Impacts of food contact chemicals on human health: a consensus statement
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
P30 DK020595
NIDDK NIH HHS - United States
PubMed
32122363
PubMed Central
PMC7053054
DOI
10.1186/s12940-020-0572-5
PII: 10.1186/s12940-020-0572-5
Knihovny.cz E-zdroje
- Klíčová slova
- Chronic disease, Circular economy, Endocrine disrupting chemical, Food contact material, Food packaging, Human health, Migration, Mixture toxicity, Non-intentionally added substance, Sustainable packaging,
- MeSH
- kontaminace potravin analýza MeSH
- lidé MeSH
- nebezpečné látky škodlivé účinky MeSH
- obaly potravin metody MeSH
- plastické hmoty škodlivé účinky MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- nebezpečné látky MeSH
- plastické hmoty MeSH
Food packaging is of high societal value because it conserves and protects food, makes food transportable and conveys information to consumers. It is also relevant for marketing, which is of economic significance. Other types of food contact articles, such as storage containers, processing equipment and filling lines, are also important for food production and food supply. Food contact articles are made up of one or multiple different food contact materials and consist of food contact chemicals. However, food contact chemicals transfer from all types of food contact materials and articles into food and, consequently, are taken up by humans. Here we highlight topics of concern based on scientific findings showing that food contact materials and articles are a relevant exposure pathway for known hazardous substances as well as for a plethora of toxicologically uncharacterized chemicals, both intentionally and non-intentionally added. We describe areas of certainty, like the fact that chemicals migrate from food contact articles into food, and uncertainty, for example unidentified chemicals migrating into food. Current safety assessment of food contact chemicals is ineffective at protecting human health. In addition, society is striving for waste reduction with a focus on food packaging. As a result, solutions are being developed toward reuse, recycling or alternative (non-plastic) materials. However, the critical aspect of chemical safety is often ignored. Developing solutions for improving the safety of food contact chemicals and for tackling the circular economy must include current scientific knowledge. This cannot be done in isolation but must include all relevant experts and stakeholders. Therefore, we provide an overview of areas of concern and related activities that will improve the safety of food contact articles and support a circular economy. Our aim is to initiate a broader discussion involving scientists with relevant expertise but not currently working on food contact materials, and decision makers and influencers addressing single-use food packaging due to environmental concerns. Ultimately, we aim to support science-based decision making in the interest of improving public health. Notably, reducing exposure to hazardous food contact chemicals contributes to the prevention of associated chronic diseases in the human population.
Center for Science in the Public Interest Washington DC USA
Centre for Environmental Policy Imperial College London London UK
Department of Animal and Food Sciences University of Delaware Newark DE USA
Department of Biological and Environmental Sciences University of Gothenburg Gothenburg Sweden
Department of Biology Norwegian University of Science and Technology Trondheim Norway
Department of Biology University of Massachusetts Amherst Amherst MA USA
Department of Chemistry Carnegie Mellon University Pittsburgh PA USA
Department of Immunology Tufts University School of Medicine Boston MA USA
Department of Pediatrics NYU Grossman School of Medicine New York NY USA
Environmental Health Sciences Charlottesville Virginia USA
Food Packaging Forum Foundation Zurich Switzerland
Green Science Policy Institute Berkeley CA USA
Healthy Babies Bright Futures Charlottesville 5 A USA
Healthy Environment and Endocrine Disruptor Strategies Commonweal Bolinas CA USA
IDiBE and CIBERDEM Universitas Miguel Hernandez Elche Spain
Independent Consultant Frederick MD USA
Institute for the Environment Health and Societies Brunel University London Uxbridge UK
Institute of Biogeochemistry and Pollutant Dynamics ETH Zurich Zurich Switzerland
Institute of Environment Health and Societies Brunel University Uxbridge UK
Institute of Environmental and Marine Sciences Silliman University Dumaguete Philippines
Nicholas School of the Environment Duke University Durham NC USA
RECETOX Masaryk University Brno Czech Republic
Zobrazit více v PubMed
Muncke J, Backhaus T, Geueke B, Maffini MV, Martin OV, Myers JP, et al. Scientific challenges in the risk assessment of food contact materials. Environ Health Perspect. 2017;125(9):095001. doi: 10.1289/EHP644. PubMed DOI PMC
European Union. REGULATION (EC) No. 1935/2004 on materials and articles intended to come into contact with food and repealing Directives 80/590/EEC and 89/109/EEC. EUROPEAN UNION. (EC) No. 1935/2004. 2004.
Grob K, Biedermann M, Scherbaum E, Roth M, Rieger K. Food contamination with organic materials in perspective: packaging materials as the largest and least controlled source? A view focusing on the European situation. Crit Rev Food Sci Nutr. 2006;46(7):529–535. doi: 10.1080/10408390500295490. PubMed DOI
Calafat A, Ye X, Wong LY, Reidy JA, Needham LL. Exposure of the U.S. population to bisphenol a and 4-tertiary-octylphenol: 2003-2004. Environ Health Perspect. 2008;116(1):39–44. doi: 10.1289/ehp.10753. PubMed DOI PMC
Calafat A, Kuklenyik Z, Reidy JA, Caudill SP, Ekong J, Needham LL. Urinary concentrations of bisphenol a and 4-nonylphenol in a human reference population. Environ Health Perspect. 2005;113(4):391–395. doi: 10.1289/ehp.7534. PubMed DOI PMC
Koch HM, Muller J, Angerer J. Determination of secondary, oxidised di-iso-nonylphthalate (DINP) metabolites in human urine representative for the exposure to commercial DINP plasticizers. J Chromatogr B. 2007;847(2):114–25. PubMed
Koch HM, Preuss R, Drexler H, Angerer J. Exposure of nursery school children and their parents and teachers to di-n-butylphthalate and butylbenzylphthalate. Int Arch Occup Environ Health. 2005;78(3):223–229. doi: 10.1007/s00420-004-0570-x. PubMed DOI
Fromme H, Bolte G, Koch HM, Angerer J, Boehmer S, Drexler H, et al. Occurrence and daily variation of phthalate metabolites in the urine of an adult population. Int J Hyg Environ Health. 2007;210(1):21–33. doi: 10.1016/j.ijheh.2006.09.005. PubMed DOI
Fromme H, Midasch O, Twardella D, Angerer J, Boehmer S, Liebl B. Occurrence of perfluorinated substances in an adult German population in southern Bavaria. Int Arch Occup Environ Health. 2007;80(4):313–319. doi: 10.1007/s00420-006-0136-1. PubMed DOI
Pouech C, Kiss A, Lafay F, Léonard D, Wiest L, Cren-Olivé C, et al. Human exposure assessment to a large set of polymer additives through the analysis of urine by solid phase extraction followed by ultra high performance liquid chromatography coupled to tandem mass spectrometry. J Chromatogr A. 2015;1423(Supplement C):111–123. doi: 10.1016/j.chroma.2015.10.091. PubMed DOI
Wang L, Wu Y, Zhang W, Kannan K. Widespread occurrence and distribution of bisphenol a diglycidyl ether (BADGE) and its derivatives in human urine from the United States and China. Environ Sci Technol. 2012;46(23):12968–12976. doi: 10.1021/es304050f. PubMed DOI
Crump KS. Use of threshold and mode of action in risk assessment. Crit Rev Toxicol. 2011;41(8):637–650. doi: 10.3109/10408444.2011.566258. PubMed DOI
Crump KS, Hoel DG, Langley CH, Peto R. Fundamental carcinogenic processes and their implications for low dose risk assessment. Cancer Res. 1976;36(9 pt.1):2973–2979. PubMed
Vandenberg LN, Colborn T, Hayes TB, Heindel JJ, Jacobs DR, Lee D-H, et al. Hormones and endocrine-disrupting chemicals: low-dose effects and nonmonotonic dose responses. Endocr Rev. 2012;33(3):378–455. doi: 10.1210/er.2011-1050. PubMed DOI PMC
Zoeller RT, Brown TR, Doan LL, Gore AC, Skakkebaek NE, Soto AM, et al. Endocrine-disrupting chemicals and public health protection: a statement of principles from the Endocrine Society. Endocrinology. 2012;153(9):4097–4110. doi: 10.1210/en.2012-1422. PubMed DOI PMC
Diamanti-Kandarakis E, Bourguignon JP, Giudice LC, Hauser R, Prins GS, Soto AM, et al. Endocrine-disrupting chemicals: an Endocrine Society scientific statement. Endocr Rev. 2009;30(4):293–342. doi: 10.1210/er.2009-0002. PubMed DOI PMC
Myers J, Zoeller R. Vom Saal F. A clash of old and new scientific concepts in toxicity, with important implications for public health. Environ Health Perspect. 2009;117(11):652–655. PubMed PMC
Gore AC, Chappell VA, Fenton SE, Flaws JA, Nadal A, Prins GS, et al. EDC-2: the Endocrine Society's second scientific statement on endocrine-disrupting chemicals. Endocr Rev. 2015;36(6):E1–E150. doi: 10.1210/er.2015-1010. PubMed DOI PMC
Gore AC, Chappell VA, Fenton SE, Flaws JA, Nadal A, Prins GS, et al. Executive summary to EDC-2: the Endocrine Society's second scientific statement on endocrine-disrupting chemicals. Endocr Rev. 2015;36(6):593–602. doi: 10.1210/er.2015-1093. PubMed DOI PMC
Demeneix BA, Slama R. Endocrine Disruptors: From the scientific evidence to human health protection. European Parliament; 2019. Available: http://www.europarl.europa.eu/thinktank/fr/document.html?reference=IPOL_STU(2019)608866. Accessed 29 Nov 2019.
Tanner EM, Hallerbäck MU, Wikström S, Lindh C, Kiviranta H, Gennings C, et al. Early prenatal exposure to suspected endocrine disruptor mixtures is associated with lower IQ at age seven. Environ Int. 2020;134:105185. PubMed
Axelstad M, Hass U, Scholze M, Christiansen S, Kortenkamp A, Boberg J. EDC IMPACT: Reduced sperm counts in rats exposed to human relevant mixtures of endocrine disrupters. Endocr Connect. 2018;7(1):139–148. doi: 10.1530/EC-17-0307. PubMed DOI PMC
Kortenkamp A, Faust M. Regulate to reduce chemical mixture risk. Science. 2018;361(6399):224–226. doi: 10.1126/science.aat9219. PubMed DOI
Gaudriault P, Mazaud-Guittot S, Lavoué V, Coiffec I, Lesné L, Dejucq-Rainsford N, et al. Endocrine disruption in human fetal testis explants by individual and combined exposures to selected pharmaceuticals, pesticides, and environmental pollutants. Environ Health Perspect. 2017;125(8):087004. doi: 10.1289/EHP1014. PubMed DOI PMC
Heindel JJ, Vandenberg LN. Developmental origins of health and disease: a paradigm for understanding disease cause and prevention. Curr Opin Pediatr. 2015;27(2):248–253. doi: 10.1097/MOP.0000000000000191. PubMed DOI PMC
COMMISSION REGULATION (EU) No 10/2011 of 14 January 2011 on plastic materials and articles intended to come into contact with food, (2011). Art. 13.2 and 14.2; Annex I.
Pieke EN, Smedsgaard J, Granby K. Exploring the chemistry of complex samples by tentative identification and semiquantification: a food contact material case. J Mass Spectrom. 2018;53(4):323–335. doi: 10.1002/jms.4052. PubMed DOI
EEA. Paving the way for a circular economy: insights on status and potentials. 2019. Available: https://www.eea.europa.eu/publications/circular-economy-in-europe-insights. Accessed 29 Nov 2019.
Gilbert SG. Migration of minor constituents from food packaging materials. J Food Sci. 1976;41(4):955–958.
Koros WJ, Hopfenberg HB. Scientific aspects of migration of indirect additives from plastics to food. Food Technol-Chicago. 1979;33(4):56–60.
Till D, Schwope AD, Ehntholt DJ, Sidman KR, Whelan RH, Schwartz PS, et al. Indirect food additive migration from polymeric food-packaging materials. Crit Rev Toxicol. 1987;18(3):215–243. doi: 10.3109/10408448709089862. PubMed DOI
Arvanitoyannis IS, Bosnea L. Migration of substances from food packaging materials to foods. Crit Rev Food Sci Nutr. 2004;44(2):63–76. doi: 10.1080/10408690490424621. PubMed DOI
Melnick D, Luckmann FH. Sorbic acid as a fungistatic agent for foods. 4. Migration of sorbic acid from wrapper into cheese. Food Res. 1954;19(1):28–32. doi: 10.1111/j.1365-2621.1954.tb17420.x. DOI
Shotyk W, Krachler M. Lead in bottled waters: contamination from glass and comparison with pristine groundwater. Environ Sci Technol. 2007;41(10):3508–3513. doi: 10.1021/es062964h. PubMed DOI
Andra SS, Makris KC, Shine JP, Lu C. Co-leaching of brominated compounds and antimony from bottled water. Environ Int. 2012;38(1):45–53. doi: 10.1016/j.envint.2011.08.007. PubMed DOI
Haldimann M, Alt A, Blanc A, Brunner K, Sager F, Dudler V. Migration of antimony from PET trays into food simulant and food: determination of Arrhenius parameters and comparison of predicted and measured migration data. Food Addit Contam A. 2013;30(3):587–598. doi: 10.1080/19440049.2012.751631. PubMed DOI PMC
Hansen C, Tsirigotaki A, Bak SA, Pergantis SA, Sturup S, Gammelgaard B, et al. Elevated antimony concentrations in commercial juices. J Environ Monit. 2010;12(4):822–824. doi: 10.1039/b926551a. PubMed DOI
Hansen HR, Pergantis SA. Detection of antimony species in citrus juices and drinking water stored in PET containers. J Anal At Spectrom. 2006;21(8):731–733. doi: 10.1039/B606367E. DOI
Mihucz VG, Záray G. Occurrence of antimony and phthalate esters in polyethylene terephthalate bottled drinking water. Appl Spectrosc Rev. 2016;51(3):183–209. doi: 10.1080/05704928.2015.1105243. DOI
Shotyk W, Krachler M. Contamination of bottled waters with antimony leaching from polyethylene terephthalate (PET) increases upon storage. Environ Sci Technol. 2007;41(5):1560–1563. doi: 10.1021/es061511+. PubMed DOI
Shotyk W, Krachler M, Chen B. Contamination of Canadian and European bottled waters with antimony from PET containers. J Environ Monit. 2006;8(2):288–292. doi: 10.1039/b517844b. PubMed DOI
Welle F, Franz R. Migration of antimony from PET bottles into beverages: determination of the activation energy of diffusion and migration modelling compared with literature data. Food Addit Contam A. 2011;28(1):115–126. doi: 10.1080/19440049.2010.530296. PubMed DOI
Westerhoff P, Prapaipong P, Shock E, Hillaireau A. Antimony leaching from polyethylene terephthalate (PET) plastic used for bottled drinking water. Water Res. 2008;42(3):551–556. doi: 10.1016/j.watres.2007.07.048. PubMed DOI
Bagnati R, Bianchi G, Marangon E, Zuccato E, Fanelli R, Davoli E. Direct analysis of isopropylthioxanthone (ITX) in milk by high-performance liquid chromatography/tandem mass spectrometry. Rapid Commun Mass Spectrom. 2007;21(13):1998–2002. doi: 10.1002/rcm.3055. PubMed DOI
Morlock G, Schwack W. Determination of isopropylthioxanthone (ITX) in milk, yoghurt and fat by HPTLC-FLD, HPTLC-ESI/MS and HPTLC-DART/MS. Anal Bioanal Chem. 2006;385(3):586–595. doi: 10.1007/s00216-006-0430-5. PubMed DOI
Rothenbacher T, Baumann M, Fugel D. 2-Isopropylthioxanthone (2-ITX) in food and food packaging materials on the German market. Food Addit Contam. 2007;24(4):438–444. doi: 10.1080/02652030601182664. PubMed DOI
Sagratini G, Manes J, Giardina D, Pico Y. Determination of isopropyl thioxanthone (ITX) in fruit juices by pressurized liquid extraction and liquid chromatography-mass spectrometry. J Agric Food Chem. 2006;54(20):7947–7952. doi: 10.1021/jf0615956. PubMed DOI
Castle L, Damant AP, Honeybone CA, Johns SM, Jickells SM, Sharman M, et al. Migration studies from paper and board food packaging materials. Part 2. Survey for residues of dialkylamino benzophenone UV-cure ink photoinitiators. Food Addit Contam. 1997;14(1):45–52. doi: 10.1080/02652039709374496. PubMed DOI
Bradley EL, Driffield M, Harmer N, Oldring PKT, Castle L. Identification of potential migrants in epoxy phenolic can coatings. Int J Polym Anal Charact. 2008;13(3):200–223. doi: 10.1080/10236660802070512. DOI
Castle L, Mayo A, Crews C, Gilbert J. Migration of poly (ethylene terephthalate) (PET) oligomers from PET plastics into foods during microwave and conventional cooking and into bottled beverages. J Food Prot. 1989;52(5):337–342. doi: 10.4315/0362-028X-52.5.337. PubMed DOI
Jickells SM, Gramshaw JW, Castle L, Gilbert J. The effect of microwave energy on specific migration from food contact plastics. Food Addit Contam. 1992;9(1):19–27. doi: 10.1080/02652039209374044. PubMed DOI
Begley TH, Hsu W, Noonan G, Diachenko G. Migration of fluorochemical paper additives from food-contact paper into foods and food simulants. Food Addit Contam A. 2008;25(3):384–390. doi: 10.1080/02652030701513784. PubMed DOI
Biles JE, McNeal TP, Begley TH. Determination of bisphenol a migrating from epoxy can coatings to infant formula liquid concentrates. J Agric Food Chem. 1997;45(12):4697–4700. doi: 10.1021/jf970518v. DOI
Grob K, Spinner C, Brunner M, Etter R. The migration from the internal coatings of food cans; summary of the findings and call for more effective regulation of polymers in contact with foods: a review. Food Addit Contam. 1999;16(12):579–590. doi: 10.1080/026520399283722. PubMed DOI
Biedermann S, Zurfluh M, Grob K, Vedani A, Brüschweiler BJ. Migration of cyclo-diBA from coatings into canned food: method of analysis, concentration determined in a survey and in silico hazard profiling. Food Chem Toxicol. 2013;58(0):107–115. doi: 10.1016/j.fct.2013.04.004. PubMed DOI
Schaefer A, Maß S, Simat TJ, Steinhart H. Migration from can coatings: part 1. A size-exclusion chromatographic method for the simultaneous determination of overall migration and migrating substances below 1000 Da. Food Addit Contam. 2004;21(3):287–301. doi: 10.1080/02652030310001655498. PubMed DOI
Lickly TD, Bell CD, Lehr KM. The migration of irganox 1010 antioxidant from high-density polyethylene and polypropylene into a series of potential fatty-food simulants. Food Addit Contam. 1990;7(6):805–814. doi: 10.1080/02652039009373942. PubMed DOI
Rybak KE, Sarzynski W, Dawidowicz AL. Migration of antioxidant additives from polypropylene investigated by means of reversed phase high-performance liquid-chromatography. Chem Anal-Warsaw. 1992;37(2):149–159.
Berg BE, Hegna DR, Orlien N, Greibrokk T. Determination of low-levels of polymer additives migrating from polypropylene to food simulated liquids by capillary SFC and solvent venting injection. Chromatographia. 1993;37(5–6):271–276. doi: 10.1007/BF02278632. DOI
Perring L, Basic-Dvorzak M. Determination of total tin in canned food using inductively coupled plasma atomic emission spectroscopy. Anal Bioanal Chem. 2002;374:235–243. doi: 10.1007/s00216-002-1420-x. PubMed DOI
Demont M, Boutakhrit K, Fekete V, Bolle F, Van Loco J. Migration of 18 trace elements from ceramic food contact material: influence of pigment, pH, nature of acid and temperature. Food Chem Toxicol. 2012;50(3–4):734–743. doi: 10.1016/j.fct.2011.12.043. PubMed DOI
Suciu NA, Tiberto F, Vasileiadis S, Trevisan M. Recycled paper-paperboard for food contact materials: contaminants suspected and migration into foods and food simulant. Food Chem. 2013;141(4):4146–51. PubMed
Yuan G, Peng H, Huang C, Hu J. Ubiquitous occurrence of fluorotelomer alcohols in eco-friendly paper-made food-contact materials and their implication for human exposure. Environ Sci Technol. 2016;50(2):942–950. doi: 10.1021/acs.est.5b03806. PubMed DOI
Asensio E, Peiro T, Nerín C. Determination the set-off migration of ink in cardboard-cups used in coffee vending machines. Food Chem Toxicol. 2019;130:61–67. doi: 10.1016/j.fct.2019.05.022. PubMed DOI
Ubeda S, Aznar M, Alfaro P, Nerín C. Migration of oligomers from a food contact biopolymer based on polylactic acid (PLA) and polyester. Anal Bioanal Chem. 2019. PubMed
Aznar M, Ubeda S, Dreolin N, Nerín C. Determination of non-volatile components of a biodegradable food packaging material based on polyester and polylactic acid (PLA) and its migration to food simulants. J Chromatogr A. 2019;1583:1–8. doi: 10.1016/j.chroma.2018.10.055. PubMed DOI
Groh K, Geueke B, Muncke J. FCCdb: Food Contact Chemicals database. 10.5281/zenodo.3240108. Zenodo; 2020. Accessed 25 Feb 2020.
Simoneau C, Raffael B, Garbin S, Hoekstra E, Mieth A, Alberto Lopes JF, et al. Non-harmonised food contact materials in the EU: regulatory and market situation: BASELINE STUDY: final report. 2016. Available: https://publications.jrc.ec.europa.eu/repository/handle/JRC104198. Accessed 29 Nov 2019.
Neltner TG, Kulkarni NR, Alger HM, Maffini MV, Bongard ED, Fortin ND, et al. Navigating the U.S. food additive regulatory program. Compr Rev Food Sci F. 2011;10(6):342–368. doi: 10.1111/j.1541-4337.2011.00166.x. DOI
Neltner TG, Alger HM, O'Reilly JT, Krimsky S, Bero LA, Maffini MV. Conflicts of interest in approvals of additives to food determined to be generally recognized as safe: out of balance. JAMA Intern Med. 2013;173(22):2032–2036. doi: 10.1001/jamainternmed.2013.10559. PubMed DOI
Biryol D, Nicolas CI, Wambaugh J, Phillips K, Isaacs K. High-throughput dietary exposure predictions for chemical migrants from food contact substances for use in chemical prioritization. Environ Int. 2017;108:185–194. doi: 10.1016/j.envint.2017.08.004. PubMed DOI PMC
Groh KJ, Backhaus T, Carney-Almroth B, Geueke B, Inostroza PA, Lennquist A, et al. Overview of known plastic packaging-associated chemicals and their hazards. Sci Total Environ. 2019;651:3253–3268. doi: 10.1016/j.scitotenv.2018.10.015. PubMed DOI
Muncke J. Exposure to endocrine disrupting compounds via the food chain: is packaging a relevant source? Sci Total Environ. 2009;407(16):4549–4559. doi: 10.1016/j.scitotenv.2009.05.006. PubMed DOI
Rosenmai AK, Bengtström L, Taxvig C, Trier X, Petersen JH, Svingen T, et al. An effect-directed strategy for characterizing emerging chemicals in food contact materials made from paper and board. Food Chem Toxicol. 2017;106(Part A):250–259. doi: 10.1016/j.fct.2017.05.061. PubMed DOI
Mertl J, Kirchnawy C, Osorio V, Grininger A, Richter A, Bergmair J, et al. Characterization of estrogen and androgen activity of food contact materials by different in vitro bioassays (YES, YAS, ERalpha and AR CALUX) and chromatographic analysis (GC-MS, HPLC-MS) PLoS One. 2014;9(7):e100952. doi: 10.1371/journal.pone.0100952. PubMed DOI PMC
Kirchnawy C, Mertl J, Osorio V, Hausensteiner H, Washüttl M, Bergmair J, et al. Detection and identification of oestrogen-active substances in plastic food packaging migrates. Packag Technol Sci. 2014;27(6):467–478. doi: 10.1002/pts.2047. DOI
Nerin C, Canellas E, Vera P, Garcia-Calvo E, Luque-Garcia JL, Cámara C, et al. A common surfactant used in food packaging found to be toxic for reproduction in mammals. Food Chem Toxicol. 2018;113:115–124. doi: 10.1016/j.fct.2018.01.044. PubMed DOI
Oldring PKT, O'Mahony C, Dixon J, Vints M, Mehegan J, Dequatre C, et al. Development of a new modelling tool (FACET) to assess exposure to chemical migrants from food packaging. Food Addit Contam A. 2014;31(3):444–465. doi: 10.1080/19440049.2013.862348. PubMed DOI
Alger HM, Maffini MV, Kulkarni NR, Bongard ED, Neltner T. Perspectives on how FDA assesses exposure to food additives when evaluating their safety: workshop proceedings. Compr Rev Food Sci F. 2013;12(1):90–119. doi: 10.1111/j.1541-4337.2012.00216.x. DOI
Geueke B, Wagner CC, Muncke J. Food contact substances and chemicals of concern: a comparison of inventories. Food Addit Contam A. 2014;31(8):1438–1450. doi: 10.1080/19440049.2014.931600. PubMed DOI
Geueke B, Muncke J. Substances of very high concern in food contact materials: migration and regulatory background. Packag Technol Sci. 2018;31(12):757–769. doi: 10.1002/pts.2288. DOI
Scheringer M, Trier X, Cousins IT, de Voogt P, Fletcher T, Wang Z, et al. Helsingør statement on poly- and perfluorinated alkyl substances (PFASs) Chemosphere. 2014;114:337–339. doi: 10.1016/j.chemosphere.2014.05.044. PubMed DOI
Trier X, Granby K, Christensen J. Polyfluorinated surfactants (PFS) in paper and board coatings for food packaging. Environ Sci Pollut R. 2011;18(7):1108–20. PubMed
Schaider LA, Balan SA, Blum A, Andrews DQ, Strynar MJ, Dickinson ME, et al. Fluorinated compounds in U.S. fast food packaging. Environ Sci Technol Lett. 2017;4(3):105–11. PubMed PMC
Hill D. Comments on Natural Resources Defense Council et al.: filing of Food Additive Petition on Perchlorates; Docket No. FDA-2015-F-0537. 2015. Available: http://blogs.edf.org/health/files/2018/12/Perchlorate-BASF-Migration-Test-and-Cover-Letter-11-4-15.pdf. Accessed 29 Nov 2019.
Koster S, Rennen M, Leeman W, Houben G, Muilwijk B, van Acker F, et al. A novel safety assessment strategy for non-intentionally added substances (NIAS) in carton food contact materials. Food Addit Contam A. 2013;31(3):422–443. doi: 10.1080/19440049.2013.866718. PubMed DOI
Nerin C, Alfaro P, Aznar M, Domeño C. The challenge of identifying non-intentionally added substances from food packaging materials: A review. Anal Chim Acta. 2013;775(2 May 2013):14–24. doi: 10.1016/j.aca.2013.02.028. PubMed DOI
Hoppe M, de Voogt P, Franz R. Identification and quantification of oligomers as potential migrants in plastics food contact materials with a focus in polycondensates – a review. Trends Food Sci Technol. 2016;50:118–130. doi: 10.1016/j.tifs.2016.01.018. DOI
Bradley E, Coulier L. An investigation into the reaction and breakdown products from starting substances used to produce food contact plastics. Report. London: Central Science Laboratory; 2007.
Qian S, Ji H, Wu X, Li N, Yang Y, Bu J, et al. Detection and quantification analysis of chemical migrants in plastic food contact products. PLoS One. 2018;13(12):e0208467. doi: 10.1371/journal.pone.0208467. PubMed DOI PMC
Wagner M, Schlüsener MP, Ternes TA, Oehlmann J. Identification of putative steroid receptor antagonists in bottled water: combining bioassays and high-resolution mass spectrometry. PLoS One. 2013;8(8):e72472. doi: 10.1371/journal.pone.0072472. PubMed DOI PMC
Bengtström L, Rosenmai AK, Trier X, Jensen LK, Granby K, Vinggaard AM, et al. Non-targeted screening for contaminants in paper and board food contact materials using effect directed analysis and accurate mass spectrometry. Food Addit Contam A. 2016;33(6):1080–1093. doi: 10.1080/19440049.2016.1184941. PubMed DOI
Pieke EN, Granby K, Teste B, Smedsgaard J, Riviere G. Prioritization before risk assessment: the viability of uncertain data on food contact materials. Regul Toxicol Pharmacol. 2018;97:134–143. doi: 10.1016/j.yrtph.2018.06.012. PubMed DOI
Pieke EN, Granby K, Trier X, Smedsgaard J. A framework to estimate concentrations of potentially unknown substances by semi-quantification in liquid chromatography electrospray ionization mass spectrometry. Anal Chim Acta. 2017;975:30–41. doi: 10.1016/j.aca.2017.03.054. PubMed DOI
Zimmermann L, Dierkes G, Ternes TA, Völker C, Wagner M. Benchmarking the in vitro toxicity and chemical composition of plastic consumer products. Environ Sci Technol. 2019;53(19):11467–11477. doi: 10.1021/acs.est.9b02293. PubMed DOI
Biedermann M, Grob K. Is comprehensive analysis of potentially relevant migrants from recycled paperboard into foods feasible? J Chromatogr A. 2013;1272(0):106–115. PubMed
US EPA. EPA Releases First Major Update to Chemicals List in 40 Years US EPA; 2019. Available: https://www.epa.gov/newsreleases/epa-releases-first-major-update-chemicals-list-40-years. Accessed 29 Nov 2019.
ECHA. Registered substances. ECHA; 2019. Available: https://echa.europa.eu/information-on-chemicals/registered-substances. Accessed 29 Nov 2019.
Koch HM, Lorber M, Christensen KLY, Pälmke C, Koslitz S, Brüning T. Identifying sources of phthalate exposure with human biomonitoring: results of a 48h fasting study with urine collection and personal activity patterns. Int J Hyg Environ Health. 2013;216(6):672–681. doi: 10.1016/j.ijheh.2012.12.002. PubMed DOI
Vandenberg LN, Chauhoud I, Heindel JJ, Padmanabhan V, Paumgartten FJ, Schoenfelder G. Urinary, circulating and tissue biomonitoring studies indicate widespread exposure to bisphenol a. Environ Health Perspect. 2010;118(8):1055–1070. doi: 10.1289/ehp.0901716. PubMed DOI PMC
Geens T, Aerts D, Berthot C, Bourguignon J-P, Goeyens L, Lecomte P, et al. A review of dietary and non-dietary exposure to bisphenol-a. Food Chem Toxicol. 2012;50(10):3725–3740. doi: 10.1016/j.fct.2012.07.059. PubMed DOI
Fromme H, Tittlemier SA, Völkel W, Wilhelm M, Twardella D. Perfluorinated compounds – exposure assessment for the general population in western countries. Int J Hyg Environ Health. 2009;212(3):239–270. doi: 10.1016/j.ijheh.2008.04.007. PubMed DOI
Becker K, Güen T, Seiwert M, Conrad A, Pick-Fuß H, Müller J, et al. GerES IV: phthalate metabolites and bisphenol a in urine of German children. Int J Hyg Environ Health. 2009;212(6):685–692. doi: 10.1016/j.ijheh.2009.08.002. PubMed DOI
Calafat AM, Ye X, Wong L-Y, Reidy JA, Needham LL. Urinary concentrations of triclosan in the U.S. population: 2003-2004. Environ Health Perspect. 2008;116(3):303–307. doi: 10.1289/ehp.10768. PubMed DOI PMC
Varshavsky JR, Morello-Frosch R, Woodruff TJ, Zota AR. Dietary sources of cumulative phthalates exposure among the U.S. general population in NHANES 2005–2014. Environ Int. 2018;115:417–429. doi: 10.1016/j.envint.2018.02.029. PubMed DOI PMC
Park YH, Lee K, Soltow QA, Strobel FH, Brigham KL, Parker RE, et al. High-performance metabolic profiling of plasma from seven mammalian species for simultaneous environmental chemical surveillance and bioeffect monitoring. Toxicology. 2012;295(1):47–55. doi: 10.1016/j.tox.2012.02.007. PubMed DOI PMC
Wang A, Gerona RR, Schwartz JM, Lin T, Sirota M, Morello-Frosch R, et al. A Suspect Screening Method for Characterizing Multiple Chemical Exposures among a Demographically Diverse Population of Pregnant Women in San Francisco. Environ Health Perspect. 2018;126(7):077009. doi: 10.1289/EHP2920. PubMed DOI PMC
Wang A, Padula A, Sirota M, Woodruff TJ. Environmental influences on reproductive health: the importance of chemical exposures. Fertil Steril. 2016;106(4):905–929. doi: 10.1016/j.fertnstert.2016.07.1076. PubMed DOI PMC
Lopez-Espinosa MJ, Silva E, Granada A, Molina-Molina JM, Fernandez MF, Aguilar-Garduno C, et al. Assessment of the total effective xenoestrogen burden in extracts of human placentas. Biomarkers. 2009;14(5):271–277. doi: 10.1080/13547500902893744. PubMed DOI
Jiménez-Díaz I, Vela-Soria F, Rodríguez-Gómez R, Zafra-Gómez A, Ballesteros O, Navalón A. Analytical methods for the assessment of endocrine disrupting chemical exposure during human fetal and lactation stages: a review. Anal Chim Acta. 2015;892:27–48. doi: 10.1016/j.aca.2015.08.008. PubMed DOI
Woodruff TJ, Zota AR, Schwartz JM. Environmental Chemicals in Pregnant Women in the United States: NHANES 2003–2004. Environ Health Perspect. 2011;119(6):878–885. doi: 10.1289/ehp.1002727. PubMed DOI PMC
McCombie G. Enforcement's Perspective. In: European Commission, Directorate General Health and Food Safety; 2018. Available: https://ec.europa.eu/food/sites/food/files/safety/docs/cs_fcm_eval-workshop_20180924_pres07.pdf. Accessed 29 Nov 2019.
Sanchis Y, Yusà V, Coscollà C. Analytical strategies for organic food packaging contaminants. J Chromatogr A. 2017;1490:22–46. doi: 10.1016/j.chroma.2017.01.076. PubMed DOI
Martínez-Bueno MJ, Gómez Ramos MJ, Bauer A, Fernández-Alba AR. An overview of non-targeted screening strategies based on high resolution accurate mass spectrometry for the identification of migrants coming from plastic food packaging materials. TrAC-Trend Anal Chem. 2019;110:191–203. doi: 10.1016/j.trac.2018.10.035. DOI
Chen M-L, Chen J-S, Tang C-L, Mao IF. The internal exposure of Taiwanese to phthalate—an evidence of intensive use of plastic materials. Environ Int. 2008;34(1):79–85. doi: 10.1016/j.envint.2007.07.004. PubMed DOI
Japanese Ministry of Health . Overview of amendments to the Food Sanitation Act: Japanese Minstry of Health. 2019.
FDA . List of issued exemptions based on the Thresold of Regulation, since 1996. 2012. Threshold of Regulations Exemptions.
Beausoleil C, Beronius A, Bodin L, Bokkers BGH, Boon PE, Burger M, et al. Review of non-monotonic dose-responses of substances for human risk assessment. EFSA Supporting Publications. 2016;13(5):1027E. doi: 10.2903/sp.efsa.2016.EN-1027. DOI
Hass U, Christiansen S, Andersson A-M, Holbech H, Bjerregaard P. Report on interpretation of knowledge on endocrine disrupting substances (EDs) - what is the risk? 2019.
Evans RM, Martin OV, Faust M, Kortenkamp A. Should the scope of human mixture risk assessment span legislative/regulatory silos for chemicals? Sci Total Environ. 2016;543(Part A):757–764. doi: 10.1016/j.scitotenv.2015.10.162. PubMed DOI
Veyrand J, Marin-Kuan M, Bezencon C, Frank N, Guérin V, Koster S, et al. Integrating bioassays and analytical chemistry as an improved approach to support safety assessment of food contact materials. Food Addit Contam A. 2017;34(10):1807–1816. doi: 10.1080/19440049.2017.1358466. PubMed DOI
Groh KJ, Muncke J. In vitro toxicity testing of food contact materials: state-of-the-art and future challenges. Compr Rev Food Sci F. 2017;16(5):1123–1150. doi: 10.1111/1541-4337.12280. PubMed DOI
Severin I, Souton E, Dahbi L, Chagnon MC. Use of bioassays to assess hazard of food contact material extracts: state of the art. Food Chem Toxicol. 2017;105:429–447. doi: 10.1016/j.fct.2017.04.046. PubMed DOI
Severin I, Dahbi L, Lhuguenot JC, Andersson MA, Hoornstra D, Salkinoja-Salonen M, et al. Safety assessment of food-contact paper and board using a battery of short-term toxicity tests: European union BIOSAFEPAPER project. Food Addit Contam. 2005;22(10):1032–1041. doi: 10.1080/02652030500183425. PubMed DOI
Lee D-H, Jacobs DR. Firm human evidence on harms of endocrine-disrupting chemicals was unlikely to be obtainable for methodological reasons. J Clin Epidemiol. 2019;107:107–115. doi: 10.1016/j.jclinepi.2018.12.005. PubMed DOI
Muncke J, Myers JP, Scheringer M, Porta M. Food packaging and migration of food contact materials: will epidemiologists rise to the neotoxic challenge? J Epidemiol Commun H. 2014;68(7):592. doi: 10.1136/jech-2013-202593. PubMed DOI
Lang IA, Galloway TS, Scarlett A, Henley WE, Depledge M, Wallace RB, et al. Association of urinary bisphenol a concentration with medical disorders and laboratory abnormalities in adults. JAMA. 2008;300(11):1303–1310. doi: 10.1001/jama.300.11.1303. PubMed DOI
Van Bossuyt M, Van Hoeck E, Vanhaecke T, Rogiers V, Mertens B. Prioritizing substances of genotoxic concern for in-depth safety evaluation using non-animal approaches: the example of food contact materials. Altex-Altern Anim Ex. 2019;36(2):215–230. PubMed
Mertens B, Van Bossuyt M, Fraselle S, Blaude MN, Vanhaecke T, Rogiers V, et al. Coatings in food contact materials: potential source of genotoxic contaminants? Food Chem Toxicol. 2017;106:496–505. doi: 10.1016/j.fct.2017.05.071. PubMed DOI
Martin OV, Geueke B, Groh KJ, Chevrier J, Fini J-B, Houlihan J, et al. Protocol for a systematic map of the evidence of migrating and extractable chemicals from food contact articles. ZENODO. 2018; Available: https://zenodo.org/record/2525277#.XeF4Y-hKhjU. Accessed 29 Nov 2019.
Attina TM, Hauser R, Sathyanarayana S, Hunt PA, Bourguignon J-P, Myers JP, et al. Exposure to endocrine-disrupting chemicals in the USA: a population-based disease burden and cost analysis. Lancet Diabetes Endocrinol. 2016;4(12):996–1003. doi: 10.1016/S2213-8587(16)30275-3. PubMed DOI
Groh K. Best practice for chemicals in food packaging. Food Packaging Forum; 2018. Available: https://www.foodpackagingforum.org/news/best-practice-for-chemicals-in-food-packaging.
Cousins IT, Goldenman G, Herzke D, Lohmann R, Miller M, Ng CA, et al. The concept of essential use for determining when uses of PFASs can be phased out. Environ Sci-Proc Imp. 2019;21(11):1803–1815. PubMed PMC
Schug TT, Heindel JJ, Camacho L, Delclos KB, Howard P, Johnson AF, et al. A new approach to synergize academic and guideline-compliant research: the CLARITY-BPA research program. Reprod Toxicol. 2013;40(0):35–40. doi: 10.1016/j.reprotox.2013.05.010. PubMed DOI
Vandenberg LN, Hunt PA, Gore AC. Endocrine disruptors and the future of toxicology testing — lessons from CLARITY–BPA. Nat Rev Endocrinol. 2019;15(6):366–374. doi: 10.1038/s41574-019-0173-y. PubMed DOI
Daniel J, Hoetzer K, McCombie G, Grob K. Conclusions from a Swiss official control of the safety assessment for food contact polyolefins through the compliance documentation of the producers. Food Addit Contam A. 2019;36(1):186–193. doi: 10.1080/19440049.2018.1556405. PubMed DOI
Mertens B, Simon C, Van Bossuyt M, Onghena M, Vandermarken T, Van Langenhove K, et al. Investigation of the genotoxicity of substances migrating from polycarbonate replacement baby bottles to identify chemicals of high concern. Food Chem Toxicol. 2016;89:126–137. doi: 10.1016/j.fct.2016.01.009. PubMed DOI
Geueke B, Groh K, Muncke J. Food packaging in the circular economy: overview of chemical safety aspects for commonly used materials. J Clean Prod. 2018;193:491–505. doi: 10.1016/j.jclepro.2018.05.005. DOI
Grob K. Work plans to get out of the deadlock for the safety assurance of migration from food contact materials? A proposal Food Control. 2014;46(0):312–318. doi: 10.1016/j.foodcont.2014.05.044. DOI
Bosma M. A repository to support risk assessments of non-listed substances (NLS) and non-intentionally added substances (NIAS). In: Food Packaging Forum workshop 2019. Available: https://www.foodpackagingforum.org/events/workshop2019 and https://youtu.be/2h-D4UwhmVE. Accessed 29 Nov 2019.
Schilter B, Burnett K, Eskes C, Geurts L, Jacquet M, Kirchnawy C, et al. Value and limitation of in vitro bioassays to support the application of the threshold of toxicological concern to prioritise unidentified chemicals in food contact materials. Food Addit Contam A. 2019;36(12):1903–36. PubMed
EFSA CEF Panel Recent developments in the risk assessment of chemicals in food and their potential impact on the safety assessment of substances used in food contact materials. EFSA J. 2016;14(1):4357. doi: 10.2903/j.efsa.2016.4357. DOI
EURION-CLUSTER. European cluster to improve identification of endocrine disruptors 2019. Available: http://eurion-cluster.eu/. Accessed 29 Nov 2019.
Ernstoff A, Niero M, Muncke J, Trier X, Rosenbaum RK, Hauschild M, et al. Challenges of including human exposure to chemicals in food packaging as a new exposure pathway in life cycle impact assessment. Int J Life Cycle Assess. 2019;24(3):543–552. doi: 10.1007/s11367-018-1569-y. DOI