Cyclosporine A inhibits MRTF-SRF signaling through Na+/K+ ATPase inhibition and actin remodeling

. 2019 Sep ; 1 (9) : 561-578. [epub] 20190824

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32123851

Calcineurin inhibitors (CNI) are the pillars of immunosuppression in transplantation. However, they display a potent nephrotoxicity whose mechanisms remained widely unsolved. We used an untargeted quantitative proteomic approach (iTRAQ technology) to highlight new targets of CNI in renal proximal tubular cells (RPTCs). CNI-treated RPTCs proteome displayed an over-representation of actin-binding proteins with a CNI-specific expression profile. Cyclosporine A (CsA) induced F-actin remodeling and depolymerization, decreased F-actin-stabilizing, polymerization-promoting cofilin (CFL) oligomers, and inhibited the G-actin-regulated serum response factor (SRF) pathway. Inhibition of CFL canonical phosphorylation pathway reproduced CsA effects; however, S3-R, an analogue of the phosphorylation site of CFL prevented the effects of CsA which suggests that CsA acted independently from the canonical CFL regulation. CFL is known to be regulated by the Na+/K+-ATPase. Molecular docking calculations identified two inhibiting sites of CsA on Na+/K+-ATPase and a 23% decrease in Na+/K+-ATPase activity of RPTCs was observed with CsA. Ouabain, a specific inhibitor of Na+/K+-ATPase also reproduced CsA effects on actin organization and SRF activity. Altogether, these results described a new original pathway explaining CsA nephrotoxicity.

Zobrazit více v PubMed

Calne R, Thiru S, Mcmaster P, et al. Cyclosporin A in patients receiving renal allografts from cadaver donors. Lancet. 1978;312:1323‐1327. PubMed

Calne RY, Rolles K, Thiru S, et al. Cyclosporin a initially as the only immunosuppressant in 34 recipients of cadaveric organs: 32 kidneys, 2 pancreases, and 2 livers. Lancet. 1979;314:1033‐1036. PubMed

Starzl T, Fung J, Venkataramman R, Todo S, Demetris A, Jain A. Fk 506 for liver, kidney, and pancreas transplantation. Lancet. 1989;334:1000‐1004. PubMed PMC

Hart A, Smith JM, Skeans MA, et al. Kidney. Am J Transplant. 2016;16:11‐46. PubMed PMC

Hart A, Smith JM, Skeans MA, et al. OPTN/SRTR 2015 annual data report: kidney. Am J Transplant. 2017;17:21‐116. PubMed PMC

Myers BD, Ross J, Newton L, Luetscher J, Perlroth M. Cyclosporine‐associated chronic nephropathy. N Engl J Med. 1984;311:699‐705. PubMed

Gaston RS. Chronic calcineurin inhibitor nephrotoxicity: reflections on an evolving paradigm. Clin J Am Soc Nephrol. 2009;4:2029‐2034. PubMed

Naesens M, Kuypers D, Sarwal M. Calcineurin inhibitor nephrotoxicity. Clin J Am Soc Nephrol. 2009;4:481‐508. http://cjasn.asnjournals.org/cgi/doi/10.2215/CJN.04800908. Accessed March 31, 2017. PubMed DOI

Healy E, Dempsey M, Lally C, Ryan MP. Apoptosis and necrosis: mechanisms of cell death induced by cyclosporine A in a renal proximal tubular cell line. Kidney Int. 1998;54:1955‐1966. PubMed

Ito H, Kasagi N, Shomori K, Osaki M, Adachi H. Apoptosis in the human allografted kidney. Analysis by terminal deoxynucleotidyl transferase‐mediated DUTP‐botin nick end labeling. Transplantation. 1995;60:794‐798. PubMed

Jennings P, Koppelstaetter C, Aydin S, et al. Cyclosporine A induces senescence in renal tubular epithelial cells. Am J Physiol Renal Physiol. 2007;293:F831‐F838. PubMed

Justo P. Intracellular mechanisms of cyclosporin A‐induced tubular cell apoptosis. J Am Soc Nephrol. 2003;14:3072‐3080. PubMed

Lally C, Healy E, Ryan MP. Cyclosporine A‐induced cell cycle arrest and cell death in renal epithelial cells. Kidney Int. 1999;56:1254‐1257. PubMed

Ortiz A, Lorz C, Catalán M, Ortiz A, Coca S, Egido J. Cyclosporine A induces apoptosis in murine tubular epithelial cells: role of caspases. Kidney Int Suppl. 1998;68:S25‐29. PubMed

Hama T, Nakanishi K, Mukaiyama H, et al. Endoplasmic reticulum stress with low‐dose cyclosporine in frequently relapsing nephrotic syndrome. Pediatr Nephrol. 2013;28:903‐909. PubMed

Han SW, Li C, Ahn KO, et al. Prolonged endoplasmic reticulum stress induces apoptotic cell death in an experimental model of chronic cyclosporine nephropathy. Am J Nephrol. 2008;28:707‐714. PubMed

Pallet N, Bouvier N, Bendjallabah A, et al. Cyclosporine‐induced endoplasmic reticulum stress triggers tubular phenotypic changes and death. Am J Transplant. 2008a;8:2283‐2296. PubMed

Pallet N, Bouvier N, Legendre C, et al. Autophagy protects renal tubular cells against cyclosporine toxicity. Autophagy. 2008b;4:783‐791. PubMed

Pallet N, Rabant M, Xu‐Dubois Y‐C, et al. Response of human renal tubular cells to cyclosporine and sirolimus: a toxicogenomic study. Toxicol Appl Pharmacol. 2008c;229:184‐196. PubMed

Djamali A. Oxidative stress as a common pathway to chronic tubulointerstitial injury in kidney allografts. Am J Physiol Renal Physiol. 2007;293:F445‐F455. PubMed

Vetter M, Chen Z‐J, Chang G‐D, Che D, Liu S, Chang C‐H. Cyclosporin A disrupts bradykinin signaling through superoxide. Hypertension. 2003;41:1136‐1142. PubMed

Heering P, Grabensee B. Influence of ciclosporin A on renal tubular function after kidney transplantation. Nephron. 1991;59:66‐70. PubMed

Hazzan M, Hertig A, Buob D, et al. Epithelial‐to‐mesenchymal transition predicts cyclosporine nephrotoxicity in renal transplant recipients. J Am Soc Nephrol. 2011;22:1375‐1381. PubMed PMC

McMorrow T, Gaffney MM, Slattery C, Campbell E, Ryan MP. Cyclosporine A induced epithelial‐mesenchymal transition in human renal proximal tubular epithelial cells. Nephrol Dial Transplant. 2005;20:2215‐2225. PubMed

Slattery C, Campbell E, McMorrow T, Ryan MP. Cyclosporine A‐induced renal fibrosis. Am J Pathol. 2005;167:395‐407. PubMed PMC

Muth T, Keller D, Puetz SM, Martens L, Sickmann A, Boehm AM. jTraqX: a free, platform independent tool for isobaric tag quantitation at the protein level. Proteomics. 2010;10:1223‐1225. PubMed

Deutsch EW, Csordas A, Sun Z, et al. The ProteomeXchange consortium in 2017: supporting the cultural change in proteomics public data deposition. Nucleic Acids Res. 2017;45:D1100‐D1106. PubMed PMC

Vizcaíno JA, Csordas A, del‐Toro N, et al. 2016 update of the PRIDE database and its related tools. Nucleic Acids Res. 2016;44:D447‐D456. PubMed PMC

Shinoda T, Ogawa H, Cornelius F, Toyoshima C. Crystal structure of the sodium–potassium pump at 2.4 Å resolution. Nature. 2009;459:446‐450. PubMed

Nyblom M, Poulsen H, Gourdon P, et al. Crystal structure of Na+, K+ ‐ATPase in the Na+ ‐bound state. Science. 2013;342:123‐127. PubMed

Morris GM, Huey R, Lindstrom W, et al. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J Comput Chem. 2009;30:2785‐2791. PubMed PMC

Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010;31:455–461. PubMed PMC

Salentin S, Schreiber S, Haupt VJ, Adasme MF, Schroeder M. PLIP: fully automated protein–ligand interaction profiler. Nucleic Acids Res. 2015;43:W443‐W447. PubMed PMC

Haynes M, Fuller L, Haynes DH, Miller J. Cyclosporin partitions into phospholipid vesicles and disrupts membrane architecture. Immunol Lett. 1985;11:343‐349. PubMed

Wang CK, Swedberg JE, Harvey PJ, Kaas Q, Craik DJ. Conformational flexibility is a determinant of permeability for cyclosporin. J Phys Chem B. 2018;122:2261‐2276. PubMed

Čechová P, Berka K, Kubala M. Ion pathways in the Na+/K+ ‐ATPase. J Chem Inf Model. 2016;56:2434‐2444. PubMed

Poulsen H, Khandelia H, Morth JP, et al. Neurological disease mutations compromise a C‐terminal ion pathway in the Na+/K+‐ATPase. Nature. 2010;467:99‐102. PubMed

Kanai R, Ogawa H, Vilsen B, Cornelius F, Toyoshima C. Crystal structure of a Na+‐bound Na+, K+‐ATPase preceding the E1P state. Nature. 2013;502:201‐206. PubMed

Cornelius F, Habeck M, Kanai R, Toyoshima C, Karlish S. General and specific lipid–protein interactions in Na, K‐ATPase. Biochim Biophys Acta Biomembr. 2015;1848:1729‐1743. PubMed

Faul C, Donnelly M, Merscher‐Gomez S, et al. The actin cytoskeleton of kidney podocytes is a direct target of the antiproteinuric effect of cyclosporine A. Nat Med. 2008;14:931‐938. PubMed PMC

Li X, Zhang X, Li X, Wang X, Wang S, Ding J. Cyclosporine A protects podocytes via stabilization of cofilin‐1 expression in the unphosphorylated state. Exp Biol Med. 2014;239:922‐936. PubMed

Descazeaud V, Mestre E, Marquet P, Essig M. Calcineurin regulation of cytoskeleton organization: a new paradigm to analyse the effects of calcineurin inhibitors on the kidney. J Cell Mol Med. 2012;16:218‐227. PubMed PMC

Vantroys M, Huyck L, Leyman S, Dhaese S, Vandekerkhove J, Ampe C. Ins and outs of ADF/cofilin activity and regulation. Eur J Cell Biol. 2008;87:649‐667. PubMed

Andrianantoandro E, Pollard TD. Mechanism of actin filament turnover by severing and nucleation at different concentrations of ADF/cofilin. Mol Cell. 2006;24:13‐23. PubMed

Yeoh S, Pope B, Mannherz HG, Weeds A. Determining the differences in actin binding by human ADF and cofilin1. J Mol Biol. 2002;315:911‐925. PubMed

Goyal P, Pandey D, Brünnert D, Hammer E, Zygmunt M, Siess W. Cofilin oligomer formation occurs in vivo and is regulated by cofilin phosphorylation. PLoS ONE. 2013;8:e71769. PubMed PMC

Pfannstiel J, Cyrklaff M, Habermann A, et al. Human cofilin forms oligomers exhibiting actin bundling activity. J Biol Chem. 2001;276:49476‐49484. PubMed

Geneste O, Copeland JW, Treisman R. LIM kinase and diaphanous cooperate to regulate serum response factor and actin dynamics. J Cell Biol. 2002;157:831‐838. PubMed PMC

Huang TY, DerMardirossian C, Bokoch GM. Cofilin phosphatases and regulation of actin dynamics. Curr Opin Cell Biol. 2006;18:26‐31. PubMed

Miralles F, Posern G, Zaromytidou A‐I, Treisman R. Actin Dynamics control SRF activity by regulation of its coactivator MAL. Cell. 2003;113:329‐342. PubMed

Hill CS, Wynne J, Treisman R. The Rho family GTPases RhoA, Racl, and CDC42Hsregulate transcriptional activation by SRF. Cell. 1995;81:1159‐1170. PubMed

Maekawa M. Signaling from Rho to the actin cytoskeleton through protein kinases ROCK and LIM‐kinase. Science. 1999;285:895‐898. PubMed

Sotiropoulos A, Gineitis D, Copeland J, Treisman R. Signal‐regulated activation of serum response factor is mediated by changes in actin dynamics. Cell. 1999;98:159‐169. PubMed

Martin‐Martin N, Dan Q, Amoozadeh Y, et al. RhoA and Rho kinase mediate cyclosporine A and sirolimus‐induced barrier tightening in renal proximal tubular cells. Int J Biochem Cell Biol. 2012;44:178‐188. PubMed

Jung J, Kim M, Choi S, et al. Molecular mechanism of cofilin dephosphorylation by ouabain. Cell Signal. 2006a;18:2033‐2040. PubMed

Jung J, Park H, Kim M, Kim M‐J, Choi EC, Lee K. Extracellular potassium deprivation reversibly dephosphorylates cofilin. Biochem Biophys Res Commun. 2006;345:1393‐1397. PubMed

Jung J, Yoon T, Choi EC, Lee K. Interaction of cofilin with triose‐phosphate isomerase contributes glycolytic fuel for Na, K‐ATPase via Rho‐mediated signaling pathway. J Biol Chem. 2002;277:48931‐48937. PubMed

Deppe CE, Heering PJ, Tinel H, Kinne‐Saffran E, Grabensee B, Kinne RK. Effect of cyclosporine A on Na+/K(+)‐ATPase, Na+/K+/2Cl‐ cotransporter, and H+/K(+)‐ATPase in MDCK cells and two subtypes, C7 and C11. Exp Nephrol. 1997;5:471‐480. PubMed

Ferrer‐Martínez A, Felipe A, Barceló P, Casado FJ, Ballarín J, Pastor‐Anglada M. Effects of cyclosporine A on Na, K‐ATPase expression in the renal epithelial cell line NBL‐1. Kidney Int. 1996;50:1483‐1489. PubMed

Ihara H, Hosokawa S, Ogino T, Arima M, Ikoma F. Activation of K+ channel and inhibition of Na(+)‐K+ ATPase of human erythrocytes by cyclosporine: possible role in hyperpotassemia in kidney transplant recipients. Transplant Proc. 1990;22:1736‐1739. PubMed

Lea JP, Sands JM, McMahon SJ, Tumlin JA. Evidence that the inhibition of Na+/K+‐ATPase activity by FK506 involves calcineurin. Kidney Int. 1994;46:647‐652. PubMed

Marakhova I, Ivanova A, Toropova F, Vereninov A, Vinogradova T. Functional expression of the Na/K pump is controlled via a cyclosporin A‐sensitive signalling pathway in activated human lymphocytes. FEBS Lett. 1999;456:285‐289. PubMed

Marakhova II, Vereninov AA, Vinogradova TA, Toropova FV. Cyclosporin A inhibits long‐term activation of Na+, K+ pump in phytohemagglutinin‐stimulated human lymphocytes. Membr Cell Biol. 1998;12:363‐374. PubMed

Tumlin JA, Sands JM. Nephron segment‐specific inhibition of Na+/K+‐ATPase activity by cyclosporin A. Kidney Int. 1993;43:246‐251. PubMed

Younes‐Ibrahim M, Barnese M, Burth P, Castro‐Faria MV. Inhibition of purified human kidney Na +, K + ‐ATPase by cyclosporine A. Ann N Y Acad Sci. 2003;986:633‐635. PubMed

Nakahama H. Stimulatory effect of cyclosporine A on endothelin secretion by a cultured renal epithelial cell line, LLC‐PK1 cells. Eur J Pharmacol. 1990;180:191‐192. PubMed

Zeidel ML, Brady HR, Kone BC, Gullans SR, Brenner BM. Endothelin, a peptide inhibitor of Na(+)‐K(+)‐ATPase in intact renaltubular epithelial cells. Am J Physiol Cell Physiol. 1989;257:C1101‐C1107. PubMed

Suñé G, Sarró E, Puigmulé M, et al. Cyclophilin B interacts with sodium‐potassium ATPase and is required for pump activity in proximal tubule cells of the kidney. PLoS ONE. 2010;5:e13930. PubMed PMC

Lamoureux F, Mestre E, Essig M, Sauvage FL, Marquet P, Gastinel LN. Quantitative proteomic analysis of cyclosporine‐induced toxicity in a human kidney cell line and comparison with tacrolimus. J Proteomics. 2011;75:677‐694. PubMed

Bhatia T, Cornelius F, Brewer J, et al. Spatial distribution and activity of Na+/K+ ‐ATPase in lipid bilayer membranes with phase boundaries. Biochim Biophys Acta Biomembr. 2016;1858:1390‐1399. PubMed

Sun Q. Defining the mammalian CArGome. Genome Res. 2005;16:197‐207. PubMed PMC

Cao X‐L, Hu X‐M, Hu J‐Q, Zheng W‐X. Myocardin‐related transcription factor‐A promoting neuronal survival against apoptosis induced by hypoxia/ischemia. Brain Res. 2011;1385:263‐274. PubMed

Sisson TH, Ajayi IO, Subbotina N, et al. Inhibition of myocardin‐related transcription factor/serum response factor signaling decreases lung fibrosis and promotes mesenchymal cell apoptosis. Am J Pathol. 2015;185:969‐986. PubMed PMC

Gasparics Á, Sebe A. MRTFs‐ master regulators of EMT: MRTFs‐ master regulators of EMT. Dev Dyn. 2018;247:396‐404. PubMed

Korol A, Taiyab A, West‐Mays JA. RhoA/ROCK signaling regulates TGFβ‐induced epithelial‐mesenchymal transition of lens epithelial cells through MRTF‐A. Mol Med; 2016:22:713‐723. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...