and biophysical evaluation of variable bipolar configurations during radiofrequency ablation for treatment of ventricular arrhythmias. Heart Rhythm. 2016;13(11):2161-2171. https://doi.org/10.1016/j.hrthm.2016.07.011
Koruth JS, Dukkipati S, Miller MA, Neuzil P, d'Avila A, Reddy VY. Bipolar irrigated radiofrequency ablation: a therapeutic option for refractory intramural atrial and ventricular tachycardia circuits. Heart Rhythm. 2012;9(12):1932-1941. https://doi.org/10.1016/j.hrthm.2012.08.001
Bugge E, Nicholson IA, Thomas SP. Comparison of bipolar and unipolar radiofrequency ablation in an in vivo experimental model. Eur J Cardiothorac Surg. 2005;28(1):76-80. https://doi.org/10.1016/j.ejcts.2005.02.028
Soucek F, Starek Z. Use of bipolar radiofrequency catheter ablation in the treatment of cardiac arrhythmias. Curr Cardiol Rev. 2018;14(3):185-191. https://doi.org/10.2174/1573403X14666180524100608
Sivagangabalan G, Barry MA, Huang K, et al. Bipolar ablation of the interventricular septum is more efficient at creating a transmural line than sequential unipolar ablation. Pacing Clin Electrophysiol. 2010;33(1):16-26. https://doi.org/10.1111/j.1540-8159.2009.02602.x
Schindelin J, Arganda-Carreras I, Frise E, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9(7):676-682. https://doi.org/10.1038/nmeth.2019
Wright M, Harks E, Deladi S, et al. Characteristics of radiofrequency catheter ablation lesion formation in real time in vivo using near field ultrasound imaging. JACC Clin Electrophysiol. 2018;4(8):1062-1072. https://doi.org/10.1016/j.jacep.2018.04.002
Andrés-Villarreal M, Barba I, Poncelas M, et al. Measuring water distribution in the heart: preventing edema reduces ischemia-reperfusion injury. J Am Heart Assoc. 2016;5(12):e003843. https://doi.org/10.1161/JAHA.116.003843
Shen W, Wang Z, Tang H, et al. Volume estimates by imaging methods: model comparisons with visible woman as the reference. Obes Res. 2003;11(2):217-225.
Haines DE. The biophysics of radiofrequency catheter ablation in the heart: the importance of temperature monitoring. Pacing Clin Electrophysiol. 1993;16(3):586-591. https://doi.org/10.1111/j.1540-8159.1993.tb01630.x
Calzolari V, de Mattia L, Indiani S, et al. In vitro validation of the lesion size index to predict lesion width and depth after irrigated radiofrequency ablation in a porcine model. JACC Clin Electrophysiol. 2017;3(10):1126-1135. https://doi.org/10.1016/j.jacep.2017.08.016
Dinov B, Oebel S, Hilbert S, et al. Characteristics of the ablation lesions in cardiac magnetic resonance imaging after radiofrequency ablation of ventricular arrhythmias in relation to the procedural success. Am Heart J. 2018;204:68-75. https://doi.org/10.1016/j.ahj.2018.06.014
Sacher F, Wright M, Derval N, et al. Endocardial versus epicardial ventricular radiofrequency ablation: utility of in vivo contact force assessment. Circ Arrhythm Electrophysiol. 2013;6(1):144-150. https://doi.org/10.1161/CIRCEP.111.974501
González-Suárez A, Trujillo M, Koruth J, d'Avila A, Berjano E. Radiofrequency cardiac ablation with catheters placed on opposing sides of the ventricular wall: computer modelling comparing bipolar and unipolar modes. Int J Hyperthermia. 2014;30(6):372-384. https://doi.org/10.3109/02656736.2014.949878
Bhaskaran A, Tung R, Stevenson WG, Kumar S. Catheter ablation of VT in non-ischaemic cardiomyopathies: endocardial, epicardial and intramural approaches. Heart Lung Circ. 2019;28:84-101. https://doi.org/10.1016/j.hlc.2018.10.007
Sosa E, Scanavacca M, D'Avila A, Pilleggi F. A new technique to perform epicardial mapping in the electrophysiology laboratory. J Cardiovasc Electrophysiol. 1996;7(6):531-536.
Brugada J, Berruezo A, Cuesta A, et al. Nonsurgical transthoracic epicardial radiofrequency ablation: an alternative in incessant ventricular tachycardia. J Am Coll Cardiol. 2003;41(11):2036-2043.
Cardoso R, Assis FR, D'Avila A. Endo-epicardial vs endocardial-only catheter ablation of ventricular tachycardia: a meta-analysis. J Cardiovasc Electrophysiol. 2019;30(9):1537-1548. https://doi.org/10.1111/jce.14013
Nagashima K, Watanabe I, Okumura Y, et al. Epicardial ablation with irrigated electrodes. Circ J. 2012;76(2):322-327. https://doi.org/10.1253/circj.CJ-11-0984
Caluori G, Wojtaszczyk A, Yasin O, et al. Comparing the incidence of ventricular arrhythmias during epicardial ablation in swine vs. canine models. Pacing Clin Electrophysiol. 2019;42(7):852-867. https://doi.org/10.1111/pace.13698
Jež J, Caluori G, Jadczyk T, et al. Remotely navigated ablations in ventricle myocardium result in acute lesion size comparable to force-sensing manual navigation. Circ Arrhythm Electrophysiol. 2019;12(10):e007644. https://doi.org/10.1161/CIRCEP.119.007644
Das M, Loveday JJ, Wynn GJ, et al. Ablation index, a novel marker of ablation lesion quality: prediction of pulmonary vein reconnection at repeat electrophysiology study and regional differences in target values. EP Eur. 2017;19(5):775-783. https://doi.org/10.1093/europace/euw105