Developing Nanostructured Ti Alloys for Innovative Implantable Medical Devices
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
26130576
Saint Petersburg State University in the framework of Call 3
14.586.21.0059
Ministry of Science and Higher Education of the Russian Federation
LTARF18010
Ministry of Education, Youth and Sports of the Czech Republic
19-49-02003
Russian Science Foundation
17-20700Y
Grantová Agentura České Republiky
PubMed
32098084
PubMed Central
PMC7078807
DOI
10.3390/ma13040967
PII: ma13040967
Knihovny.cz E-zdroje
- Klíčová slova
- enhanced strength and fatigue life, functionality, medical implants with improved design, nanostructured Ti alloys, severe plastic deformation, shape-memory NiTi alloy,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Recent years have witnessed much progress in medical device manufacturing and the needs of the medical industry urges modern nanomaterials science to develop novel approaches for improving the properties of existing biomaterials. One of the ways to enhance the material properties is their nanostructuring by using severe plastic deformation (SPD) techniques. For medical devices, such properties include increased strength and fatigue life, and this determines nanostructured Ti and Ti alloys to be an excellent choice for the engineering of implants with improved design for orthopedics and dentistry. Various reported studies conducted in this field enable the fabrication of medical devices with enhanced functionality. This paper reviews recent development in the field of nanostructured Ti-based materials and provides examples of the use of ultra-fine grained Ti alloys in medicine.
Zobrazit více v PubMed
Hanawa T. Metals for Biomedical Devices. Elsevier BV; Amsterdam, The Netherlands: 2010. Overview of metals and applications; pp. 3–24.
Froes F.H., Qian M. Titanium in Medical and Dental Applications. 1st ed. Woodhead Publishing; Duxford, UK: 2018.
Valiev R., Islamgaliev R., Alexandrov I. Bulk nanostructured materials from severe plastic deformation. Prog. Mater. Sci. 2000;45:103–189. doi: 10.1016/S0079-6425(99)00007-9. DOI
Valiev R.Z., Estrin Y., Horita Z., Langdon T.G., Zehetbauer M.J., Zhu Y.T. Producing bulk ultrafine-grained materials by severe plastic deformation: Ten years later. JOM. 2016;68:1216–1226. doi: 10.1007/s11837-016-1820-6. DOI
Valiev R.Z., Estrin Y., Horita Z., Langdon T.G., Zehetbauer M.J., Zhu Y.T. Fundamentals of superior properties in bulk nanoSPD materials. Mater. Res. Lett. 2016;4:1–21. doi: 10.1080/21663831.2015.1060543. DOI
Whang S.H. Nanostructured Metals and Alloys: Processing, Microstructure, Mechanical Properties and Applications. 1st ed. Woodhead Publishing Limited; Cambridge, UK: 2011.
Rosochowski A. Severe Plastic Deformation Technology. Whittles Publishing; Scotland, UK: 2017.
Estrin Y., Vinogradov A. Extreme grain refinement by severe plastic deformation: A wealth of challenging science. Acta Mater. 2013;61:782–817. doi: 10.1016/j.actamat.2012.10.038. DOI
Valiev R.Z., Langdon T.G. Principles of equal-channel angular pressing as a processing tool for grain refinement. Prog. Mater. Sci. 2006;51:881–981. doi: 10.1016/j.pmatsci.2006.02.003. DOI
Rack H.J., Qazi J., Allard L., Valiev R.Z. Thermal Stability of Severe Plastically Deformed VT-6 (Ti-6Al-4V) Mater. Sci. Forum. 2008;584:893–898. doi: 10.4028/www.scientific.net/MSF.584-586.893. DOI
Takizawa Y., Masuda T., Fujimitsu K., Kajita T., Watanabe K., Yumoto M., Otagiri Y., Horita Z. Scaling up of High-Pressure Sliding (HPS) for Grain Refinement and Superplasticity. Met. Mater. Trans. A. 2016;47:4669–4681. doi: 10.1007/s11661-016-3623-3. DOI
Fakhretdinova E.I., Raab G.I., Valiev R.Z. Modeling of Metal Flow during Processing by Multi-ECAP-Conform. Adv. Eng. Mater. 2015;17:1723–1727. doi: 10.1002/adem.201500125. DOI
Valiev R.Z. Nanostructuring of metals by severe plastic deformation for advanced properties. Nat. Mater. 2004;3:511–516. doi: 10.1038/nmat1180. PubMed DOI
Polyakova V., Semenova I., Valiev R. Influence of annealing on the structure and mechanical properties of ultrafine-grained alloy Ti-6Al-7Nb, processed by severe plastic deformation. Mater. Sci. Forum. 2011;667–669:943–948. doi: 10.4028/www.scientific.net/MSF.667-669.943. DOI
Semenova I., Yakushina E., Nurgaleeva V., Valiev R. Nanostructuring of Ti-aloys by SPD processing to achieve superior fatigue properties. Int. J. Mat. Res. 2009;100:1691–1696. doi: 10.3139/146.110234. DOI
Lowe T.C., Valiev R.Z. Frontiers of bulk nanostructured metals in biomedical applications. In: Tiwari A., Nordin A.N., editors. Advanced Biomaterials and Biodevices. Wiley-Scrivener Publ.; Beverly, MA, USA: 2014. pp. 3–52.
Valiev R.Z., Sabirov I., Zemtsova E.G., Parfenov E.V., Dluhoš L., Lowe T.C. Nanostructured pure Ti for development of miniturized biomedical implants. In: Froes F., Qian M., editors. Titanium in Medical and Dental Applications. Woodhead Publishing; Duxford, UK: 2018. pp. 393–418.
Zemtsova E., Arbenin A., Valiev R.Z., Smirnov V.M. Titanium in Medical and Dental Applications. Elsevier BV; Amsterdam, The Netherlands: 2018. Modern techniques of surface geometry modification for the implants based on titanium and its alloys used for improvement of the biomedical characteristics; pp. 115–145.
Valiev R.Z., Semenova I.P., Latysh V.V., Rack H., Lowe T.C., Petruzelka J., Dluhos L., Hrusak D., Sochova J. Nanostructured Titanium for Biomedical Applications. Adv. Eng. Mater. 2008;10:B15–B17. doi: 10.1002/adem.200800026. DOI
Estrin Y., Lapovok R., Medvedev A.E., Kasper C., Ivanová E., Lowe T.C. Titanium in Medical and Dental Applications. Elsevier BV; Amsterdam, The Netherlands: 2018. Mechanical performance and cell response of pure titanium with ultrafine-grained structure produced by severe plastic deformation; pp. 419–454.
Dyakonov G., Mironov S., Semenova I.P., Valiev R.Z., Semiatin S.L. Microstructure evolution and strengthening mechanisms in commercial-purity titanium subjected to equal-channel angular pressing. Mater. Sci. Eng. A. 2017;701:289–301. doi: 10.1016/j.msea.2017.06.079. DOI
Brunette D.M., Tengvall P., Textor M., Thomsen P. Titanium in Medicine. Springer-Verlag; Berlin/Heidelberg, Germany: 2003.
Gunderov D., Polyakov A., Semenova I., Raab G., Churakova A., Gimaltdinova E., Sabirov I., Segurado J., Sitdikov V., Alexandrov I., et al. Evolution of microstructure, macrotexture and mechanical properties of commercially pure Ti during ECAP-conform processing and drawing. Mater. Sci. Eng. A. 2013;562:128–136. doi: 10.1016/j.msea.2012.11.007. DOI
Mishnaevsky L., Levashov E., Valiev R.Z., Segurado J., Sabirov I., Enikeev N., Prokoshkin S., Solov’Yov A.V., Korotitskiy A., Gutmanas E., et al. Nanostructured titanium-based materials for medical implants: Modeling and development. Mater. Sci. Eng. R: Rep. 2014;81:1–19. doi: 10.1016/j.mser.2014.04.002. DOI
Boyer R., Welsch G., Collings E. Materials Properties Handbook: Titanium Alloys. ASM International; Materials Park, OH, USA: 1998.
Petruželka J., Dluhoš L., Hrušák D., Sochová J. Nanostructured titanium - application in dental implants. Trans. VSB Tech. Univ. Ostrava. 2006;52:177–186.
Faghihi S., Azari F., Zhilyaev A., Szpunar J., Vali H., Tabrizian M. Cellular and molecular interactions between MC3T3-E1 pre-osteoblasts and nanostructured titanium produced by high-pressure torsion. Biomater. 2007;28:3887–3895. doi: 10.1016/j.biomaterials.2007.05.010. PubMed DOI
Estrin Y., Ivanova E.P., Michalska A., Truong V.K., Lapovok R., Boyd R. Accelerated stem cell attachment to ultrafine grained titanium. Acta Biomater. 2011;7:900–906. doi: 10.1016/j.actbio.2010.09.033. PubMed DOI
Nie F.L., Zheng Y.F., Wei S.C., Wang D.S., Yu Z.T., Salimgareeva G.K., Polyakov A.V., Valiev R.Z. In vitro and in vivo studies on nanocrystalline Ti fabricated by equal channel angular pressing with microcrystalline CP Ti as control. J. Biomed. Mater. Res. – Part A. 2013;101A:1694–1707. doi: 10.1002/jbm.a.34472. PubMed DOI
Geetha M., Singh A., Asokamani R., Gogia A. Ti based biomaterials, the ultimate choice for orthopaedic implants – A review. Prog. Mater. Sci. 2009;54:397–425. doi: 10.1016/j.pmatsci.2008.06.004. DOI
Nakai M., Niinomi M., Akahori T., Ohtsu N., Nishimura H., Toda H., Fukui H., Ogawa M. Surface hardening of biomedical Ti–29Nb–13Ta–4.6Zr and Ti–6Al–4V ELI by gas nitriding. Mater. Sci. Eng. A. 2008;486:193–201. doi: 10.1016/j.msea.2007.08.065. DOI
Saitova L., Höppel H.W., Göken M., Semenova I., Valiev R. Cyclic deformation behavior and fatigue lives of ultrafine-grained Ti-6AL-4V ELI alloy for medical use. Int. J. Fatigue. 2009;31:322–331. doi: 10.1016/j.ijfatigue.2008.08.007. DOI
Semenova I.P., Saitova L.R., Raab G.I., Korshunov A.I., Zhu Y.T., Lowe T.C., Valiev R.Z. Microstructural features and mechanical properties of the Ti-6Al-4V ELI alloy processed by severe plastic deformation. Mater. Sci. Forum. 2006;503–504:757–762. doi: 10.4028/www.scientific.net/MSF.503-504.757. DOI
Valiev R.Z., Zhilyaev A.P., Langdon T.G. Bulk Nanostructured Materials: Fundamentals and Applications. John Wiley & Sons; Hoboken, NJ, USA: 2014.
Hoseini M., Pourian M.H., Bridier F., Vali H., Szpunar J.A., Bocher P. Thermal stability and annealing behaviour of ultrafine grained commercially pure titanium. Mater. Sci. Eng. A. 2012;532:58–63. doi: 10.1016/j.msea.2011.10.062. DOI
Zháňal P., Václavová K., Hadzima B., Harcuba P., Stráský J., Janeček M., Polyakova V., Semenova I.P., Hájek M., Hajizadeh K. Thermal stability of ultrafine-grained commercial purity Tiand Ti–6Al–7Nb alloy investigated by electrical resistance, microhardness and scanning electron microscopy. Mater. Sci. Eng. A. 2016;651:886–892.
Bartha K., Zháňal P., Stráský J., Čížek J., Dopita M., Lukáč F., Harcuba P., Hájek M., Polyakova V., Semenova I.P., et al. Lattice defects in severely deformed biomedical Ti-6Al-7Nb alloy and thermal stability of its ultra-fine grained microstructure. J. Alloys Compd. 2019;788:881–890. doi: 10.1016/j.jallcom.2019.02.173. DOI
Zherebtsov S., Salishchev G., Galeyev R., Maekawa K. Mechanical Properties of Ti–6Al–4V Titanium Alloy with Submicrocrystalline Structure Produced by Severe Plastic Deformation. Mater. Trans. 2005;46:2020–2025.
Niinomi M. Mechanical biocompatibilities of titanium alloys for biomedical applications. J. Mech. Behav. Biomed. Mater. 2008;1:30–42. PubMed
Steinemann S.G. Titanium—The material of choice? Periodontology 2000. 1998;17:7–21. PubMed
Raabe D., Sander B., Friák M., Ma D., Neugebauer J. Theory-guided bottom-up design of β-titanium alloys as biomaterials based on first principles calculations: Theory and experiments. Acta Mater. 2007;55:4475–4487. doi: 10.1016/j.actamat.2007.04.024. DOI
Hou F., Li S., Hao Y., Yang R. Nonlinear elastic deformation behaviour of Ti–30Nb–12Zr alloys. Scr. Mater. 2010;63:54–57. doi: 10.1016/j.scriptamat.2010.03.011. DOI
Niinomi M., Nakai M., Hieda J. Development of new metallic alloys for biomedical applications. Acta Biomater. 2012;8:3888–3903. doi: 10.1016/j.actbio.2012.06.037. PubMed DOI
Sun F., Zhang J.Y., Vermaut P., Choudhuri D., Alam T., Mantri S.A., Svec P., Gloriant T., Jacques P.J., Banerjee R., et al. Strengthening strategy for a ductile metastable β-titanium alloy using low-temperature aging. Mater. Res. Lett. 2017;5:547–553. doi: 10.1080/21663831.2017.1350211. DOI
Najdahmadi A., Zarei-Hanzaki A., Farghadani E. Mechanical properties enhancement in Ti–29Nb–13Ta–4.6Zr alloy via heat treatment with no detrimental effect on its biocompatibility. Mater. Des. 2014;54:786–791. doi: 10.1016/j.matdes.2013.09.007. DOI
Xu W., Wu X., Figueiredo R.B., Stoica M., Calin M., Eckert J., Langdon T.G., Xia K. Nanocrystalline body-centred cubic beta-titanium alloy processed by high-pressure torsion. Int. J. Mater. Res. 2009;100:1662–1667. doi: 10.3139/146.110229. DOI
Zafari A., Wei X., Xu W., Xia K. Formation of nanocrystalline β structure in metastable beta Ti alloy during high pressure torsion: The role played by stress induced martensitic transformation. Acta Mater. 2015;97:146–155. doi: 10.1016/j.actamat.2015.06.042. DOI
Xu W., Wu X., Calin M., Stoica M., Eckert J., Xia K. Formation of an ultrafine-grained structure during equal-channel angular pressing of a β-titanium alloy with low phase stability. Scr. Mater. 2009;60:1012–1015. doi: 10.1016/j.scriptamat.2009.02.043. DOI
Polyakov A.V., Semenova I.P., Ivanov E., Valiev R.Z. Ultra-fine grained β-type TNZT ELI alloy with high strength and low elastic modulus. IOP Conf. Ser.: Mater. Sci. Eng. 2019;461:012077. doi: 10.1088/1757-899X/461/1/012077. DOI
Xie K., Wang Y.-B., Zhao Y., Chang L., Wang G., Chen Z., Cao Y., Liao X., Lavernia E.J., Valiev R.Z., et al. Nanocrystalline β-Ti alloy with high hardness, low Young’s modulus and excellent in vitro biocompatibility for biomedical applications. Mater. Sci. Eng. C. 2013;33:3530–3536. doi: 10.1016/j.msec.2013.04.044. PubMed DOI
Stráský J., Janeĉek M., Semenova I., Čížek J., Bartha K., Harcuba P., Polyakova V., Gatina S. Microstructure and lattice defects in ultrafine grained biomedical α+β and metastable β Ti alloys. In: Froes F., Qian M., editors. Titanium in Medical and Dental Applications. Woodhead Publishing; Duxford, UK: 2018. pp. 455–475.
Valiev R.Z. Superior Strength in Ultrafine-Grained Materials Produced by SPD Processing. Mater. Trans. 2014;55:13–18. doi: 10.2320/matertrans.MA201325. DOI
Janeček M., Čížek J., Stráský J., Bartha K., Hruška P., Polyakova V., Gatina S., Semenova I. Microstructure evolution in solution treated Ti15Mo alloy processed by high pressure torsion. Mater. Charact. 2014;98:233–240. doi: 10.1016/j.matchar.2014.10.024. DOI
Bartha K., Stráský J., Polyakova V., Stráská J., Nejezchlebová J., Seiner H., Semenova I., Janeček M. Microhardness and microstructure evolution of ultra-fine grained Ti-15Mo and TIMETAL LCB alloys prepared by high pressure torsion. Mater. Sci. Eng. A. 2017;682:220–228.
Gatina S., Semenova I., Janeček M., Stráský J. Effect of high pressure torsion on the aging kinetics of β-titanium Ti-15Mo alloy. IOP Conf. Series: Mater. Sci. Eng. 2014;63:012068. doi: 10.1088/1757-899X/63/1/012068. DOI
Bartha K., Stráský J., Veverková A., Barriobero-Vila P., Lukáč F., Doležal P., Sedlák P., Polyakova V., Semenova I.P., Janeček M. Effect of the High-Pressure Torsion (HPT) and Subsequent Isothermal Annealing on the Phase Transformation in Biomedical Ti15Mo Alloy. Metals. 2019;9:1194. doi: 10.3390/met9111194. DOI
Bartha K., Veverková A., Stráský J., Veselý J., Minárik P., Correa C., Polyakova V., Semenova I., Janeček M. Effect of the severe plastic deformation by ECAP on microstructure and phase transformations in Ti-15Mo alloy. Mater. Today Commun. 2020;22:100811. doi: 10.1016/j.mtcomm.2019.100811. DOI
Yilmazer H., Niinomi M., Nakai M., Hieda J., Todaka Y., Akahori T., Miyazaki T. Heterogeneous structure and mechanical hardness of biomedical -type Ti–29Nb–13Ta–4.6Zr subjected to high-pressure torsion. J. Mech. Behav. Biomed. Mater. 2012;10:235–245. doi: 10.1016/j.jmbbm.2012.02.022. PubMed DOI
Yilmazer H., Niinomi M., Nakai M., Cho K., Hieda J., Todaka Y., Miyazaki T. Mechanical properties of a medical β-type titanium alloy with specific microstructural evolution through high-pressure torsion. Mater. Sci. Eng. C. 2013;33:2499–2507. doi: 10.1016/j.msec.2013.01.056. PubMed DOI
Lin Z., Wang L., Xue X., Lu W., Qin J., Zhang D. Microstructure evolution and mechanical properties of a Ti–35Nb–3Zr–2Ta biomedical alloy processed by equal channel angular pressing (ECAP) Mater. Sci. Eng. C. 2013;33:4551–4561. doi: 10.1016/j.msec.2013.07.010. PubMed DOI
Otsuka K., Ren X. Physical metallurgy of Ti–Ni-based shape memory alloys. Prog. Mater. Sci. 2005;50:511–678. doi: 10.1016/j.pmatsci.2004.10.001. DOI
Brailovski V., Prokoshkin S., Terriault P., Trochu F. Shape Memory Alloys: Fundamentals, Modeling and Applications. E´cole de technologie supe´rieure (ETS); Montreal, QC, Canada: 2003. p. 851.
Pushin V.G., Stolyarov V.V., Valiev R.Z., Kourov N.I., Kuranova N.N., Prokofiev E.A., Yurchenko L.I. Features of structure and phase transformation in shape memory TiNi-based alloys after severe plastic deformation. Ann. Chim. Sci. Mater. 2002;27:77–88. doi: 10.1016/S0151-9107(02)80009-5. DOI
Valiev R., Gunderov D., Prokofiev E., Pushin V., Zhu Y. Nanostruturing of TiNi alloy by SPD processing for advanced properties. Mater. Trans. 2008;49:97–101. doi: 10.2320/matertrans.ME200722. DOI
Malard B., Pilch J., Sittner P., Delville R., Curfs C. In situ investigation of the fast microstructure evolution during electropulse treatment of cold drawn NiTi wires. Acta Mater. 2011;59:1542–1556. doi: 10.1016/j.actamat.2010.11.018. DOI
Burow J., Frenzel J., Somsen C., Prokofiev E., Valiev R., Eggeler G. Grain Nucleation and Growth in Deformed NiTi Shape Memory Alloys: An In Situ TEM Study. Shape Mem. Superelasticity. 2017;3:347–360. doi: 10.1007/s40830-017-0119-y. DOI
Waitz T., Kazykhanov V., Karnthaler H. Martensitic phase transformations in nanocrystalline NiTi studied by TEM. Acta Mater. 2004;52:137–147. doi: 10.1016/j.actamat.2003.08.036. DOI
Prokoshkin S.D., Khmelevskaya I., Dobatkin S., Trubitsyna I., Tatyanin E., Stolyarov V., Prokofiev E. Alloy composition, deformation temperature, pressure and post-deformation annealing effects in severely deformed Ti–Ni based shape memory alloys. Acta Mater. 2005;53:2703–2714. doi: 10.1016/j.actamat.2005.02.032. DOI
Stolyarov V.V., Prokofiev E.A., Prokoshkin S.D., Dobatkin S.V., Trubitsyna I.B., Khmelevskaya I.Y., Pushin V.G., Valiev R.Z. Structural features, techanical properties, and the shape-memory effect in TiNi alloys subjected to equal-channel angular pressing. Phys. Met. Metall. 2005;100:608–618.
Tong Y., Guo B., Chen F., Tian B., Li L., Zheng Y., Prokofiev E., Gunderov D.V., Valiev R.Z. Thermal cycling stability of ultrafine-grained TiNi shape memory alloys processed by equal channel angular pressing. Scr. Mater. 2012;67:1–4. doi: 10.1016/j.scriptamat.2012.03.005. DOI
Prokofiev E., Burow J., Frenzel J., Gunderov D., Eggeler G., Valiev R. Phase transformations and functional properties of NiTi alloy with ultrafine-grained structure. Mater. Sci. Forum. 2011;667–669:1059–1064. doi: 10.4028/www.scientific.net/MSF.667-669.1059. DOI
Semenova I.P., Klevtsov G.V., Klevtsova N.A., Dyakonov G., Matchin A.A., Valiev R.Z. Nanostructured Titanium for Maxillofacial Mini-Implants. Adv. Eng. Mater. 2016;18:1216–1224. doi: 10.1002/adem.201500542. DOI
ANSYS Workbench. [(accessed on 24 October 2019)]; Available online: https://cae-expert.ru/product/ansys-workbench.
Timplant ®-Dental Implants. [(accessed on 24 October 2019)]; Available online: http://www.timplant.cz/en/
Minasov T.B., Bakusov L.M., Nasyrov R.V. Intratissular Tension in the Segments of the Musculoskeletal System. LAP LAMBERT Acad. Publ.; Saarbrucken, Germany: 2012.
Minasov T.B., Minasov B.S. The effectiveness of combined therapy of postmenopausal osteoporosis using dual-action medicine. Traumatol. Orthop. 2011;4:92–94.