An eQTL in the cystathionine beta synthase gene is linked to osteoporosis in laying hens
Jazyk angličtina Země Francie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
BBS/E/D/20211550
Biotechnology and Biological Sciences Research Council - United Kingdom
BB/M028291/1
Biotechnology and Biological Sciences Research Council - United Kingdom
BBS/E/D/20211553
Biotechnology and Biological Sciences Research Council - United Kingdom
BBS/E/D/20211554
Biotechnology and Biological Sciences Research Council - United Kingdom
291815
Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria
BBS/E/D/20320000
Biotechnology and Biological Sciences Research Council - United Kingdom
BBS/E/D/05191132
Biotechnology and Biological Sciences Research Council - United Kingdom
2014-01840
Svenska Forskningsrådet Formas
BB/J004316/1
Biotechnology and Biological Sciences Research Council - United Kingdom
PubMed
32093603
PubMed Central
PMC7038551
DOI
10.1186/s12711-020-00532-y
PII: 10.1186/s12711-020-00532-y
Knihovny.cz E-zdroje
- MeSH
- chromozomy genetika MeSH
- genotyp MeSH
- jednonukleotidový polymorfismus MeSH
- kladení vajíček MeSH
- kosti a kostní tkáň patofyziologie MeSH
- kostní denzita MeSH
- kur domácí genetika fyziologie MeSH
- lokus kvantitativního znaku * MeSH
- nemoci drůbeže genetika patofyziologie MeSH
- osteoporóza genetika patofyziologie veterinární MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Skeletal damage is a challenge for laying hens because the physiological adaptations required for egg laying make them susceptible to osteoporosis. Previously, we showed that genetic factors explain 40% of the variation in end of lay bone quality and we detected a quantitative trait locus (QTL) of large effect on chicken chromosome 1. The aim of this study was to combine data from the commercial founder White Leghorn population and the F2 mapping population to fine-map this QTL and understand its function in terms of gene expression and physiology. RESULTS: Several single nucleotide polymorphisms on chromosome 1 between 104 and 110 Mb (galGal6) had highly significant associations with tibial breaking strength. The alternative genotypes of markers of large effect that flanked the region had tibial breaking strengths of 200.4 vs. 218.1 Newton (P < 0.002) and, in a subsequent founder generation, the higher breaking strength genotype was again associated with higher breaking strength. In a subsequent generation, cortical bone density and volume were increased in individuals with the better bone genotype but with significantly reduced medullary bone quality. The effects on cortical bone density were confirmed in a further generation and was accompanied by increased mineral maturity of the cortical bone as measured by infrared spectrometry and there was evidence of better collagen cross-linking in the cortical bone. Comparing the transcriptome of the tibia from individuals with good or poor bone quality genotypes indicated four differentially-expressed genes at the locus, one gene, cystathionine beta synthase (CBS), having a nine-fold higher expression in the genotype for low bone quality. The mechanism was cis-acting and although there was an amino-acid difference in the CBS protein between the genotypes, there was no difference in the activity of the enzyme. Plasma homocysteine concentration, the substrate of CBS, was higher in the poor bone quality genotype. CONCLUSIONS: Validated markers that predict bone strength have been defined for selective breeding and a gene was identified that may suggest alternative ways to improve bone health in addition to genetic selection. The identification of how genetic variants affect different aspects of bone turnover shows potential for translational medicine.
Departamento de Mineralogía y Petrologia Universidad de Granada 18002 Granada Spain
Hebei Agricultural University Baoding 071001 Hebei China
Lohmann Tierzucht 7454 Cuxhaven Germany
School of Chemistry The University of Lincoln Lincoln LN6 7TS England UK
Swedish University of Agricultural Sciences 75651 Uppsala Sweden
The Roslin Institute University of Edinburgh Edinburgh EH25 9RG Scotland UK
Zobrazit více v PubMed
Sandilands V. The laying hen and bone fractures. Vet Rec. 2011;169:411–412. doi: 10.1136/vr.d6564. PubMed DOI
Whitehead CC. Overview of bone biology in the egg-laying hen. Poult Sci. 2004;83:193–199. doi: 10.1093/ps/83.2.193. PubMed DOI
Dacke CG, Arkle S, Cook DJ, Wormstone IM, Jones S, Zaidi M, et al. Medullary bone and avian calcium regulation. J Exp Biol. 1993;184:63–88.
Miller SC. Osteoclast cell-surface changes during egg-laying cycle in Japanese quail. J Cell Biol. 1977;75:104–118. doi: 10.1083/jcb.75.1.104. PubMed DOI PMC
van de Velde JP, Vermeiden JPW, Touw JJA, Veldhuijzen JP. Changes in activity of chicken medullary bone cell-populations in relation to the egg-laying cycle. Metab Bone Dis Relat Res. 1984;5:191–193. doi: 10.1016/0221-8747(84)90029-8. PubMed DOI
Fleming RH, McCormack HA, McTeir L, Whitehead CC. Effects of dietary particulate limestone, vitamin K-3 and fluoride and photostimulation on skeletal morphology and osteoporosis in laying hens. Br Poult Sci. 2003;44:683–689. doi: 10.1080/00071660310001643688. PubMed DOI
Fleming RH, Whitehead CC, Alvey D, Gregory NG, Wilkins LJ. Bone-structure and breaking strength in laying hens housed in different husbandry systems. Br Poult Sci. 1994;35:651–662. doi: 10.1080/00071669408417731. PubMed DOI
Bishop SC, Fleming RH, McCormack HA, Flock DK, Whitehead CC. Inheritance of bone characteristics affecting osteoporosis in laying hens. Br Poult Sci. 2000;41:33–40. doi: 10.1080/00071660086376. PubMed DOI
Fleming RH, McCormack HA, McTeir L, Whitehead CC. Incidence, pathology and prevention of keel bone deformities in the laying hen. Br Poult Sci. 2004;45:320–330. doi: 10.1080/00071660410001730815. PubMed DOI
Fleming RH, McCormack HA, McTeir L, Whitehead CC. Relationships between genetic, environmental and nutritional factors influencing osteoporosis in laying hens. Br Poult Sci. 2006;47:742–755. doi: 10.1080/00071660601077949. PubMed DOI
Johnsson M, Jonsson KB, Andersson L, Jensen P, Wright D. Genetic regulation of bone metabolism in the chicken: similarities and differences to mammalian systems. PLoS Genet. 2015;11:e1005250. doi: 10.1371/journal.pgen.1005250. PubMed DOI PMC
Sharman PWA, Morrice DR, Law AS, Burt DW, Hocking PM. Quantitative trait loci for bone traits segregating independently of those for growth in an F-2 broiler X layer cross. Cytogenet Genome Res. 2007;117:296–304. doi: 10.1159/000103191. PubMed DOI
Schreiweis MA, Hester PY, Moody DE. Identification of quantitative trait loci associated with bone traits and body weight in an F2 resource population of chickens. Genet Sel Evol. 2005;37:677–698. doi: 10.1186/1297-9686-37-7-677. PubMed DOI PMC
Sparke AJ, Sims TJ, Avery NC, Bailey AJ, Fleming RH, Whitehead CC. Differences in composition of avian bone collagen following genetic selection for resistance to osteoporosis. Br Poult Sci. 2002;43:127–134. doi: 10.1080/00071660120109962. PubMed DOI
Knott L, Whitehead CC, Fleming RH, Bailey AJ. Biochemical-changes in the collagenous matrix of osteoporotic avian bone. Biochem J. 1995;310:1045–1051. doi: 10.1042/bj3101045. PubMed DOI PMC
Dunn IC, Fleming RH, McCormack HA, Morrice D, Burt DW, Preisinger R, et al. A QTL for osteoporosis detected in an F-2 population derived from White Leghorn chicken lines divergently selected for bone index. Anim Genet. 2007;38:45–49. doi: 10.1111/j.1365-2052.2006.01547.x. PubMed DOI
Al-Barghouthi BM, Farber CR. Dissecting the genetics of osteoporosis using systems approaches. Trends Genet. 2019;35:55–67. doi: 10.1016/j.tig.2018.10.004. PubMed DOI PMC
Yosefi S, Braw-Tal R, Bar A. Intestinal and eggshell calbindin, and bone ash of laying hens as influenced by age and molting. Comp Biochem Physiol A: Mol Integr Physiol. 2003;136:673–682. doi: 10.1016/S1095-6433(03)00244-7. PubMed DOI
Kitts A, Sherry S. The single nucleotide polymorphism database (dbSNP) of nucleotide sequence variation. In: McEntyre J, Ostell J, editors. The NCBI Handbook. Bethesda: National Center for Biotechnology Information; 2002.
Kranis A, Gheyas AA, Boschiero C, Turner F, Yu L, Smith S, et al. Development of a high density 600 K SNP genotyping array for chicken. BMC Genomics. 2013;14:59. doi: 10.1186/1471-2164-14-59. PubMed DOI PMC
Haley CS, Knott SA, Elsen JM. Mapping quantitative trait loci in crosses between outbred lines using least-squares. Genetics. 1994;136:1195–1207. PubMed PMC
Seaton G, Hernandez J, Grunchec J-A, White I, Allen J, De Koning DJ, et al. GridQTL: a grid portal for QTL mapping of compute intensive datasets. In Proceedings of the 8th World Congress on Genetics Applied to Livestock Production: August 13–18, Belo Horizonte. 2006.
Andrews S. FastQC: a quality control tool for high throughput sequence data; 2010. http://www.bioinformatics.babraham.ac.uk/projects/fastqc Accessed 02 Feb 2020.
Martin Marcel. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal. 2011;17(1):10. doi: 10.14806/ej.17.1.200. DOI
Anders S, McCarthy DJ, Chen YS, Okoniewski M, Smyth GK, Huber W, et al. Count-based differential expression analysis of RNA sequencing data using R and Bioconductor. Nat Protoc. 2013;8:1765–1786. doi: 10.1038/nprot.2013.099. PubMed DOI
Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, et al. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol. 2004;5:R80. doi: 10.1186/gb-2004-5-10-r80. PubMed DOI PMC
R_Core_Team, R: A language and environment for statistical computing; 2018 https://www.R-project.org Accessed 02 February 2020.
Schmid M, Smith J, Burt DW, Aken BL, Antin PB, Archibald AL, et al. Third report on chicken genes and chromosomes 2015. Cytogenet Genome Res. 2015;145:78–179. doi: 10.1159/000430927. PubMed DOI PMC
Milne I, Bayer M, Cardle L, Shaw P, Stephen G, Wright F, et al. Tablet–next generation sequence assembly visualization. Bioinformatics. 2010;26:401–402. doi: 10.1093/bioinformatics/btp666. PubMed DOI PMC
Bonfield JK, Whitwham A. Gap5–editing the billion fragment sequence assembly. Bioinformatics. 2010;26:1699–1703. doi: 10.1093/bioinformatics/btq268. PubMed DOI PMC
Rice P, Longden I, Bleasby A. EMBOSS: the European molecular biology open software suite. Trends Genet. 2000;16:276–277. doi: 10.1016/S0168-9525(00)02024-2. PubMed DOI
Zhou RY, de Koning DJ, McCormack H, Wilson P, Dunn I. Short tandem repeats and methylation in the promoter region affect expression of cystathionine beta-synthase gene in the laying hen. Gene. 2019;710:367–374. doi: 10.1016/j.gene.2019.05.049. PubMed DOI
McDerment NA, Wilson PW, Waddington D, Dunn IC, Hocking PM. Identification of novel candidate genes for follicle selection in the broiler breeder ovary. BMC Genomics. 2012;13:494. doi: 10.1186/1471-2164-13-494. PubMed DOI PMC
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(-Delta Delta C) method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI
Wang LQ, Jhee KH, Hua X, DiBello PM, Jacobsen DW, Kruger WD. Modulation of cystathionine beta-synthase level regulates total serum homocysteine in mice. Circ Res. 2004;94:1318–1324. doi: 10.1161/01.RES.0000129182.46440.4a. PubMed DOI
Fleming R, McCormack H, McTeir L, Whitehead C. The relative density of bone types in laying hens. In Proceedings of the 12th European Poultry Conference: 10–14 September 2006; Verona. 2006.
Rodriguez-Navarro AB, McCormack HM, Fleming RH, Alvarez-Lloret P, Romero-Pastor J, Dominguez-Gasca N, et al. Influence of physical activity on tibial bone material properties in laying hens. J Struct Biol. 2018;201:36–45. doi: 10.1016/j.jsb.2017.10.011. PubMed DOI
Boskey A, Mendelsohn R. Infrared analysis of bone in health and disease. J Biomed Opt. 2005;10:031102. doi: 10.1117/1.1922927. PubMed DOI
Rodriguez-Navarro AB. XRD2DScan: new software for polycrystalline materials characterization using two-dimensional X-ray diffraction. J Appl Crystallogr. 2006;39:905–909. doi: 10.1107/S0021889806042488. DOI
Barrett JC, Fry B, Maller J, Daly MJ. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics. 2005;21:263–265. doi: 10.1093/bioinformatics/bth457. PubMed DOI
Feigerlova E, Demarquet L, Gueant JL. One carbon metabolism and bone homeostasis and remodeling: a review of experimental research and population studies. Biochimie. 2016;126:115–123. doi: 10.1016/j.biochi.2016.04.009. PubMed DOI
Robert K, Vialard F, Thiery E, Toyama K, Sinet PM, Janel N, et al. Expression of the cystathionine beta synthase (CBS) gene during mouse development and immunolocalization in adult brain. J Histochem Cytochem. 2003;51:363–371. doi: 10.1177/002215540305100311. PubMed DOI
Sen U, Tyagi N, Kumar M, Moshal KS, Rodriguez WE, Tyagi SC. Cystathionine-beta-synthase gene transfer and 3-deazaadenosine ameliorate inflammatory response in endothelial cells. Am J Physiol Cell Physiol. 2007;293:C1779–C1787. doi: 10.1152/ajpcell.00207.2007. PubMed DOI
Kriebitzsch C, Verlinden L, Eelen G, van Schoor NM, Swart K, Lips P, et al. 1,25-dihydroxyvitamin D-3 influences cellular homocysteine levels in murine preosteoblastic MC3T3-E1 cells by direct regulation of cystathionine beta-synthase. J Bone Miner Res. 2011;26:2991–3000. doi: 10.1002/jbmr.493. PubMed DOI PMC
Blouin S, Thaler HW, Korninger C, Schmid R, Hofstaetter JG, Zoehrer R, et al. Bone matrix quality and plasma homocysteine levels. Bone. 2009;44:959–964. doi: 10.1016/j.bone.2008.12.023. PubMed DOI
Harris ED, Sjoerdsma A. Collagen profile in various clinical conditions. Lancet. 1966;2:707–711. doi: 10.1016/S0140-6736(66)92976-X. PubMed DOI
Levene CI, Sharman DF, Callingham BA. Inhibition of chick-embryo lysyl oxidase by various lathyrogens and the antagonistic effect of pyridoxal. Int J Exp Pathol. 1992;73:613–624. PubMed PMC
Crawford NPS, Qian X, Ziogas A, Papageorge AG, Boersma BJ, Walker RC, et al. Rrp1b, a new candidate susceptibility gene for breast cancer progression and metastasis. PLoS Genet. 2007;3:e214. doi: 10.1371/journal.pgen.0030214. PubMed DOI PMC
Sjostrom M, Stenstrom K, Eneling K, Zwiller J, Katz AI, Takemori H, et al. SIK1 is part of a cell sodium-sensing network that regulates active sodium transport through a calcium-dependent process. Proc Natl Acad Sci USA. 2007;104:16922–16927. doi: 10.1073/pnas.0706838104. PubMed DOI PMC
Lombardi MS, Gillieron C, Berkelaar M, Gabay C. Salt-inducible kinases (SIK) inhibition reduces RANKL-induced osteoclastogenesis. PLoS ONE. 2017;12:e0185426. doi: 10.1371/journal.pone.0185426. PubMed DOI PMC
Xiao HJ, Shan LC, Zhu HM, Xue F. Detection of significant pathways in osteoporosis based on graph clustering. Mol Med Rep. 2012;6:1325–1332. doi: 10.3892/mmr.2012.1082. PubMed DOI
Levasseur R. Bone tissue and hyperhomocysteinemia. Joint Bone Spine. 2009;76:234–240. doi: 10.1016/j.jbspin.2008.11.002. PubMed DOI
Selhub J. Homocysteine metabolism. Annu Rev Nutr. 1999;19:217–246. doi: 10.1146/annurev.nutr.19.1.217. PubMed DOI
Donnelly E, Boskey AL, Baker SP, van der Meulen MCH. Effects of tissue age on bone tissue material composition and nanomechanical properties in the rat cortex. J Biomed Mater Res A. 2010;92:1048–1056. PubMed PMC
Nudelman F, Lausch AJ, Sommerdijk N, Sone ED. In vitro models of collagen biomineralization. J Struct Biol. 2013;183:258–269. doi: 10.1016/j.jsb.2013.04.003. PubMed DOI
Faibish D, Gomes A, Boivin G, Binderman I, Boskey A. Infrared imaging of calcified tissue in bone biopsies from adults with osteomalacia. Bone. 2005;36:6–12. doi: 10.1016/j.bone.2004.08.019. PubMed DOI
Camacho NP, Landis WJ, Boskey AL. Mineral changes in a mouse model of osteogenesis imperfecta detected by Fourier transform infrared microscopy. Connect Tissue Res. 1996;35:259–265. doi: 10.3109/03008209609029199. PubMed DOI
Podisi BK, Knott SA, Dunn IC, Burt DW, Hocking PM. Bone mineral density QTL at sexual maturity and end of lay. Br Poult Sci. 2012;53:763–769. doi: 10.1080/00071668.2012.747674. PubMed DOI
Zhou H, Deeb N, Evock-Clover CM, Mitchell AD, Ashwell CM, Lamont SJ. Genome-wide linkage analysis to identify chromosomal regions affecting phenotypic traits in the chicken. III. Skeletal integrity. Poult Sci. 2007;86:255–266. doi: 10.1093/ps/86.2.255. PubMed DOI
Faveri JC, Pinto LFB, de Camargo GMF, Pedrosa VB, Peixoto JO, Marchesi JAP, et al. Quantitative trait loci for morphometric and mineral composition traits of the tibia bone in a broiler x layer cross. Animal. 2019;13:1563–1569. doi: 10.1017/S175173111800335X. PubMed DOI
Rubin CJ, Brandstrom H, Wright D, Kerje S, Gunnarsson U, Schutz K, et al. Quantitative trait loci for BMD and bone strength in an intercross between domestic and wildtype chickens. J Bone Miner Res. 2007;22:375–384. doi: 10.1359/jbmr.061203. PubMed DOI
Zhang H, Zhang YD, Wang SZ, Liu XF, Zhang Q, Tang ZQ, et al. Detection and fine mapping of quantitative trait loci for bone traits on chicken chromosome one. J Anim Breed Genet. 2010;127:462–468. doi: 10.1111/j.1439-0388.2010.00871.x. PubMed DOI
Raymond B, Johansson AM, McCormack HA, Fleming RH, Schmutz M, Dunn IC, et al. Genome-wide association study for bone strength in laying hens. J Anim Sci. 2018;96:2525–2535. doi: 10.1093/jas/sky157. PubMed DOI PMC
Ou-Yang H, Paschalis EP, Mayo WE, Boskey AL, Mendelsohn R. Infrared microscopic imaging of bone: spatial distribution of CO32. J Bone Miner Res. 2001;16:893–900. doi: 10.1359/jbmr.2001.16.5.893. PubMed DOI
Rodríguez-Navarro AB, Alvarez-Lloret P, Ortega-Huertas M, Rodriguez-Gallego M. Crystal size determination in the micrometer range from spotty X-ray diffraction rings of powder samples. J Am Ceram Soc. 2006;89:2232–2238.
Paschalis EP, Verdelis K, Doty SB, Boskey AL, Mendelsohn R, Yamauchi M. Spectroscopic characterization of collagen cross-links in bone. J Bone Miner Res. 2001;16:1821–1828. doi: 10.1359/jbmr.2001.16.10.1821. PubMed DOI
Dominguez-Gasca N, Benavides-Reyes C, Sanchez-Rodriguez E, Rodriguez-Navarro AB. Changes in avian cortical and medullary bone mineral composition and organization during acid-induced demineralization. Eur J Miner. 2019;31:209–216. doi: 10.1127/ejm/2019/0031-2826. DOI