Efficacy, immunogenicity, and safety of IC43 recombinant Pseudomonas aeruginosa vaccine in mechanically ventilated intensive care patients-a randomized clinical trial
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, randomizované kontrolované studie, práce podpořená grantem
Grantová podpora
Sponsor
Valneva - International
PubMed
32131866
PubMed Central
PMC7057595
DOI
10.1186/s13054-020-2792-z
PII: 10.1186/s13054-020-2792-z
Knihovny.cz E-zdroje
- Klíčová slova
- Intensive care, Mechanical ventilation, Pseudomonas aeruginosa, Vaccination,
- MeSH
- dospělí MeSH
- dvojitá slepá metoda MeSH
- imunogenicita vakcíny imunologie MeSH
- jednotky intenzivní péče organizace a řízení statistika a číselné údaje MeSH
- Kaplanův-Meierův odhad MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- pseudomonádové infekce patofyziologie prevence a kontrola MeSH
- Pseudomonas aeruginosa účinky léků patogenita MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- umělé dýchání škodlivé účinky metody MeSH
- výsledek terapie * MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mužské pohlaví MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- randomizované kontrolované studie MeSH
BACKGROUND: Pseudomonas aeruginosa infections are a serious threat in intensive care units (ICUs). The aim of this confirmatory, randomized, multicenter, placebo-controlled, double-blind, phase 2/3 study was to assess the efficacy, immunogenicity, and safety of IC43 recombinant Pseudomonas aeruginosa vaccine in non-surgical ICU patients. METHODS: Eight hundred patients aged 18 to 80 years admitted to the ICU with expected need for mechanical ventilation for ≥ 48 h were randomized 1:1 to either IC43 100 μg or saline placebo, given in two vaccinations 7 days apart. The primary efficacy endpoint was all-cause mortality in patients 28 days after the first vaccination. Immunogenicity and safety were also evaluated. FINDINGS: All-cause mortality rates at day 28 were 29.2% vs 27.7% in the IC43 and placebo groups, respectively (P = .67). Overall survival (Kaplan-Meier survival estimates, P = .46) and proportion of patients with ≥ one confirmed P. aeruginosa invasive infection or respiratory tract infection also did not differ significantly between both groups. The geometric mean fold increase in OprF/I titers was 1.5 after the first vaccination, 20 at day 28, after the second vaccination, and 2.9 at day 180. Significantly more patients in the placebo group (96.5%) had ≥ one adverse event (AE) versus the IC43 100 μg group (93.1%) (P = .04). The most frequently reported severe AEs in the IC43 and placebo groups were respiratory failure (6.9% vs 5.7%, respectively), septic shock (4.1% vs 6.5%), cardiac arrest (4.3% vs 5.7%), multiorgan failure (4.6% vs 5.5%), and sepsis (4.6% vs 4.2%). No related serious AEs were reported in the IC43 group. INTERPRETATION: The IC43 100 μg vaccine was well tolerated in this large population of medically ill, mechanically ventilated patients. The vaccine achieved high immunogenicity but provided no clinical benefit over placebo in terms of overall mortality. TRIAL REGISTRATION: https://clinicaltrials.gov (NCT01563263). Registration was sent to ClinicalTrials.gov on March 14, 2012, but posted by ClinicalTrials.gov on March 26, 2012. The first subject was included in the trial on March 22, 2012.
Assign Data Management and Biostatistics GmbH Innsbruck Austria
Centro de Investigacion Biomedica en Red Hospital Universitari Vall d'Hebron Barcelona Spain
Erasme University Hospital Brussels Belgium
Fakultní nemocnice U Svaté Anny v Brně Brno Czech Republic
HELIOS Klinikum Erfurt GmbH Erfurt Germany
Kenézy Kórház Debrecen Debrecen Hungary
Klinikum Dortmund GmbH Dortmund Germany
Medical University of Graz Graz Austria
Medical University of Vienna Vienna Austria
Országos Korányi TBC és Pulmonológiai Intézet Budapest Hungary
Szegedi Tudományegyetem Szeged Hungary
Technische Universität Dresden Dresden Germany
Universitair Ziekenhuis Brussel Brussels Belgium
Universitair Ziekenhuis Gent Ghent Belgium
University Hospital Augsburg Augsburg Germany
Valneva Austria GmbH Campus Vienna Biocenter 3 1030 Vienna Austria
Zobrazit více v PubMed
Ewans T. Prevention and control of nosocomial infection in the intensive care unit. 4. New York: Lippincot-Ravan; Irwin and Rippe’s intensive care medicine - NLM Catalog - NCBI; 1999.
Saviteer SM, Samsa GP, Rutala WA. Nosocomial infections in the elderly. Increased risk per hospital day. Am J Med. 1988;84:661–666. doi: 10.1016/0002-9343(88)90101-5. PubMed DOI
Sadikot RT, Blackwell TS, Christman JW, Prince AS. Pathogen–host interactions in Pseudomonas aeruginosa pneumonia. Am J Respir Crit Care Med. 2005;171:1209–1223. doi: 10.1164/rccm.200408-1044SO. PubMed DOI PMC
Yum H-K, Park I-N, Shin B-M, Choi S-J. Recurrent Pseudomonas aeruginosa infection in chronic lung diseases: relapse or reinfection? Tuberc Respir Dis (Seoul) 2014;77:172. doi: 10.4046/trd.2014.77.4.172. PubMed DOI PMC
Morrison Allan J., Wenzel Richard P. Epidemiology of Infections Due to Pseudomonas aeruginosa. Clinical Infectious Diseases. 1984;6(Supplement_3):S627–S642. doi: 10.1093/clinids/6.Supplement_3.S627. PubMed DOI
National Nosocomial Infections Surveillance System National Nosocomial Infections Surveillance (NNIS) System Report, data summary from January 1992 through June 2004, issued October 2004. Am J Infect Control. 2004;32:470–485. doi: 10.1016/j.ajic.2004.10.001. PubMed DOI
Park DR. The microbiology of ventilator-associated pneumonia. Respir Care. 2005;50:742–763. PubMed
Porzecanski I, Bowton DL. Diagnosis and treatment of ventilator-associated pneumonia. Chest. 2006;130:597–604. doi: 10.1378/chest.130.2.597. PubMed DOI
Rello J, Ramirez Estrada S, Borgatta B. Pseudomonas aeruginosa ventilator-associated pneumonia management. Infect Drug Resist. 2016;9:7. doi: 10.2147/IDR.S50669. PubMed DOI PMC
Rello J, Ausina V, Ricart M, et al. Risk factors for infection by Pseudomonas aeruginosa in patients with ventilator-associated pneumonia. Intensive Care Med. 1994;20(3):193–198. doi: 10.1007/BF01704699. PubMed DOI
Priebe GP, Goldberg JB. Vaccines for Pseudomonas aeruginosa: a long and winding road. Expert Rev Vaccines. 2014;13:507–519. doi: 10.1586/14760584.2014.890053. PubMed DOI PMC
Campfield B, Chen K, Kolls JK. Vaccine approaches for multidrug resistant gram negative infections. Curr Opin Immunol. 2014;28:84–89. doi: 10.1016/j.coi.2014.02.002. PubMed DOI PMC
Rello J, Krenn C-G, Locker G, et al. A randomized placebo-controlled phase II study of a Pseudomonas vaccine in ventilated ICU patients. Crit Care. 2017;21:22. doi: 10.1186/s13054-017-1601-9. PubMed DOI PMC
Westritschnig K, Hochreiter R, Wallner G, Firbas C, Schwameis M, Jilma B. A randomized, placebo-controlled phase I study assessing the safety and immunogenicity of a Pseudomonas aeruginosa hybrid outer membrane protein OprF/I vaccine (IC43) in healthy volunteers. Hum Vaccin Immunother. 2014;10:170–183. doi: 10.4161/hv.26565. PubMed DOI PMC
Mansouri E, Gabelsberger J, Knapp B, et al. Safety and immunogenicity of a Pseudomonas aeruginosa hybrid outer membrane protein F-I vaccine in human volunteers. Infect Immun. 1999;67:1461–1470. doi: 10.1128/IAI.67.3.1461-1470.1999. PubMed DOI PMC
Suetens C, Morales I, Savey A, et al. European surveillance of ICU-acquired infections (HELICS-ICU): methods and main results. J Hosp Infect. 2007;65:171–173. doi: 10.1016/S0195-6701(07)60038-3. PubMed DOI
Kollef MH, Chastre J, Fagon J-Y, et al. Global prospective epidemiologic and surveillance study of ventilator-associated pneumonia due to Pseudomonas aeruginosa*. Crit Care Med. 2014;42:2178–2187. doi: 10.1097/CCM.0000000000000510. PubMed DOI
Borgatta B, Lagunes L, Imbiscuso AT, Larrosa MN, Lujàn M, Rello J. Infections in intensive care unit adult patients harboring multidrug-resistant Pseudomonas aeruginosa: implications for prevention and therapy. Eur J Clin Microbiol Infect Dis. 2017;36:1097–1104. doi: 10.1007/s10096-016-2894-3. PubMed DOI
Lemiale V, Mokart D, Resche-Rigon M, et al. Effect of noninvasive ventilation vs oxygen therapy on mortality among immunocompromised patients with acute respiratory failure. JAMA. 2015;314:1711. doi: 10.1001/jama.2015.12402. PubMed DOI
Hoang S, Georget A, Asselineau J, et al. Risk factors for colonization and infection by Pseudomonas aeruginosa in patients hospitalized in intensive care units in France. PLoS One. 2018;13(3):e0193300. doi: 10.1371/journal.pone.0193300. PubMed DOI PMC
Rello J, Jubert P, Vallés J, Artigas A, et al. Evaluation of outcome for intubated patients with pneumonia due to Pseudomonas aeruginosa. Clin Infect Dis. 1996;23(5):973–978. doi: 10.1093/clinids/23.5.973. PubMed DOI
Rello J, Rué M, Jubert P, Muses G, et al. Survival in patients with nosocomial pneumonia: impact of the severity of illness and the etiologic agent. Crit Care Med. 1997;25(11):1862–1867. doi: 10.1097/00003246-199711000-00026. PubMed DOI
Opal SM, Dellinger RP, Vincent J-L, Masur H, Angus DC. The next generation of sepsis clinical trial designs. Crit Care Med. 2014;42:1714–1721. doi: 10.1097/CCM.0000000000000325. PubMed DOI PMC
Dimopoulos G, Akova M, Rello J, et al. Understanding resistance in Pseudomonas. Intensive Care Med. 2020. PubMed PMC
Sakr Y, Moreira CL, Rhodes A, et al. The impact of hospital and ICU organizational factors on outcome in critically ill patients. Crit Care Med. 2015;43:519–526. doi: 10.1097/CCM.0000000000000754. PubMed DOI
Fowler VG, Allen KB, Moreira ED, et al. Effect of an investigational vaccine for preventing Staphylococcus aureus infections after cardiothoracic surgery. JAMA. 2013;309:1368. doi: 10.1001/jama.2013.3010. PubMed DOI
Dimopoulos G, Akova M, Rello J, et al. Understanding resistance in Pseudomonas. Intensive Care Med. 2019; Epub Ahead of Print. PubMed PMC
ClinicalTrials.gov
NCT01563263