Complete Genome and Plasmids Sequences of a Clinical Proteus mirabilis Isolate Producing Plasmid Mediated NDM-1 from Italy

. 2020 Feb 28 ; 8 (3) : . [epub] 20200228

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32121207

Grantová podpora
17-29239A Czech Health Research Council
Q39 Charles University Research Fund PROGRES
LO1503 National Sustainability Program I (NPU I)
CZ.02.1.01/0.0/0.0/16_019/0000787 Ministry of Education Youth and Sports of the Czech Republic

Odkazy

PubMed 32121207
PubMed Central PMC7142865
DOI 10.3390/microorganisms8030339
PII: microorganisms8030339
Knihovny.cz E-zdroje

Background: The spread of carbapenemase genes, such as blaNDM-1, in Proteus mirabilis poses a public health threat. The aim of the study was to characterize the genome and plasmids sequences of an NDM-1-positive strain (IBCRE14), which was isolated in 2019 from a catheterized patient hospitalized in Italy. Methods: Whole genome sequencing (WGS) of IBCRE14 was performed on extracted genomic DNA using Sequel I platform. Genome assembly was performed using "Microbial Assembly". Genomic analysis was conducted by uploading the contigs to ResFinder and PlasmidFinder databases from the Center for Genomic Epidemiology. Results: IBCRE14 had a genome size of 4,018,329 bp and harboured genes coding for resistance to aminoglycosides (aadA1), phenicol (cat), tetracycline (tetJ), and trimethoprim (dfrA1). A large plasmid (pIB_NDM_1) harboured antibiotic resistance genes against sulphonamide (sul1), trimethoprim (dfrA14), tetracycline (tetB), rifampicin (arr-2), aminoglycosides (aadA1, aph3-VI), and beta-lactams (blaOXA-10, blaNDM-1). Furthermore, a small plasmid (pIB_COL3M) harboured a qnrD1 gene coding for quinolone resistance. Conclusion: The ability to conjugate and the presence of a composite antibiotic resistance island suggests that pIB_NDM_1 could both acquire more resistance genes and easily disseminate. To our knowledge, this is the first report on an untypable plasmid harbouring blaNDM-1 in P. mirabilis, in Italy.

Zobrazit více v PubMed

Schaffer J.N., Pearson M.M. Proteus mirabilis and Urinary Tract Infections. Microbiol Spectr. 2015;3:383–433. doi: 10.1128/microbiolspec.UTI-0017-2013. PubMed DOI PMC

Dong D., Li M., Liu Z., Feng J., Jia N., Zhao H., Zhao B., Zhou T., Zhang X., Tong Y., et al. Characterization of a NDM-1- Encoding Plasmid pHFK418-NDM From a Clinical Proteus mirabilis Isolate Harboring Two Novel Transposons, Tn6624 and Tn6625. Front. Microbiol. 2019;10:2030. doi: 10.3389/fmicb.2019.02030. PubMed DOI PMC

Kanzari L., Ferjani S., Saidani M., Hamzaoui Z., Jendoubi A., Harbaoui S., Ferjani A., Rehaiem A., Boubaker I.B.B., Slim A. First report of extensively-drug-resistant Proteus mirabilis isolate carrying plasmid-mediated blaNDM-1 in a Tunisian intensive care unit. Int. J. Antimicrob. Agents. 2018;52:906–909. doi: 10.1016/j.ijantimicag.2018.06.009. PubMed DOI

Cohen-Nahum K., Saidel-Odes L., Riesenberg K., Schlaeffer F., Borer A. Urinary tract infections caused by multi-drug resistant Proteus Mirabilis: Risk factors and clinical outcomes. Infection. 2010;38:41–46. doi: 10.1007/s15010-009-8460-5. PubMed DOI

D’Andrea M.M., Literacka E., Zioga A., Giani T., Baraniak A., Fiett J., Sadowy E., Tassios P.T., Rossolini G.M., Gniadkowski M. Evolution and spread of a multidrug-resistant Proteus Mirabilis clone with chromosomal AmpC-type cephalosporinases in Europe. Antimicrob. Agents Chemother. 2011;55:2735–2742. doi: 10.1128/AAC.01736-10. PubMed DOI PMC

Luzzaro F., Brigante G., D’Andrea M.M., Pini B., Giani T., Mantengoli E., Rossolini G.M., Toniolo A. Spread of multidrug-resistant Proteus mirabilis isolates producing an AmpC-type beta-lactamase: Epidemiology and clinical management. Int. J. Antimicrob. Agents. 2009;33:328–333. doi: 10.1016/j.ijantimicag.2008.09.007. PubMed DOI

Cornaglia G., Giamarellou H., Rossolini G.M. Metallo-β-lactamases: A last frontier for β-lactams? Lancet. Infect. Dis. 2011;11:381–393. doi: 10.1016/S1473-3099(11)70056-1. PubMed DOI

Qin S., Hui Q., Zhang Q., Zhao D., Liu Z.-Z., Tian H., Xu L. Emergence of extensively drug-resistant Proteus mirabilis harboring a conjugative NDM-1 plasmid and a novel Salmonella genomic island 1 variant, SGI1-Z. Antimicrob. Agents Chemother. 2015;59:6601–6604. doi: 10.1128/AAC.00292-15. PubMed DOI PMC

Ferreira Firmo E., Beltrão E.M.B., da Silva F.R.F., Alves L.C., Brayner F.A., Veras D.L., Lopes A.C.S. Association of bla(NDM-1) with bla(KPC-2) and aminoglycoside-modifying enzymes genes among Klebsiella pneumoniae, Proteus mirabilis and Serratia marcescens clinical isolates in Brazil. J. Glob. Antimicrob. Resist. 2019;19:302–322. PubMed

Saidani M., Lilia M., Alya S., Monia D.-J., Pierre C., Faten B.C., Aymen M., Wassim M., Jean-Yves M., Marisa H. Epidemiology, antimicrobial resistance, and extended-spectrum beta-lactamase-producing Enterobacteriaceae in clinical bovine mastitis in Tunisia. Microb. Drug Resist. 2018;24:1242–1248. doi: 10.1089/mdr.2018.0049. PubMed DOI

Valentin T., Feierl G., Masoud-Landgraf L., Kohek P., Luxner J., Zarfel G. Proteus mirabilis harboring carbapenemase NDM-5 and ESBL VEB-6 detected in Austria. Diagn. Microbiol. Infect. Dis. 2018;91:284–286. doi: 10.1016/j.diagmicrobio.2018.02.009. PubMed DOI

Bhattacharya D., Thamizhmani R., Bhattacharya H., Sayi D.S., Muruganandam N., Roy S., Sugunan A.P. Emergence of New Delhi metallo-β-lactamase 1 (NDM-1) producing and multidrug resistant uropathogens causing urinary tract infections in Andaman Islands, India. Microb. Drug Resist. 2013;19:457–462. doi: 10.1089/mdr.2013.0070. PubMed DOI

Williamson D.A., Sidjabat H.E., Freeman J.T., Roberts S.A., Silvey A., Woodhouse R., Mowat E., Dyet K., Paterson D.L., Blackmore T., et al. Identification and molecular characterisation of New Delhi metallo-β-lactamase-1 (NDM-1)- and NDM-6-producing Enterobacteriaceae from New Zealand hospitals. Int. J. Antimicrob. Agents. 2012;39:529–533. doi: 10.1016/j.ijantimicag.2012.02.017. PubMed DOI

The European Committee on Antimicrobial Susceptibility Testing . Breakpoint tables for interpretation of MICs and zone diameters. The European Committee on Antimicrobial Susceptibility Testing (EUCAST); Växjö, Sweden: 2020. Version 10.0.

Zankari E., Henrik H., Salvatore C., Martin V., Simon R., Ole L., Frank M.A., Mette V.L. Identification of acquired antimicrobial resistance genes. J. Antimicrob. Chemother. 2012;11:2640–2644. doi: 10.1093/jac/dks261. PubMed DOI PMC

Carattoli A., Zankari E.G.-F., Mette V.L., Ole L., Laura V., Frank M.A., Henrik H. In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob. Agents Chemother. 2014;7:3895–3903. doi: 10.1128/AAC.02412-14. PubMed DOI PMC

Arndt D., Grant J., Marcu A., Sajed T., Pon A., Liang Y., Wishart D.S. PHASTER: A better, faster version of the PHAST phage search tool. Nucleic Acids Res. 2016;44:W16–W21. doi: 10.1093/nar/gkw387. PubMed DOI PMC

Zhou Y., Liang Y., Lynch K.H., Dennis J.J., Wishart D.S. PHAST: A fast phage search tool. Nucleic Acids Res. 2011;39:W347–W352. PubMed PMC

Dolejska M., Costas C., Papagiannitsis M.M., Lenka D.-G., Adam V. Characterization of the complete nucleotide sequences of IMP-4-encoding plasmids, belonging to diverse Inc families, recovered from Enterobacteriaceae isolates of wildlife origin. Antimicrob. Agents Chemother. 2018;5:e02434-17. doi: 10.1128/AAC.02434-17. PubMed DOI PMC

Zhang S., Sun J., Liao X.P., Hu Q.J., Liu B.T., Fang L.X., Deng H., Ma J., Xiao X., Zhu H.Q., et al. Prevalence and plasmid characterization of the qnrD determinant in Enterobacteriaceae isolated from animals, retail meat products, and humans. Microb. Drug Resist. 2013;19:331–335. doi: 10.1089/mdr.2012.0146. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...