Pressure dependence of vibrational optical activity of model biomolecules. A computational study

. 2020 May ; 32 (5) : 710-721. [epub] 20200309

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid32150771

Grantová podpora
18-05770S Grantová Agentura České Republiky - International
e-INFRA LM2018140 Ministry of Education of the Czech Republic - International
LTC17012 Ministry of Education of the Czech Republic - International
CZ.02.1.01/0.0/0.0/16_019/0000729 Ministry of Education of the Czech Republic - International

Change of molecular properties with pressure is an attracting means to regulate molecular reactivity or biological activity. However, the effect is usually small and so far explored rather scarcely. To obtain a deeper insight and estimate the sensitivity of vibrational optical activity spectra to pressure-induced conformational changes, we investigate small model molecules. The Ala-Ala dipeptide, isomaltose disaccharide and adenine-uracil dinucleotide were chosen to represent three different biomolecular classes. The pressure effects were modeled by molecular dynamics and density functional theory simulations. The dinucleotide was found to be the most sensitive to the pressure, whereas for the disaccharide the smallest changes are predicted. Pressure-induced relative intensity changes in vibrational circular dichroism and Raman optical activity spectra are predicted to be 2-3-times larger than for non-polarized IR and Raman techniques.

Zobrazit více v PubMed

Bridgman PW. The coagulation of albumen by pressure. J Biol Chem. 1914;19:511-512.

Kitahara R, Akasaka K. Close identity of a pressure-stabilized intermediate with a kinetic intermediate in protein folding. P Natl Acad Sci USA. 2003;100(6):3167-3172.

Smeller L, Rubens P, Heremans K. Pressure effect on the temperature-induced unfolding and tendency to aggregate of myoglobin. Biochem US. 1999;38(12):3816-3820.

Paci E, Marchi M. Intrinsic compressibility and volume compression in solvated proteins by molecular dynamics simulation at high pressure. P Natl Acad Sci USA. 1996;93(21):11609-11614.

Ploetz EA, Smith PE. Simulated pressure denaturation thermodynamics of ubiquitin. Biophys Chem. 2017;231:135-145.

Marchal S, Torrent J, Masson P, et al. The powerful high pressure tool for protein conformational studies. Braz J Med Biol Res. 2005;38(8):1175-1183.

Cordeiro Y, Foguel D, Silva JL. Pressure-temperature folding landscape in proteins involved in neurodegenerative diseases and cancer. Biophys Chem. 2013;183:9-18.

Meersman F, Dobson CM, Heremans K. Protein unfolding, amyloid fibril formation and configurational energy landscapes under high pressure conditions. Chem Soc Rev. 2006;35(10):908-917.

Torrent J, Martin D, Igel-Egalon A, Beringue V, Rezaei H. High-pressure response of amyloid folds. Viruses. 2019;11(3):202.

Piccirilli F, Plotegher N, Spinozzi F, et al. Pressure effects on alpha-synuclein amyloid fibrils: an experimental investigation on their dissociation and reversible nature. Arch Biochem Biophys. 2017;627:46-55.

Piccirilli F, Plotegher N, Ortore MG, et al. High-pressure-driven reversible dissociation of alpha-synuclein fibrils reveals structural hierarchy. Biophys J. 2017;113(8):1685-1696.

Hillson N, Onuchic JN, García AE. Pressure-induced protein-folding/unfolding kinetics. P Natl Acad Sci USA. 1999;96(26):14848-14853.

Roche J, Caro JA, Norberto DR, et al. Cavities determine the pressure unfolding of proteins. P Natl Acad Sci USA. 2012;109(18):6945-6950.

Hummer G, Garde S, García AE, Paulaitis ME, Pratt LR. The pressure dependence of hydrophobic interactions is consistent with the observed pressure denaturation of proteins. P Natl Acad Sci USA. 1998;95(4):1552-1555.

La Penna G, Mori Y, Kitahara R, Akasaka K, Okamoto Y. Modeling (15)N NMR chemical shift changes in protein backbone with pressure. J Chem Phys. 2016;145(8):085104.

Day R, García AE. Water penetration in the low and high pressure native states of ubiquitin. Proteins. 2007;70(4):1175-1184.

Chen CR, Makhatadze GI. Molecular determinant of the effects of hydrostatic pressure on protein folding stability. Nat Commun. 2017;8(1):14561.

Marques MI, Borreguero JM, Stanley HE, Dokholyan NV. Possible mechanism for cold denaturation of proteins at high pressure. Phys Rev Lett. 2003;91(13):138103.

Dias CL. Unifying microscopic mechanism for pressure and cold denaturations of proteins. Phys Rev Lett. 2012;109(4):048104.

Royer CA. Revisiting volume changes in pressure-induced protein unfolding. Biochim Biophys Acta. 2002;1595(1-2):201-209.

Grigera JR, McCarthy AN. The behavior of the hydrophobic effect under pressure and protein denaturation. Biophys J. 2010;98(8):1626-1631.

Refaee M, Tezuka T, Akasaka K, Williamson MP. Pressure-dependent changes in the solution structure of hen egg-white lysozyme. J Mol Biol. 2003;327(4):857-865.

Harano Y, Yoshidome T, Kinoshita M. Molecular mechanism of pressure denaturation of proteins. J Chem Phys. 2008;129(14):145103.

Yoshidome T, Kinoshita M. Pressure effect on helix-coil transition of an alanine-based peptide: theoretical analysis. Chem Phys Lett. 2009;477(1-3):211-215.

Mori Y, Okumura H. Molecular dynamics of the structural changes of helical peptides induced by pressure. Proteins. 2014;82(11):2970-2981.

McCarthy AN, Grigera JR. Effect of pressure on the conformation of proteins. A molecular dynamics simulation of lysozyme. J Mol Graph Model. 2006;24(4):254-261.

Buchner J, Kiefhaber T. Protein Folding Handbook. 2005. p.

Kitchen DB, Reed LH, Levy RM. Molecular dynamics simulation of solvated protein at high pressure. Biochem US. 2002;31(41):10083-10093.

Espinosa YR, Grigera JR, Caffarena ER. Essential dynamics of the cold denaturation: pressure and temperature effects in yeast frataxin. Proteins. 2017;85(1):125-136.

Marchi M, Akasaka K. Simulation of hydrated BPTI at high pressure: changes in hydrogen bonding and its relation with NMR experiments. J Phys Chem B. 2001;105(3):711-714.

Sarma R, Paul S. Trimethylamine-N-oxide's effect on polypeptide solvation at high pressure: a molecular dynamics simulation study. J Phys Chem B. 2013;117(30):9056-9066.

Lerbret A, Hédoux A, Annighöfer B, Bellissent-Funel M-C. Influence of pressure on the low-frequency vibrational modes of lysozyme and water: a complementary inelastic neutron scattering and molecular dynamics simulation study. Proteins. 2013;81(2):326-340.

Mori Y, Okamoto Y. Conformational changes of ubiquitin under high pressure conditions: a pressure simulated tempering molecular dynamics study. J Comput Chem. 2017;38(15):1167-1173.

Ji Z, Yu L, Liu H, Bao X, Wang Y, Chen L. Effect of pressure with shear stress on gelatinization of starches with different amylose/amylopectin ratios. Food Hydrocoll. 2017;72:331-337.

Oh HE, Pinder DN, Hemar Y, Anema SG, Wong M. Effect of high-pressure treatment on various starch-in-water suspensions. Food Hydrocoll. 2008;22(1):150-155.

Szwengiel A, Lewandowicz G, Gorecki AR, Blaszczak W. The effect of high hydrostatic pressure treatment on the molecular structure of starches with different amylose content. Food Chem. 2018;240:51-58.

Wei B, Cai C, Jin Z, Tian Y. High-pressure homogenization induced degradation of amylopectin in a gelatinized state. Starch - Stärke. 2016;68(7-8):734-741.

Li W, Zhang F, Liu P, Bai Y, Gao L, Shen Q. Effect of high hydrostatic pressure on physicochemical, thermal and morphological properties of mung bean (Vigna radiata L.) starch. J Food End. 2011;103(4):388-393.

Liu H, Wang L, Cao R, Fan H, Wang M. In vitro digestibility and changes in physicochemical and structural properties of common buckwheat starch affected by high hydrostatic pressure. Carbohydr Polym. 2016;144:1-8.

Wang J, Zhu H, Li S, Wang S, Wang S, Copeland L. Insights into structure and function of high pressure-modified starches with different crystalline polymorphs. Int J Biol Macromol. 2017;102:414-424.

Wang P, Jin S, Guo H, Zhao L, Ren F. The pressure-induced, lactose-dependent changes in the composition and size of casein micelles. Food Chem. 2015;173:468-474.

Dissanayake M, Kasapis S, George P, Adhikari B, Palmer M, Meurer B. Hydrostatic pressure effects on the structural properties of condensed whey protein/lactose systems. Food Hydrocoll. 2013;30(2):632-640.

Krzyźaniak A, Salański P, Jurczak J, Barciszewski J. B-Z DNA reversible conformation changes effected by high pressure. FEBS Lett. 1991;279(1):1-4.

Wilton DJ, Ghosh M, Chary KV, Akasaka K, Williamson MP. Structural change in a B-DNA helix with hydrostatic pressure. Nucleic Acids Res. 2008;36(12):4032-4037.

Takahashi S, Sugimoto N. Effect of pressure on the stability of G-quadruplex DNA: thermodynamics under crowding conditions. Angew Chem Int Ed. 2013;52(51):13774-13778.

Takahashi S, Sugimoto N. Pressure-dependent formation of i-motif and G-quadruplex DNA structures. Phys Chem Chem Phys. 2015;17(46):31004-31010.

Takahashi S, Bhowmik S, Sugimoto N. Volumetric analysis of formation of the complex of G-quadruplex DNA with hemin using high pressure. J Inorg Biochem. 2017;166:199-207.

Rayan G, Macgregor RB Jr. A look at the effect of sequence complexity on pressure destabilisation of DNA polymers. Biophys Chem. 2015;199:34-38.

Patra S, Anders C, Schummel PH, Winter R. Antagonistic effects of natural osmolyte mixtures and hydrostatic pressure on the conformational dynamics of a DNA hairpin probed at the single-molecule level. Phys Chem Chem Phys. 2018;20(19):13159-13170.

Rayan G, Macgregor RB Jr. Pressure-induced helix-coil transition of DNA copolymers is linked to water activity. Biophys Chem. 2009;144(1-2):62-66.

Miner JC, Chen AA, Garcia AE. Free-energy landscape of a hyperstable RNA tetraloop. P Natl Acad Sci USA. 2016;113(24):6665-6670.

Schuabb C, Pataraia S, Berghaus M, Winter R. Exploring the effects of temperature and pressure on the structure and stability of a small RNA hairpin. Biophys Chem. 2017;231:161-166.

Amiri AR, Macgregor RB Jr. The effect of hydrostatic pressure on the thermal stability of DNA hairpins. Biophys Chem. 2011;156(1):88-95.

Giel-Pietraszuk M, Barciszewski J. A nature of conformational changes of yeast tRNA (Phe). High hydrostatic pressure effects. Int J Biol Macromol. 2005;37(3):109-114.

Schuabb C, Berghaus M, Rosin C, Winter R. Exploring the free energy and conformational landscape of tRNA at high temperature and pressure. Chem Phys Chem. 2015;16(1):138-146.

Kumar P, Lehmann J, Libchaber A. Kinetics of bulge bases in small RNAs and the effect of pressure on it. PLoS ONE. 2012;7(8):e42052.

Li H, Yamada H, Akasaka K. Effect of pressure on individual hydrogen bonds in proteins. Basic Pancreat Trypsin Inhibit Biochem US. 1998;37(5):1167-1173.

Akasaka K. Probing conformational fluctuation of proteins by pressure perturbation. Chem Rev. 2006;106(5):1814-1835.

Roche J, Royer CA, Roumestand C. Monitoring protein folding through high pressure NMR spectroscopy. Prog Nucl Mag Res Sp. 2017;102-103:15-31.

Galkin O, Buchter S, Tabirian A, Schulte A. Pressure effects on the proximal heme pocket in myoglobin probed by Raman and near-infrared absorption spectroscopy. Biophys J. 1997;73(5):2752-2763.

Akasaka K, Kitahara R, Kamatari YO. Exploring the folding energy landscape with pressure. Arch Biochem Biophys. 2013;531(1-2):110-115.

Lerch MT, Horwitz J, McCoy J, Hubbell WL. Circular dichroism and site-directed spin labeling reveal structural and dynamical features of high-pressure states of myoglobin. P Natl Acad Sci USA. 2013;110(49):4714-4722.

Nagata Y, Takeda R, Suginome M. High-pressure circular dichroism spectroscopy up to 400 MPa using polycrystalline yttrium aluminum garnet (YAG) as pressure-resistant optical windows. RSC Adv. 2016;6(111):109726-109729.

Yang C, Jang S, Pak Y. A fully atomistic computer simulation study of cold denaturation of a beta-hairpin. Nat Commun. 2014;5:5773.

Georgoulia PS, Glykos NM. Molecular simulation of peptides coming of age: accurate prediction of folding, dynamics and structures. Arch Biochem Biophys. 2019;664:76-88.

Case DA, Ben-Shalom IY, Brozell SR, Cerutti DS, Cheatham TE, III, , Cruzeiro VWD, Darden TA, Duke RE, Ghoreishi D, Gilson MK, Gohlke H, Goetz AW, Greene D, Harris R, Homeyer N, Izadi S, Kovalenko A, Kurtzman T, Lee TS, LeGrand S, Li P, Lin C, Liu J, Luchko T, Luo R, Mermelstein DJ, Merz KM, Miao Y, Monard G, Nguyen C, Nguyen H, Omelyan I, Onufriev AV, Pan F, Qi R, Roe DR, Roitberg A, Sagui C, Schott-Verdugo S, Shen J, Simmerling CL, Smith J, Salomon-Ferrer R, Swails J, Walker RC, Wang J, Wei H, Wolf RM, Wu X, Xiao L, York DM, Kollman PA. AMBER 2018. University of California, San Francisco; 2018.

Group W. GLYCAM Web. Complex Carbohydrate Research Center, University of Georgia, Athens, GA; 2005-2019.

Maier JA, Martinez C, Kasavajhala K, Wickstrom L, Hauser KE, Simmerling CL. ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB. J Chem Theory Comput. 2015;11(8):3696-3713.

Perez A, Marchan I, Svozil D, et al. Refinement of the AMBER force field for nucleic acids: improving the description of alpha/gamma conformers. Biophys J. 2007;92:3817-3829.

Zgarbova M, Otyepka M, Sponer J, et al. Refinement of the Cornell et al. nucleic acids force field based on reference quantum chemical calculations of glycosidic torsion profiles. J Chem Theory Comput. 2011;7(9):2886-2902.

Kirschner KN, Yongye AB, Tschampel SM, et al. GLYCAM06: A generalizable biomolecular force field. Carbohydrates J Comput Chem. 2008;29(4):622-655.

Grossfield A. n.d. WHAM: the weighted histogram analysis method. 2.0.9.

Sims GE, Kim SH. Global mapping of nucleic acid conformational space: dinucleoside monophosphate conformations and transition pathways among conformational classes. Nucleic Acids Res. 2003;31(19):5607-5616.

Åqvist J, Wennerström P, Nervall M, Bjelic S, Brandsdal BO. Molecular dynamics simulations of water and biomolecules with a Monte Carlo constant pressure algorithm. Chem Phys Lett. 2004;384(4-6):288-294.

Izaguirre JA, Catarello DP, Wozniak JM, Skeel RD. Langevin stabilization of molecular dynamics. J Chem Phys. 2001;114(5):2090-2098.

Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery Jr. JA, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ. Gaussian 16 Rev. C.01. Wallingford, CT; 2016.

Becke AD. Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys. 1993;98(7):5648-5652.

Grimme S, Ehrlich S, Goerigk L. Effect of the damping function in dispersion corrected density functional theory. J Comput Chem. 2011;32(7):1456-1465.

Barone V, Cossi M. Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model. J Phys Chem A. 1998;102(11):1995-2001.

Jungwirth J, Šebestík J, Šafařík M, Kapitán J, Bouř P. Quantitative determination of Ala-Ala conformer ratios in solution by decomposition of Raman optical activity spectra. J Phys Chem B. 2017;121(38):8956-8964.

Roe DR, Cheatham TE III. PTRAJ and CPPTRAJ: software for processing and analysis of molecular dynamics trajectory data. J Chem Theory Comput. 2013;9(7):3084-3095.

Bouř P, Keiderling TA. Partial optimization of molecular geometry in normal coordinates and use as a tool for simulation of vibrational spectra. J Chem Phys. 2002;117(9):4126-4132.

Bouř P. Convergence properties of the normal mode optimization and its combination with molecular geometry constraints. Collect Czech Chem C. 2005;70(9):1315-1340.

Qgrad BP. Institute of Organic Chemistry and Biochemistry. Prague, Czech Republic: Academy of Sciences; 2006.

Onufriev AV, Izadi S. Water models for biomolecular simulations. Wires Comput Mol Sci. 2018;8(2):e1347.

Best RB, Miller C, Mittal J. Role of solvation in pressure-induced helix stabilization. J Chem Phys. 2014;141(22):22D522.

Anandakrishnan R, Izadi S, Onufriev AV. Why computed protein folding landscapes are sensitive to the water model. J Chem Theory Comput. 2019;15(1):625-636.

Gupta M, Nayar D, Chakravarty C, Bandyopadhyay S. Comparison of hydration behavior and conformational preferences of the Trp-cage mini-protein in different rigid-body water models. Phys Chem Chem Phys. 2016;18(48):32796-32813.

Dukor RK, Keiderling TA. Reassessment of the random coil conformation: vibrational CD study of proline oligopeptides and related polypeptides. Biopolymers. 1991;31(14):1747-1761.

Hermans J. The amino acid dipeptide: small but still influential after 50 years. P Natl Acad Sci USA. 2011;108(8):3095-3096.

Takeyiko T, Imai T, Kato M, Taniguchi Y. Temperature and pressure effects on conformational equilibria of alanine dipeptide in aqueous solution. Biopolymers. 2004;73(2):283-290.

Okumura H, Okamoto Y. Temperature and pressure dependence of alanine dipeptide studied by multibaric−multithermal molecular dynamics simulations. J Phys Chem B. 2008;112(38):12038-12049.

Vymětal J, Vondrášek J. Metadynamics as a tool for mapping the conformational and free-energy space of peptides - the alanine dipeptide case study. J Phys Chem B. 2010;114(16):5632-5642.

Takekiyo T, Yoshimura Y, Okuno A, Kato M, Taniguchi Y. Pressure-induced amide I' frequency shift of model compound of proteins in water. Proceedings of the 4th International Conference on High Pressure Bioscience and Biotechnology 2007;1:47-52.

Akasaka K, Matsuki H. High Pressure Bioscience. Dordrecht: Springer; 2015:730.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...