Complete Genome and Plasmids Sequences of a Clinical Proteus mirabilis Isolate Producing Plasmid Mediated NDM-1 from Italy
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
17-29239A
Czech Health Research Council
Q39
Charles University Research Fund PROGRES
LO1503
National Sustainability Program I (NPU I)
CZ.02.1.01/0.0/0.0/16_019/0000787
Ministry of Education Youth and Sports of the Czech Republic
PubMed
32121207
PubMed Central
PMC7142865
DOI
10.3390/microorganisms8030339
PII: microorganisms8030339
Knihovny.cz E-zdroje
- Klíčová slova
- Proteus mirabilis, blaNDM-1, qnrD1,
- Publikační typ
- časopisecké články MeSH
Background: The spread of carbapenemase genes, such as blaNDM-1, in Proteus mirabilis poses a public health threat. The aim of the study was to characterize the genome and plasmids sequences of an NDM-1-positive strain (IBCRE14), which was isolated in 2019 from a catheterized patient hospitalized in Italy. Methods: Whole genome sequencing (WGS) of IBCRE14 was performed on extracted genomic DNA using Sequel I platform. Genome assembly was performed using "Microbial Assembly". Genomic analysis was conducted by uploading the contigs to ResFinder and PlasmidFinder databases from the Center for Genomic Epidemiology. Results: IBCRE14 had a genome size of 4,018,329 bp and harboured genes coding for resistance to aminoglycosides (aadA1), phenicol (cat), tetracycline (tetJ), and trimethoprim (dfrA1). A large plasmid (pIB_NDM_1) harboured antibiotic resistance genes against sulphonamide (sul1), trimethoprim (dfrA14), tetracycline (tetB), rifampicin (arr-2), aminoglycosides (aadA1, aph3-VI), and beta-lactams (blaOXA-10, blaNDM-1). Furthermore, a small plasmid (pIB_COL3M) harboured a qnrD1 gene coding for quinolone resistance. Conclusion: The ability to conjugate and the presence of a composite antibiotic resistance island suggests that pIB_NDM_1 could both acquire more resistance genes and easily disseminate. To our knowledge, this is the first report on an untypable plasmid harbouring blaNDM-1 in P. mirabilis, in Italy.
Biomedical Center Faculty of Medicine in Pilsen Charles University 32300 Pilsen Czech Republic
Laboratorio di Microbiologia Azienda Socio Sanitaria Territoriale di Lodi 26900 Lodi Italy
Zobrazit více v PubMed
Schaffer J.N., Pearson M.M. Proteus mirabilis and Urinary Tract Infections. Microbiol Spectr. 2015;3:383–433. doi: 10.1128/microbiolspec.UTI-0017-2013. PubMed DOI PMC
Dong D., Li M., Liu Z., Feng J., Jia N., Zhao H., Zhao B., Zhou T., Zhang X., Tong Y., et al. Characterization of a NDM-1- Encoding Plasmid pHFK418-NDM From a Clinical Proteus mirabilis Isolate Harboring Two Novel Transposons, Tn6624 and Tn6625. Front. Microbiol. 2019;10:2030. doi: 10.3389/fmicb.2019.02030. PubMed DOI PMC
Kanzari L., Ferjani S., Saidani M., Hamzaoui Z., Jendoubi A., Harbaoui S., Ferjani A., Rehaiem A., Boubaker I.B.B., Slim A. First report of extensively-drug-resistant Proteus mirabilis isolate carrying plasmid-mediated blaNDM-1 in a Tunisian intensive care unit. Int. J. Antimicrob. Agents. 2018;52:906–909. doi: 10.1016/j.ijantimicag.2018.06.009. PubMed DOI
Cohen-Nahum K., Saidel-Odes L., Riesenberg K., Schlaeffer F., Borer A. Urinary tract infections caused by multi-drug resistant Proteus Mirabilis: Risk factors and clinical outcomes. Infection. 2010;38:41–46. doi: 10.1007/s15010-009-8460-5. PubMed DOI
D’Andrea M.M., Literacka E., Zioga A., Giani T., Baraniak A., Fiett J., Sadowy E., Tassios P.T., Rossolini G.M., Gniadkowski M. Evolution and spread of a multidrug-resistant Proteus Mirabilis clone with chromosomal AmpC-type cephalosporinases in Europe. Antimicrob. Agents Chemother. 2011;55:2735–2742. doi: 10.1128/AAC.01736-10. PubMed DOI PMC
Luzzaro F., Brigante G., D’Andrea M.M., Pini B., Giani T., Mantengoli E., Rossolini G.M., Toniolo A. Spread of multidrug-resistant Proteus mirabilis isolates producing an AmpC-type beta-lactamase: Epidemiology and clinical management. Int. J. Antimicrob. Agents. 2009;33:328–333. doi: 10.1016/j.ijantimicag.2008.09.007. PubMed DOI
Cornaglia G., Giamarellou H., Rossolini G.M. Metallo-β-lactamases: A last frontier for β-lactams? Lancet. Infect. Dis. 2011;11:381–393. doi: 10.1016/S1473-3099(11)70056-1. PubMed DOI
Qin S., Hui Q., Zhang Q., Zhao D., Liu Z.-Z., Tian H., Xu L. Emergence of extensively drug-resistant Proteus mirabilis harboring a conjugative NDM-1 plasmid and a novel Salmonella genomic island 1 variant, SGI1-Z. Antimicrob. Agents Chemother. 2015;59:6601–6604. doi: 10.1128/AAC.00292-15. PubMed DOI PMC
Ferreira Firmo E., Beltrão E.M.B., da Silva F.R.F., Alves L.C., Brayner F.A., Veras D.L., Lopes A.C.S. Association of bla(NDM-1) with bla(KPC-2) and aminoglycoside-modifying enzymes genes among Klebsiella pneumoniae, Proteus mirabilis and Serratia marcescens clinical isolates in Brazil. J. Glob. Antimicrob. Resist. 2019;19:302–322. PubMed
Saidani M., Lilia M., Alya S., Monia D.-J., Pierre C., Faten B.C., Aymen M., Wassim M., Jean-Yves M., Marisa H. Epidemiology, antimicrobial resistance, and extended-spectrum beta-lactamase-producing Enterobacteriaceae in clinical bovine mastitis in Tunisia. Microb. Drug Resist. 2018;24:1242–1248. doi: 10.1089/mdr.2018.0049. PubMed DOI
Valentin T., Feierl G., Masoud-Landgraf L., Kohek P., Luxner J., Zarfel G. Proteus mirabilis harboring carbapenemase NDM-5 and ESBL VEB-6 detected in Austria. Diagn. Microbiol. Infect. Dis. 2018;91:284–286. doi: 10.1016/j.diagmicrobio.2018.02.009. PubMed DOI
Bhattacharya D., Thamizhmani R., Bhattacharya H., Sayi D.S., Muruganandam N., Roy S., Sugunan A.P. Emergence of New Delhi metallo-β-lactamase 1 (NDM-1) producing and multidrug resistant uropathogens causing urinary tract infections in Andaman Islands, India. Microb. Drug Resist. 2013;19:457–462. doi: 10.1089/mdr.2013.0070. PubMed DOI
Williamson D.A., Sidjabat H.E., Freeman J.T., Roberts S.A., Silvey A., Woodhouse R., Mowat E., Dyet K., Paterson D.L., Blackmore T., et al. Identification and molecular characterisation of New Delhi metallo-β-lactamase-1 (NDM-1)- and NDM-6-producing Enterobacteriaceae from New Zealand hospitals. Int. J. Antimicrob. Agents. 2012;39:529–533. doi: 10.1016/j.ijantimicag.2012.02.017. PubMed DOI
The European Committee on Antimicrobial Susceptibility Testing . Breakpoint tables for interpretation of MICs and zone diameters. The European Committee on Antimicrobial Susceptibility Testing (EUCAST); Växjö, Sweden: 2020. Version 10.0.
Zankari E., Henrik H., Salvatore C., Martin V., Simon R., Ole L., Frank M.A., Mette V.L. Identification of acquired antimicrobial resistance genes. J. Antimicrob. Chemother. 2012;11:2640–2644. doi: 10.1093/jac/dks261. PubMed DOI PMC
Carattoli A., Zankari E.G.-F., Mette V.L., Ole L., Laura V., Frank M.A., Henrik H. In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob. Agents Chemother. 2014;7:3895–3903. doi: 10.1128/AAC.02412-14. PubMed DOI PMC
Arndt D., Grant J., Marcu A., Sajed T., Pon A., Liang Y., Wishart D.S. PHASTER: A better, faster version of the PHAST phage search tool. Nucleic Acids Res. 2016;44:W16–W21. doi: 10.1093/nar/gkw387. PubMed DOI PMC
Zhou Y., Liang Y., Lynch K.H., Dennis J.J., Wishart D.S. PHAST: A fast phage search tool. Nucleic Acids Res. 2011;39:W347–W352. PubMed PMC
Dolejska M., Costas C., Papagiannitsis M.M., Lenka D.-G., Adam V. Characterization of the complete nucleotide sequences of IMP-4-encoding plasmids, belonging to diverse Inc families, recovered from Enterobacteriaceae isolates of wildlife origin. Antimicrob. Agents Chemother. 2018;5:e02434-17. doi: 10.1128/AAC.02434-17. PubMed DOI PMC
Zhang S., Sun J., Liao X.P., Hu Q.J., Liu B.T., Fang L.X., Deng H., Ma J., Xiao X., Zhu H.Q., et al. Prevalence and plasmid characterization of the qnrD determinant in Enterobacteriaceae isolated from animals, retail meat products, and humans. Microb. Drug Resist. 2013;19:331–335. doi: 10.1089/mdr.2012.0146. PubMed DOI