New planar light source for the induction and monitoring of photodynamic processes in vitro

. 2020 Mar ; 46 (1) : 121-131. [epub] 20200313

Jazyk angličtina Země Nizozemsko Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid32170534
Odkazy

PubMed 32170534
PubMed Central PMC7098404
DOI 10.1007/s10867-020-09544-7
PII: 10.1007/s10867-020-09544-7
Knihovny.cz E-zdroje

We recently developed a new light source that allows for the continuous monitoring of light-induced changes using common spectrophotometric devices adapted for microplate analyses. This source was designed primarily to induce photodynamic processes in cell models. Modern light components, such as LED chips, were used to improve the irradiance homogeneity. In addition, this source forms a small hermetic chamber and thus allows for the regulation of the surrounding atmosphere, which plays a significant role in these light-dependent reactions. The efficacy of the new light source was proven via kinetic measurements of reactive oxygen species generated during the photodynamic reaction of chloroaluminium phthalocyanine disulfonate (ClAlPcS2) in three cell lines: human melanoma cells (G361), human breast adenocarcinoma cells (MCF7), and human fibroblasts (BJ).

Zobrazit více v PubMed

Henderson BW, Dougherty TJ. How does photodynamic therapy work? Photochem. Photobiol. 1992;55:145–157. PubMed

Moan J. On the diffusion length of singlet oxygen in cells and tissues. J. Photochem. Photobiol. B Biol. 1990;6:341–344.

Kessel D. Death pathways associated with photodynamic therapy. Med. Laser. Appl. 2006;21:219–224. PubMed PMC

Mang TS. Lasers and light sources for PDT: past, present and future. Photodiagn. Photodyn. Ther. 2004;1:43–48. PubMed

Szeimies RM, Matheson RT, Davis SA, Bhatia AC, Frambach Y, Klövekorn W, Fesq H, Berking C, Reifenberger J, Thaçi D. Topical methyl aminolevulinate photodynamic therapy using red light-emitting diode light for multiple actinic keratoses: a randomized study. Dermatol. Surg. 2009;35:586–592. PubMed

Attili SK, Lesar A, McNeill A, Camacho-Lopez M, Moseley H, Ibbotson S, Samuel ID, Ferguson J. An open pilot study of ambulatory photodynamic therapy using a wearable low-irradiance organic light-emitting diode light source in the treatment of nonmelanoma skin cancer. Br. J. Dermatol. 2009;161:170–173. PubMed

Peloi LS, Biondo CE, Kimura E, Politi MJ, Lonardoni MV, Aristides SM, Dorea RC, Hioka N, Silveira TG. Photodynamic therapy for American cutaneous leishmaniasis: the efficacy of methylene blue in hamsters experimentally infected with Leishmania (Leishmania) amazonensis. Exp. Parasitol. 2011;128:353–356. PubMed

Trindade FZ, Pavarina AC, Ribeiro AP, Bagnato VS, Vergani CE, Costa CA. Toxicity of photodynamic therapy with LED associated to Photogem®: an in vivo study. Lasers Med. Sci. 2012;27:403–411. PubMed

Dong, Y., Zhou, G., Chen, J., Shen, L., Jianxin, Z., Xu, Q., Zhu, Y.: A new LED device used for photodynamic therapy in treatment of moderate to severe acne vulgaris. Photodiagn. Photodyn. Ther. (2016). 10.1016/j.pdpdt.2015.06.007 PubMed

Lim HJ, Oh CH. Indocyanine green-based photodynamic therapy with 785 nm light emitting diode for oral squamous cancer cells. Photodiagn. Photodyn. Ther. 2011;8:337–342. PubMed

Nakajima N, Kawashima N. A basic study on hypericin-PDT in vitro. Photodiagn. Photodyn. Ther. 2012;9:196–203. PubMed

Hatakeyama T, Murayama Y, Komatsu S, Shiozaki A, Kuriu Y, Ikoma H, Nakanishi M, Ichikawa D, Fujiwara H, Okamoto K, Ochiai T, Kokuba Y, Inoue K, Nakajima M, Otsuji E. Efficacy of 5-aminolevulinic acid-mediated photodynamic therapy using light-emitting diodes in human colon cancer cells. Oncol. Rep. 2013;29:911–916. PubMed PMC

Guan J, Lai X, Wang X, Leung AW, Zhang H, Xu C. Photodynamic action of methylene blue in osteosarcoma cells in vitro. Photodiagn. Photodyn. Ther. 2014;11:13–19. PubMed

Hanakova A, Bogdanova K, Tomankova K, Pizova K, Malohlava J, Binder S, Bajgar R, Langova K, Kolar M, Mosinger J, Kolarova H. The application of antimicrobial photodynamic therapy on S. aureus and E. coli using porphyrin photosensitizers bound to cyclodextrin. Microbiol. Res. 2014;169:163–170. PubMed

Tomecka, M., Bajgar, R., Kolarova, H.: Light source of uniform energy density to induce photodynamic phenomena in vitro cells. Czech patent CZ 302829 B6, (2011). https://patents.google.com/patent/CZ302829B6

Ji, Z., Gao, C., Kang, Q., Li, Y., Fan, D., Zhang, L., Hou, X., Zhao, L., Yang, G.: Cell photodynamic irradiator. Chinese patent CN 203247266 U, (2013). https://patents.google.com/patent/CN203247266U

Mordon S, Cochrane C, Tylcz JB, Betrouni N, Mortier L, Koncar V. Light emitting fabric technologies for photodynamic therapy. Photodiagn. Photodyn. Ther. 2015;12:1–8. PubMed

Bajgar, R., Kolarova, H.: Light source with luminous field homogeneity, especially for inducing and monitoring photodynamic phenomenon in vitro. Czech patent CZ 302084 B6, (2010). https://patents.google.com/patent/CZ302084B6

LeBel CP, Ischiropoulos H, Bondy SC. Evaluation of the probe 2′,7′-dichlorofluorescin as an indicator of reactive oxygen species formation and oxidative stress. Chem. Res. Toxicol. 1992;5:227–231. PubMed

Landgraf S. Application of semiconductor light sources for investigations of photochemical reactions. Spectrochim. Acta A. 2001;57:2029–2048. PubMed

Pieslinger A, Plaetzer K, Oberdanner CB, Berlanda J, Mair H, Krammer B, Kiesslich T. Characterization of a simple and homogeneous irradiation device based on light-emitting diodes: a possible low-cost supplement to conventional light sources for photodynamic treatment. Med. Laser Appl. 2006;21:277–283.

Chen, D., Zheng, H., Huang, Z., Lin, H., Ke, Z., Xie, S., Li, B.: Light-emitting diode-based illumination system for in vitro photodynamic therapy. Int. J. Photoenergy (2012). 10.1155/2012/920671

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...