Cyclosporine A inhibits MRTF-SRF signaling through Na+/K+ ATPase inhibition and actin remodeling
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
32123851
PubMed Central
PMC6996406
DOI
10.1096/fba.2019-00027
PII: FBA21081
Knihovny.cz E-zdroje
- Klíčová slova
- MRTF‐SRF, Na+/K+‐ATPase, actin cytoskeleton, cofilin, cyclosporine A,
- Publikační typ
- časopisecké články MeSH
Calcineurin inhibitors (CNI) are the pillars of immunosuppression in transplantation. However, they display a potent nephrotoxicity whose mechanisms remained widely unsolved. We used an untargeted quantitative proteomic approach (iTRAQ technology) to highlight new targets of CNI in renal proximal tubular cells (RPTCs). CNI-treated RPTCs proteome displayed an over-representation of actin-binding proteins with a CNI-specific expression profile. Cyclosporine A (CsA) induced F-actin remodeling and depolymerization, decreased F-actin-stabilizing, polymerization-promoting cofilin (CFL) oligomers, and inhibited the G-actin-regulated serum response factor (SRF) pathway. Inhibition of CFL canonical phosphorylation pathway reproduced CsA effects; however, S3-R, an analogue of the phosphorylation site of CFL prevented the effects of CsA which suggests that CsA acted independently from the canonical CFL regulation. CFL is known to be regulated by the Na+/K+-ATPase. Molecular docking calculations identified two inhibiting sites of CsA on Na+/K+-ATPase and a 23% decrease in Na+/K+-ATPase activity of RPTCs was observed with CsA. Ouabain, a specific inhibitor of Na+/K+-ATPase also reproduced CsA effects on actin organization and SRF activity. Altogether, these results described a new original pathway explaining CsA nephrotoxicity.
Centre for Biology and Health Research UMR INSERM 1248 IPPRIT Limoges University Limoges France
Department of Pharmacology and Toxicology Limoges University Hospital Limoges France
Zobrazit více v PubMed
Calne R, Thiru S, Mcmaster P, et al. Cyclosporin A in patients receiving renal allografts from cadaver donors. Lancet. 1978;312:1323‐1327. PubMed
Calne RY, Rolles K, Thiru S, et al. Cyclosporin a initially as the only immunosuppressant in 34 recipients of cadaveric organs: 32 kidneys, 2 pancreases, and 2 livers. Lancet. 1979;314:1033‐1036. PubMed
Starzl T, Fung J, Venkataramman R, Todo S, Demetris A, Jain A. Fk 506 for liver, kidney, and pancreas transplantation. Lancet. 1989;334:1000‐1004. PubMed PMC
Hart A, Smith JM, Skeans MA, et al. Kidney. Am J Transplant. 2016;16:11‐46. PubMed PMC
Hart A, Smith JM, Skeans MA, et al. OPTN/SRTR 2015 annual data report: kidney. Am J Transplant. 2017;17:21‐116. PubMed PMC
Myers BD, Ross J, Newton L, Luetscher J, Perlroth M. Cyclosporine‐associated chronic nephropathy. N Engl J Med. 1984;311:699‐705. PubMed
Gaston RS. Chronic calcineurin inhibitor nephrotoxicity: reflections on an evolving paradigm. Clin J Am Soc Nephrol. 2009;4:2029‐2034. PubMed
Naesens M, Kuypers D, Sarwal M. Calcineurin inhibitor nephrotoxicity. Clin J Am Soc Nephrol. 2009;4:481‐508. http://cjasn.asnjournals.org/cgi/doi/10.2215/CJN.04800908. Accessed March 31, 2017. PubMed DOI
Healy E, Dempsey M, Lally C, Ryan MP. Apoptosis and necrosis: mechanisms of cell death induced by cyclosporine A in a renal proximal tubular cell line. Kidney Int. 1998;54:1955‐1966. PubMed
Ito H, Kasagi N, Shomori K, Osaki M, Adachi H. Apoptosis in the human allografted kidney. Analysis by terminal deoxynucleotidyl transferase‐mediated DUTP‐botin nick end labeling. Transplantation. 1995;60:794‐798. PubMed
Jennings P, Koppelstaetter C, Aydin S, et al. Cyclosporine A induces senescence in renal tubular epithelial cells. Am J Physiol Renal Physiol. 2007;293:F831‐F838. PubMed
Justo P. Intracellular mechanisms of cyclosporin A‐induced tubular cell apoptosis. J Am Soc Nephrol. 2003;14:3072‐3080. PubMed
Lally C, Healy E, Ryan MP. Cyclosporine A‐induced cell cycle arrest and cell death in renal epithelial cells. Kidney Int. 1999;56:1254‐1257. PubMed
Ortiz A, Lorz C, Catalán M, Ortiz A, Coca S, Egido J. Cyclosporine A induces apoptosis in murine tubular epithelial cells: role of caspases. Kidney Int Suppl. 1998;68:S25‐29. PubMed
Hama T, Nakanishi K, Mukaiyama H, et al. Endoplasmic reticulum stress with low‐dose cyclosporine in frequently relapsing nephrotic syndrome. Pediatr Nephrol. 2013;28:903‐909. PubMed
Han SW, Li C, Ahn KO, et al. Prolonged endoplasmic reticulum stress induces apoptotic cell death in an experimental model of chronic cyclosporine nephropathy. Am J Nephrol. 2008;28:707‐714. PubMed
Pallet N, Bouvier N, Bendjallabah A, et al. Cyclosporine‐induced endoplasmic reticulum stress triggers tubular phenotypic changes and death. Am J Transplant. 2008a;8:2283‐2296. PubMed
Pallet N, Bouvier N, Legendre C, et al. Autophagy protects renal tubular cells against cyclosporine toxicity. Autophagy. 2008b;4:783‐791. PubMed
Pallet N, Rabant M, Xu‐Dubois Y‐C, et al. Response of human renal tubular cells to cyclosporine and sirolimus: a toxicogenomic study. Toxicol Appl Pharmacol. 2008c;229:184‐196. PubMed
Djamali A. Oxidative stress as a common pathway to chronic tubulointerstitial injury in kidney allografts. Am J Physiol Renal Physiol. 2007;293:F445‐F455. PubMed
Vetter M, Chen Z‐J, Chang G‐D, Che D, Liu S, Chang C‐H. Cyclosporin A disrupts bradykinin signaling through superoxide. Hypertension. 2003;41:1136‐1142. PubMed
Heering P, Grabensee B. Influence of ciclosporin A on renal tubular function after kidney transplantation. Nephron. 1991;59:66‐70. PubMed
Hazzan M, Hertig A, Buob D, et al. Epithelial‐to‐mesenchymal transition predicts cyclosporine nephrotoxicity in renal transplant recipients. J Am Soc Nephrol. 2011;22:1375‐1381. PubMed PMC
McMorrow T, Gaffney MM, Slattery C, Campbell E, Ryan MP. Cyclosporine A induced epithelial‐mesenchymal transition in human renal proximal tubular epithelial cells. Nephrol Dial Transplant. 2005;20:2215‐2225. PubMed
Slattery C, Campbell E, McMorrow T, Ryan MP. Cyclosporine A‐induced renal fibrosis. Am J Pathol. 2005;167:395‐407. PubMed PMC
Muth T, Keller D, Puetz SM, Martens L, Sickmann A, Boehm AM. jTraqX: a free, platform independent tool for isobaric tag quantitation at the protein level. Proteomics. 2010;10:1223‐1225. PubMed
Deutsch EW, Csordas A, Sun Z, et al. The ProteomeXchange consortium in 2017: supporting the cultural change in proteomics public data deposition. Nucleic Acids Res. 2017;45:D1100‐D1106. PubMed PMC
Vizcaíno JA, Csordas A, del‐Toro N, et al. 2016 update of the PRIDE database and its related tools. Nucleic Acids Res. 2016;44:D447‐D456. PubMed PMC
Shinoda T, Ogawa H, Cornelius F, Toyoshima C. Crystal structure of the sodium–potassium pump at 2.4 Å resolution. Nature. 2009;459:446‐450. PubMed
Nyblom M, Poulsen H, Gourdon P, et al. Crystal structure of Na+, K+ ‐ATPase in the Na+ ‐bound state. Science. 2013;342:123‐127. PubMed
Morris GM, Huey R, Lindstrom W, et al. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J Comput Chem. 2009;30:2785‐2791. PubMed PMC
Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010;31:455–461. PubMed PMC
Salentin S, Schreiber S, Haupt VJ, Adasme MF, Schroeder M. PLIP: fully automated protein–ligand interaction profiler. Nucleic Acids Res. 2015;43:W443‐W447. PubMed PMC
Haynes M, Fuller L, Haynes DH, Miller J. Cyclosporin partitions into phospholipid vesicles and disrupts membrane architecture. Immunol Lett. 1985;11:343‐349. PubMed
Wang CK, Swedberg JE, Harvey PJ, Kaas Q, Craik DJ. Conformational flexibility is a determinant of permeability for cyclosporin. J Phys Chem B. 2018;122:2261‐2276. PubMed
Čechová P, Berka K, Kubala M. Ion pathways in the Na+/K+ ‐ATPase. J Chem Inf Model. 2016;56:2434‐2444. PubMed
Poulsen H, Khandelia H, Morth JP, et al. Neurological disease mutations compromise a C‐terminal ion pathway in the Na+/K+‐ATPase. Nature. 2010;467:99‐102. PubMed
Kanai R, Ogawa H, Vilsen B, Cornelius F, Toyoshima C. Crystal structure of a Na+‐bound Na+, K+‐ATPase preceding the E1P state. Nature. 2013;502:201‐206. PubMed
Cornelius F, Habeck M, Kanai R, Toyoshima C, Karlish S. General and specific lipid–protein interactions in Na, K‐ATPase. Biochim Biophys Acta Biomembr. 2015;1848:1729‐1743. PubMed
Faul C, Donnelly M, Merscher‐Gomez S, et al. The actin cytoskeleton of kidney podocytes is a direct target of the antiproteinuric effect of cyclosporine A. Nat Med. 2008;14:931‐938. PubMed PMC
Li X, Zhang X, Li X, Wang X, Wang S, Ding J. Cyclosporine A protects podocytes via stabilization of cofilin‐1 expression in the unphosphorylated state. Exp Biol Med. 2014;239:922‐936. PubMed
Descazeaud V, Mestre E, Marquet P, Essig M. Calcineurin regulation of cytoskeleton organization: a new paradigm to analyse the effects of calcineurin inhibitors on the kidney. J Cell Mol Med. 2012;16:218‐227. PubMed PMC
Vantroys M, Huyck L, Leyman S, Dhaese S, Vandekerkhove J, Ampe C. Ins and outs of ADF/cofilin activity and regulation. Eur J Cell Biol. 2008;87:649‐667. PubMed
Andrianantoandro E, Pollard TD. Mechanism of actin filament turnover by severing and nucleation at different concentrations of ADF/cofilin. Mol Cell. 2006;24:13‐23. PubMed
Yeoh S, Pope B, Mannherz HG, Weeds A. Determining the differences in actin binding by human ADF and cofilin1. J Mol Biol. 2002;315:911‐925. PubMed
Goyal P, Pandey D, Brünnert D, Hammer E, Zygmunt M, Siess W. Cofilin oligomer formation occurs in vivo and is regulated by cofilin phosphorylation. PLoS ONE. 2013;8:e71769. PubMed PMC
Pfannstiel J, Cyrklaff M, Habermann A, et al. Human cofilin forms oligomers exhibiting actin bundling activity. J Biol Chem. 2001;276:49476‐49484. PubMed
Geneste O, Copeland JW, Treisman R. LIM kinase and diaphanous cooperate to regulate serum response factor and actin dynamics. J Cell Biol. 2002;157:831‐838. PubMed PMC
Huang TY, DerMardirossian C, Bokoch GM. Cofilin phosphatases and regulation of actin dynamics. Curr Opin Cell Biol. 2006;18:26‐31. PubMed
Miralles F, Posern G, Zaromytidou A‐I, Treisman R. Actin Dynamics control SRF activity by regulation of its coactivator MAL. Cell. 2003;113:329‐342. PubMed
Hill CS, Wynne J, Treisman R. The Rho family GTPases RhoA, Racl, and CDC42Hsregulate transcriptional activation by SRF. Cell. 1995;81:1159‐1170. PubMed
Maekawa M. Signaling from Rho to the actin cytoskeleton through protein kinases ROCK and LIM‐kinase. Science. 1999;285:895‐898. PubMed
Sotiropoulos A, Gineitis D, Copeland J, Treisman R. Signal‐regulated activation of serum response factor is mediated by changes in actin dynamics. Cell. 1999;98:159‐169. PubMed
Martin‐Martin N, Dan Q, Amoozadeh Y, et al. RhoA and Rho kinase mediate cyclosporine A and sirolimus‐induced barrier tightening in renal proximal tubular cells. Int J Biochem Cell Biol. 2012;44:178‐188. PubMed
Jung J, Kim M, Choi S, et al. Molecular mechanism of cofilin dephosphorylation by ouabain. Cell Signal. 2006a;18:2033‐2040. PubMed
Jung J, Park H, Kim M, Kim M‐J, Choi EC, Lee K. Extracellular potassium deprivation reversibly dephosphorylates cofilin. Biochem Biophys Res Commun. 2006;345:1393‐1397. PubMed
Jung J, Yoon T, Choi EC, Lee K. Interaction of cofilin with triose‐phosphate isomerase contributes glycolytic fuel for Na, K‐ATPase via Rho‐mediated signaling pathway. J Biol Chem. 2002;277:48931‐48937. PubMed
Deppe CE, Heering PJ, Tinel H, Kinne‐Saffran E, Grabensee B, Kinne RK. Effect of cyclosporine A on Na+/K(+)‐ATPase, Na+/K+/2Cl‐ cotransporter, and H+/K(+)‐ATPase in MDCK cells and two subtypes, C7 and C11. Exp Nephrol. 1997;5:471‐480. PubMed
Ferrer‐Martínez A, Felipe A, Barceló P, Casado FJ, Ballarín J, Pastor‐Anglada M. Effects of cyclosporine A on Na, K‐ATPase expression in the renal epithelial cell line NBL‐1. Kidney Int. 1996;50:1483‐1489. PubMed
Ihara H, Hosokawa S, Ogino T, Arima M, Ikoma F. Activation of K+ channel and inhibition of Na(+)‐K+ ATPase of human erythrocytes by cyclosporine: possible role in hyperpotassemia in kidney transplant recipients. Transplant Proc. 1990;22:1736‐1739. PubMed
Lea JP, Sands JM, McMahon SJ, Tumlin JA. Evidence that the inhibition of Na+/K+‐ATPase activity by FK506 involves calcineurin. Kidney Int. 1994;46:647‐652. PubMed
Marakhova I, Ivanova A, Toropova F, Vereninov A, Vinogradova T. Functional expression of the Na/K pump is controlled via a cyclosporin A‐sensitive signalling pathway in activated human lymphocytes. FEBS Lett. 1999;456:285‐289. PubMed
Marakhova II, Vereninov AA, Vinogradova TA, Toropova FV. Cyclosporin A inhibits long‐term activation of Na+, K+ pump in phytohemagglutinin‐stimulated human lymphocytes. Membr Cell Biol. 1998;12:363‐374. PubMed
Tumlin JA, Sands JM. Nephron segment‐specific inhibition of Na+/K+‐ATPase activity by cyclosporin A. Kidney Int. 1993;43:246‐251. PubMed
Younes‐Ibrahim M, Barnese M, Burth P, Castro‐Faria MV. Inhibition of purified human kidney Na +, K + ‐ATPase by cyclosporine A. Ann N Y Acad Sci. 2003;986:633‐635. PubMed
Nakahama H. Stimulatory effect of cyclosporine A on endothelin secretion by a cultured renal epithelial cell line, LLC‐PK1 cells. Eur J Pharmacol. 1990;180:191‐192. PubMed
Zeidel ML, Brady HR, Kone BC, Gullans SR, Brenner BM. Endothelin, a peptide inhibitor of Na(+)‐K(+)‐ATPase in intact renaltubular epithelial cells. Am J Physiol Cell Physiol. 1989;257:C1101‐C1107. PubMed
Suñé G, Sarró E, Puigmulé M, et al. Cyclophilin B interacts with sodium‐potassium ATPase and is required for pump activity in proximal tubule cells of the kidney. PLoS ONE. 2010;5:e13930. PubMed PMC
Lamoureux F, Mestre E, Essig M, Sauvage FL, Marquet P, Gastinel LN. Quantitative proteomic analysis of cyclosporine‐induced toxicity in a human kidney cell line and comparison with tacrolimus. J Proteomics. 2011;75:677‐694. PubMed
Bhatia T, Cornelius F, Brewer J, et al. Spatial distribution and activity of Na+/K+ ‐ATPase in lipid bilayer membranes with phase boundaries. Biochim Biophys Acta Biomembr. 2016;1858:1390‐1399. PubMed
Sun Q. Defining the mammalian CArGome. Genome Res. 2005;16:197‐207. PubMed PMC
Cao X‐L, Hu X‐M, Hu J‐Q, Zheng W‐X. Myocardin‐related transcription factor‐A promoting neuronal survival against apoptosis induced by hypoxia/ischemia. Brain Res. 2011;1385:263‐274. PubMed
Sisson TH, Ajayi IO, Subbotina N, et al. Inhibition of myocardin‐related transcription factor/serum response factor signaling decreases lung fibrosis and promotes mesenchymal cell apoptosis. Am J Pathol. 2015;185:969‐986. PubMed PMC
Gasparics Á, Sebe A. MRTFs‐ master regulators of EMT: MRTFs‐ master regulators of EMT. Dev Dyn. 2018;247:396‐404. PubMed
Korol A, Taiyab A, West‐Mays JA. RhoA/ROCK signaling regulates TGFβ‐induced epithelial‐mesenchymal transition of lens epithelial cells through MRTF‐A. Mol Med; 2016:22:713‐723. PubMed PMC