Baseline Difference in Quantitative Electroencephalography Variables Between Responders and Non-Responders to Low-Frequency Repetitive Transcranial Magnetic Stimulation in Depression

. 2020 ; 11 () : 83. [epub] 20200227

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32174854

Repetitive transcranial magnetic stimulation (rTMS) is an effective treatment for depressive disorder, with outcomes approaching 45-55% response and 30-40% remission. Eligible predictors of treatment outcome, however, are still lacking. Few studies have investigated quantitative electroencephalography (QEEG) parameters as predictors of rTMS treatment outcome and none of them have addressed the source localization techniques to predict the response to low-frequency rTMS (LF rTMS). We investigated electrophysiological differences based on scalp EEG data and inverse solution method, exact low-resolution brain electromagnetic tomography (eLORETA), between responders and non-responders to LF rTMS in resting brain activity recorded prior to the treatment. Twenty-five unmedicated depressive patients (mean age of 45.7 years, 20 females) received a 4-week treatment of LF rTMS (1 Hz; 20 sessions per 600 pulses; 100% of the motor threshold) over the right dorsolateral prefrontal cortex. Comparisons between responders (≥50% reduction in Montgomery-Åsberg Depression Rating Scale score) and non-responders were made at baseline for measures of eLORETA current density, spectral absolute power, and inter-hemispheric and intra-hemispheric EEG asymmetry. Responders were found to have lower current source densities in the alpha-2 and beta-1 frequency bands bilaterally (with predominance on the left side) in the inferior, medial, and middle frontal gyrus, precentral gyrus, cingulate gyrus, anterior cingulate, and insula. The most pronounced difference was found in the left middle frontal gyrus for alpha-2 and beta-1 bands (p < 0.05). Using a spectral absolute power analysis, we found a negative correlation between the absolute power in beta and theta frequency bands on the left frontal electrode F7 and the change in depressive symptomatology. None of the selected asymmetries significantly differentiated responders from non-responders in any frequency band. Pre-treatment reduction of alpha-2 and beta-1 sources, but not QEEG asymmetry, was found in patients with major depressive disorder who responded to LF rTMS treatment. Prospective trials with larger groups of subjects are needed to further validate these findings.

Zobrazit více v PubMed

Rush AJ, Trivedi MH, Wisniewski SR, Nierenberg AA, Stewart JW, Warden D, et al. Acute and longer-term outcomes in depressed outpatients requiring one or several treatment steps: a STAR*D report. Am J Psychiatry (2006) 163(11):1905–17. 10.1176/ajp.2006.163.11.1905 PubMed DOI

Tang A, Thickbroom G, Rodger J. Repetitive transcranial magnetic stimulation of the brain: mechanisms from animal and experimental models. Neuroscientist (2017) 23(1):82–94. 10.1177/1073858415618897 PubMed DOI

Soundara Rajan T, Ghilardi MFM, Wang HY, Mazzon E, Bramanti P, Restivo D, et al. Mechanism of action for rTMS: a working hypothesis based on animal studies. Front Physiol (2017) 8:457. 10.3389/fphys.2017.00457 PubMed DOI PMC

Richieri R, Boyer L, Farisse J, Colavolpe C, Mundler O, Lancon C, et al. Predictive value of brain perfusion SPECT for rTMS response in pharmacoresistant depression. Eur J Nucl Med Mol Imaging (2011) 38(9):1715–22. 10.1007/s00259-011-1850-9 PubMed DOI

Mutz J, Vipulananthan V, Carter B, Hurlemann R, Fu CHY, Young AH. Comparative efficacy and acceptability of non-surgical brain stimulation for the acute treatment of major depressive episodes in adults: systematic review and network meta-analysis. BMJ (2019) 364:l1079. 10.1136/bmj.l1079 PubMed DOI PMC

Berlim MT, Van den Eynde F, Jeff Daskalakis Z. Clinically meaningful efficacy and acceptability of low-frequency repetitive transcranial magnetic stimulation (rTMS) for treating primary major depression: a meta-analysis of randomized, double-blind and sham-controlled trials. Neuropsychopharmacology (2013) 38(4):543–51. 10.1038/npp.2012.237 PubMed DOI PMC

Fu CH, Williams SC, Cleare AJ, Brammer MJ, Walsh ND, Kim J, et al. Attenuation of the neural response to sad faces in major depression by antidepressant treatment: a prospective, event-related functional magnetic resonance imaging study. Arch Gen Psychiatry (2004) 61(9):877–89. 10.1001/archpsyc.61.9.877 PubMed DOI

Kennedy SH, Evans KR, Kruger S, Mayberg HS, Meyer JH, McCann S, et al. Changes in regional brain glucose metabolism measured with positron emission tomography after paroxetine treatment of major depression. Am J Psychiatry (2001) 158(6):899–905. 10.1176/appi.ajp.158.6.899 PubMed DOI

Shajahan PM, Glabus MF, Steele JD, Doris AB, Anderson K, Jenkins JA, et al. Left dorso-lateral repetitive transcranial magnetic stimulation affects cortical excitability and functional connectivity, but does not impair cognition in major depression. Prog Neuropsychopharmacol Biol Psychiatry (2002) 26(5):945–54. 10.1016/s0278-5846(02)00210-5 PubMed DOI

Dillon DG, Pizzagalli DA. Evidence of successful modulation of brain activation and subjective experience during reappraisal of negative emotion in unmedicated depression. Psychiatry Res (2013) 212(2):99–107. 10.1016/j.pscychresns.2013.01.001 PubMed DOI PMC

Goldapple K, Segal Z, Garson C, Lau M, Bieling P, Kennedy S, et al. Modulation of cortical-limbic pathways in major depression: treatment-specific effects of cognitive behavior therapy. Arch Gen Psychiatry (2004) 61(1):34–41. 10.1001/archpsyc.61.1.34 PubMed DOI

Chen MH, Lin WC, Tu PC, Li CT, Bai YM, Tsai SJ, et al. Antidepressant and antisuicidal effects of ketamine on the functional connectivity of prefrontal cortex-related circuits in treatment-resistant depression: a double-blind, placebo-controlled, randomized, longitudinal resting fMRI study. J Affect Disord (2019) 259:15–20. 10.1016/j.jad.2019.08.022 PubMed DOI

Hunter AM, Cook IA, Leuchter AF. The promise of the quantitative electroencephalogram as a predictor of antidepressant treatment outcomes in major depressive disorder. Psychiatr Clin North Am (2007) 30(1):105–24. 10.1016/j.psc.2006.12.002 PubMed DOI

Beuzon G, Timour Q, Saoud M. Predictors of response to repetitive transcranial magnetic stimulation (rTMS) in the treatment of major depressive disorder. Encephale (2017) 43(1):3–9. 10.1016/j.encep.2016.11.002 PubMed DOI

Knott V, Mahoney C, Kennedy S, Evans K. Pre-treatment EEG and it's relationship to depression severity and paroxetine treatment outcome. Pharmacopsychiatry (2000) 33(6):201–5. 10.1055/s-2000-8356 PubMed DOI

Schiller MJ. Quantitative electroencephalography in guiding treatment of major depression. Front Psychiatry (2018) 9:779. 10.3389/fpsyt.2018.00779 PubMed DOI PMC

Newson JJ, Thiagarajan TC. EEG frequency bands in psychiatric disorders: a review of resting state studies. Front Hum Neurosci (2018) 12:521. 10.3389/fnhum.2018.00521 PubMed DOI PMC

Fingelkurts AA, Fingelkurts AA. Altered structure of dynamic electroencephalogram oscillatory pattern in major depression. Biol Psychiatry (2015) 77(12):1050–60. 10.1016/j.biopsych.2014.12.011 PubMed DOI

Baskaran A, Milev R, McIntyre RS. The neurobiology of the EEG biomarker as a predictor of treatment response in depression. Neuropharmacology (2012) 63(4):507–13. 10.1016/j.neuropharm.2012.04.021 PubMed DOI

Palmiero M, Piccardi L. Frontal EEG asymmetry of mood: a mini-review. Front Behav Neurosci (2017) 11:224. 10.3389/fnbeh.2017.00224 PubMed DOI PMC

Alamian G, Hincapie AS, Combrisson E, Thiery T, Martel V, Althukov D, et al. Alterations of intrinsic brain connectivity patterns in depression and bipolar disorders: a critical assessment of magnetoencephalography-based evidence. Front Psychiatry (2017) 8:41. 10.3389/fpsyt.2017.00041 PubMed DOI PMC

Leuchter AF, Cook IA, Uijtdehaage SH, Dunkin J, Lufkin RB, Anderson-Hanley C, et al. Brain structure and function and the outcomes of treatment for depression. J Clin Psychiatry (1997) 58 Suppl 16:22–31. PubMed

Baskaran A, Farzan F, Milev R, Brenner CA, Alturi S, Pat McAndrews M, et al. The comparative effectiveness of electroencephalographic indices in predicting response to escitalopram therapy in depression: a pilot study. J Affect Disord (2018) 227:542–9. 10.1016/j.jad.2017.10.028 PubMed DOI

Arns M, Bruder G, Hegerl U, Spooner C, Palmer DM, Etkin A, et al. EEG alpha asymmetry as a gender-specific predictor of outcome to acute treatment with different antidepressant medications in the randomized iSPOT-D study. Clin Neurophysiol (2016) 127(1):509–19. 10.1016/j.clinph.2015.05.032 PubMed DOI

van der Vinne N, Vollebregt MA, van Putten M, Arns M. Stability of frontal alpha asymmetry in depressed patients during antidepressant treatment. NeuroImage Clin (2019) 24:102056. 10.1016/j.nicl.2019.102056 PubMed DOI PMC

Smith EE, Tenke CE, Deldin PJ, Trivedi MH, Weissman MM, Auerbach RP, et al. Frontal theta and posterior alpha in resting EEG: a critical examination of convergent and discriminant validity. Psychophysiology (2019), 57(2):e13483. 10.1111/psyp.13483 PubMed DOI PMC

Tenke CE, Kayser J, Manna CG, Fekri S, Kroppmann CJ, Schaller JD, et al. Current source density measures of electroencephalographic alpha predict antidepressant treatment response. Biol Psychiatry (2011) 70(4):388–94. 10.1016/j.biopsych.2011.02.016 PubMed DOI PMC

Zotev V, Yuan H, Misaki M, Phillips R, Young KD, Feldner MT, et al. Correlation between amygdala BOLD activity and frontal EEG asymmetry during real-time fMRI neurofeedback training in patients with depression. NeuroImage Clin (2016) 11:224–38. 10.1016/j.nicl.2016.02.003 PubMed DOI PMC

Iznak A, Tiganov A, Iznak E, Sorokin S. EEG correlates and possible predictors of the efficacy of the treatment of endogenous depression. Hum Physiol (2013) 39(4):378–85. 10.1134/S0362119713040063 PubMed DOI

Hasanzadeh F, Mohebbi M, Rostami R. Prediction of rTMS treatment response in major depressive disorder using machine learning techniques and nonlinear features of EEG signal. J Affect Disord (2019) 256:132–42. 10.1016/j.jad.2019.05.070 PubMed DOI

Arns M, Drinkenburg WH, Fitzgerald PB, Kenemans JL. Neurophysiological predictors of non-response to rTMS in depression. Brain Stimul (2012) 5(4):569–76. 10.1016/j.brs.2011.12.003 PubMed DOI

Narushima K, McCormick LM, Yamada T, Thatcher RW, Robinson RG. Subgenual cingulate theta activity predicts treatment response of repetitive transcranial magnetic stimulation in participants with vascular depression. J Neuropsychiatry Clin Neurosci (2010) 22(1):75–84. 10.1176/appi.neuropsych.22.1.75 PubMed DOI PMC

Bailey NW, Hoy KE, Rogasch NC, Thomson RH, McQueen S, Elliot D, et al. Responders to rTMS for depression show increased fronto-midline theta and theta connectivity compared to non-responders. Brain Stimul (2018) 11(1):190–203. 10.1016/j.brs.2017.10.015 PubMed DOI

Price GW, Lee JW, Garvey C, Gibson N. Appraisal of sessional EEG features as a correlate of clinical changes in an rTMS treatment of depression. Clin EEG Neurosci (2008) 39(3):131–8. 10.1177/155005940803900307 PubMed DOI

Hunter AM, Nghiem TX, Cook IA, Krantz DE, Minzenberg MJ, Leuchter AF. Change in quantitative EEG theta cordance as a potential predictor of repetitive transcranial magnetic stimulation clinical outcome in major depressive disorder. Clin EEG Neurosci (2017), 49(5):306–15. 10.1177/1550059417746212 PubMed DOI

Ozekes S, Erguzel T, Sayar GH, Tarhan N. Analysis of brain functional changes in high-frequency repetitive transcranial magnetic stimulation in treatment-resistant depression. Clin EEG Neurosci (2014) 45(4):257–61. 10.1177/1550059413515656 PubMed DOI

Arns M, Cerquera A, Gutierrez RM, Hasselman F, Freund JA. Non-linear EEG analyses predict non-response to rTMS treatment in major depressive disorder. Clin Neurophysiol (2014) 125(7):1392–9. 10.1016/j.clinph.2013.11.022 PubMed DOI

Zuchowicz U, Wozniak-Kwasniewska A, Szekely D, Olejarczyk E, David O. EEG phase synchronization in persons with depression subjected to transcranial magnetic stimulation. Front Neurosci (2018) 12:1037. 10.3389/fnins.2018.01037 PubMed DOI PMC

Valiulis V, Gerulskis G, Dapsys K, Vistartaite G, Siurkute A, Maciulis V. Electrophysiological differences between high and low frequency rTMS protocols in depression treatment. Acta Neurobiol Exp (Wars) (2012) 72(3):283–95. PubMed

Bares M, Brunovsky M, Novak T, Kopecek M, Stopkova P, Sos P, et al. QEEG Theta cordance in the prediction of treatment outcome to prefrontal repetitive transcranial magnetic stimulation or venlafaxine ER in patients with major depressive disorder. Clin EEG Neurosci (2015) 46(2):73–80. 10.1177/1550059413520442 PubMed DOI

Bares M, Kopecek M, Novak T, Stopkova P, Sos P, Kozeny J, et al. Low frequency (1-Hz), right prefrontal repetitive transcranial magnetic stimulation (rTMS) compared with venlafaxine ER in the treatment of resistant depression: a double-blind, single-centre, randomized study. J Affect Disord (2009) 118(1-3):94–100. 10.1016/j.jad.2009.01.032 PubMed DOI

American Psychiatric Association Diagnostic criteria from DSM-IV-TR. Washington, D.C: American Psychiatric Association; (2000). p. 370.

Sheehan DV, Lecrubier Y, Sheehan KH, Amorim P, Janavs J, Weiller E, et al. The Mini-International Neuropsychiatric Interview (M.I.N.I.): the development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. J Clin Psychiatry (1998) 59 Suppl 20:22–33;quiz 4-57. PubMed

Thase ME. Psychotherapy of refractory depressions. Depress Anxiety (1997) 5(4):190–201. 10.1002/(SICI)1520-6394(1997)5:4<190::AID-DA5>3.0.CO;2-H PubMed DOI

Montgomery SA, Asberg M. New depression scale designed to be sensitive to change. Br J Psychiatry (1979) 134:382–9. 10.1192/bjp.134.4.382 PubMed DOI

Guy W. Clinical global impressions-ECDEU Asessment manual psychopharmacology (DHEW Publ no ADM 76–338). In: Public Health Service, Alcohol, Drug Abuse, and Mental Health Administration, NIMH. Revised. Rockville MD: US Department of Health, Education, and Welfare; (1976).

Sackeim HA. The definition and meaning of treatment-resistant depression. J Clin Psychiatry (2001) 62 Suppl 16:10–7. PubMed

Thatcher RW, Biver CJ, North DM. Quantitative EEG and the Frye and Daubert standards of admissibility. Clin Electroencephalogr (2003) 34(2):39–53. 10.1177/155005940303400203 PubMed DOI

Nuwer MR, Lehmann D, da Silva FL, Matsuoka S, Sutherling W, Vibert JF. IFCN guidelines for topographic and frequency analysis of EEGs and EPs. The international federation of clinical neurophysiology. Electroencephalogr Clin Neurophysiol Suppl (1999) 52:15–20. PubMed

Bendat JS, Piersol AG. Engineering applications of correlation and spectral analysis. New York Wiley-Interscience (1980) 315 p.

Pascual-Marqui RD, Esslen M, Kochi K, Lehmann D. Functional imaging with low-resolution brain electromagnetic tomography (LORETA): a review. Methods Find Exp Clin Pharmacol (2002) 24 Suppl C:91–5. PubMed

Pascual-Marqui RD. Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details. Methods Find Exp Clin Pharmacol (2002) 24 Suppl D:5–12. PubMed

Talairach J, Tournoux P. Co-planar stereotaxic atlas of the human brain: 3-dimensional proportional system: an approach to cerebral imaging. Stuttgart; New York: Georg Thieme; (1988). 122 p.

Pascual-Marqui RD, Lehmann D, Koukkou M, Kochi K, Anderer P, Saletu B, et al. Assessing interactions in the brain with exact low-resolution electromagnetic tomography. Philos Trans A Math Phys Eng Sci (1952) (2011), 3768–84. 10.1098/rsta.2011.0081 PubMed DOI

Thatcher RW, North DM, Biver CJ. Diffusion spectral imaging modules correlate with EEG LORETA neuroimaging modules. Hum Brain Mapp (2012) 33(5):1062–75. 10.1002/hbm.21271 PubMed DOI PMC

Mulert C, Jager L, Schmitt R, Bussfeld P, Pogarell O, Moller HJ, et al. Integration of fMRI and simultaneous EEG: towards a comprehensive understanding of localization and time-course of brain activity in target detection. NeuroImage (2004) 22(1):83–94. 10.1016/j.neuroimage.2003.10.051 PubMed DOI

Vitacco D, Brandeis D, Pascual-Marqui R, Martin E. Correspondence of event-related potential tomography and functional magnetic resonance imaging during language processing. Hum Brain Mapp (2002) 17(1):4–12. 10.1002/hbm.10038 PubMed DOI PMC

Olbrich S, Mulert C, Karch S, Trenner M, Leicht G, Pogarell O, et al. EEG-vigilance and BOLD effect during simultaneous EEG/fMRI measurement. NeuroImage (2009) 45(2):319–32. 10.1016/j.neuroimage.2008.11.014 PubMed DOI

Whittingstall K, Bartels A, Singh V, Kwon S, Logothetis NK. Integration of EEG source imaging and fMRI during continuous viewing of natural movies. Magn Reson Imaging (2010) 28(8):1135–42. 10.1016/j.mri.2010.03.042 PubMed DOI

Worrell GA, Lagerlund TD, Sharbrough FW, Brinkmann BH, Busacker NE, Cicora KM, et al. Localization of the epileptic focus by low-resolution electromagnetic tomography in patients with a lesion demonstrated by MRI. Brain Topogr (2000) 12(4):273–82. 10.1023/a:1023407521772 PubMed DOI

Dierks T, Jelic V, Pascual-Marqui RD, Wahlund L, Julin P, Linden DE, et al. Spatial pattern of cerebral glucose metabolism (PET) correlates with localization of intracerebral EEG-generators in Alzheimer's disease. Clin Neurophysiol (2000) 111(10):1817–24. 10.1016/S1388-2457(00)00427-2 PubMed DOI

Pizzagalli DA, Oakes TR, Fox AS, Chung MK, Larson CL, Abercrombie HC, et al. Functional but not structural subgenual prefrontal cortex abnormalities in melancholia. Mol Psychiatry (2004) 9(4):325, 93–405. 10.1038/sj.mp.4001501 PubMed DOI

Zumsteg D, Wennberg RA, Treyer V, Buck A, Wieser HG. H2(15)O or 13NH3 PET and electromagnetic tomography (LORETA) during partial status epilepticus. Neurology (2005) 65(10):1657–60. 10.1212/01.wnl.0000184516.32369.1a PubMed DOI

Horacek J, Brunovsky M, Novak T, Skrdlantova L, Klirova M, Bubenikova-Valesova V, et al. Effect of low-frequency rTMS on electromagnetic tomography (LORETA) and regional brain metabolism (PET) in schizophrenia patients with auditory hallucinations. Neuropsychobiology (2007) 55(3-4):132–42. 10.1159/000106055 PubMed DOI

Anderer P, Saletu B, Pascual-Marqui RD. Effect of the 5-HT(1A) partial agonist buspirone on regional brain electrical activity in man: a functional neuroimaging study using low-resolution electromagnetic tomography (LORETA). Psychiatry Res (2000) 100(2):81–96. 10.1016/S0925-4927(00)00066-4 PubMed DOI

Zumsteg D, Lozano AM, Wieser HG, Wennberg RA. Cortical activation with deep brain stimulation of the anterior thalamus for epilepsy. Clin Neurophysiol (2006) 117(1):192–207. 10.1016/j.clinph.2005.09.015 PubMed DOI

Zumsteg D, Lozano AM, Wennberg RA. Depth electrode recorded cerebral responses with deep brain stimulation of the anterior thalamus for epilepsy. Clin Neurophysiol (2006) 117(7):1602–9. 10.1016/j.clinph.2006.04.008 PubMed DOI

Zumsteg D, Friedman A, Wieser HG, Wennberg RA. Propagation of interictal discharges in temporal lobe epilepsy: correlation of spatiotemporal mapping with intracranial foramen ovale electrode recordings. Clin Neurophysiol (2006) 117(12):2615–26. 10.1016/j.clinph.2006.07.319 PubMed DOI

Volpe U, Mucci A, Bucci P, Merlotti E, Galderisi S, Maj M. The cortical generators of P3a and P3b: a LORETA study. Brain Res Bull (2007) 73(4-6):220–30. 10.1016/j.brainresbull.2007.03.003 PubMed DOI

Jobert M, Wilson FJ, Ruigt GS, Brunovsky M, Prichep LS, Drinkenburg WH, et al. Guidelines for the recording and evaluation of pharmaco-EEG data in man: the International Pharmaco-EEG Society (IPEG). Neuropsychobiology (2012) 66(4):201–20. 10.1159/000343478 PubMed DOI

Genovese CR, Lazar NA, Nichols T. Thresholding of statistical maps in functional neuroimaging using the false discovery rate. NeuroImage (2002) 15(4):870–8. 10.1006/nimg.2001.1037 PubMed DOI

Nichols TE, Holmes AP. Nonparametric permutation tests for functional neuroimaging: a primer with examples. Hum Brain Mapp (2002) 15(1):1–25. 10.1002/hbm.1058 PubMed DOI PMC

Alexander L, Clarke HF, Roberts AC. A focus on the functions of area 25. Brain Sci (2019) 9(6):129. 10.3390/brainsci9060129 PubMed DOI PMC

Taib S, Arbus C, Sauvaget A, Sporer M, Schmitt L, Yrondi A. How does repetitive transcranial magnetic stimulation influence the brain in depressive disorders?: a review of neuroimaging magnetic resonance imaging studies. J ECT (2018) 34(2):79–86. 10.1097/YCT.0000000000000477 PubMed DOI

Wang L, Hermens DF, Hickie IB, Lagopoulos J. A systematic review of resting-state functional-MRI studies in major depression. J Affect Disord (2012) 142(1-3):6–12. 10.1016/j.jad.2012.04.013 PubMed DOI

Auerbach RP, Stewart JG, Stanton CH, Mueller EM, Pizzagalli DA. Emotion-processing biases and resting eeg activity in depressed adolescents. Depress Anxiety (2015) 32(9):693–701. 10.1002/da.22381 PubMed DOI PMC

Rogers MA, Kasai K, Koji M, Fukuda R, Iwanami A, Nakagome K, et al. Executive and prefrontal dysfunction in unipolar depression: a review of neuropsychological and imaging evidence. Neurosci Res (2004) 50(1):1–11. 10.1016/j.neures.2004.05.003 PubMed DOI

Saletu B, Anderer P, Saletu-Zyhlarz GM. EEG topography and tomography (LORETA) in diagnosis and pharmacotherapy of depression. Clin EEG Neurosci (2010) 41(4):203–10. 10.1177/155005941004100407 PubMed DOI

Ricardo-Garcell J, Gonzalez-Olvera JJ, Miranda E, Harmony T, Reyes E, Almeida L, et al. EEG sources in a group of patients with major depressive disorders. Int J Psychophysiol (2009) 71(1):70–4. 10.1016/j.ijpsycho.2008.07.021 PubMed DOI

Canali P, Sarasso S, Rosanova M, Casarotto S, Sferrazza-Papa G, Gosseries O, et al. Shared reduction of oscillatory natural frequencies in bipolar disorder, major depressive disorder and schizophrenia. J Affect Disord (2015) 184:111–5. 10.1016/j.jad.2015.05.043 PubMed DOI

Pizzagalli DA, Sherwood RJ, Henriques JB, Davidson RJ. Frontal brain asymmetry and reward responsiveness: a source-localization study. Psychol Sci (2005) 16(10):805–13. 10.1111/j.1467-9280.2005.01618.x PubMed DOI

Bruder GE, Stewart JW, McGrath PJ. Right brain, left brain in depressive disorders: clinical and theoretical implications of behavioral, electrophysiological and neuroimaging findings. Neurosci Biobehav Rev (2017) 78:178–91. 10.1016/j.neubiorev.2017.04.021 PubMed DOI

Leuchter AF, Uijtdehaage SHJ, Cook IA, O'Hara R, Mandelkern M. Relationship between brain electrical activity and cortical perfusion in normal subjects. Psychiatry Res Neuroimaging (1999) 90(2):125–40. 10.1016/S0925-4927(99)00006-2 PubMed DOI

Nakamura S, Sadato N, Oohashi T, Nishina E, Fuwamoto Y, Yonekura Y. Analysis of music-brain interaction with simultaneous measurement of regional cerebral blood flow and electroencephalogram beta rhythm in human subjects. Neurosci Lett (1999) 275(3):222–6. 10.1016/S0304-3940(99)00766-1 PubMed DOI

Arrubla J, Farrher E, Strippelmann J, Tse DHY, Grinberg F, Shah NJ, et al. Microstructural and functional correlates of glutamate concentration in the posterior cingulate cortex. J Neurosci Res (2017) 95(9):1796–808. 10.1002/jnr.24010 PubMed DOI

Luborzewski A, Schubert F, Seifert F, Danker-Hopfe H, Brakemeier EL, Schlattmann P, et al. Metabolic alterations in the dorsolateral prefrontal cortex after treatment with high-frequency repetitive transcranial magnetic stimulation in patients with unipolar major depression. J Psychiatr Res (2007) 41(7):606–15. 10.1016/j.jpsychires.2006.02.003 PubMed DOI

Auer DP, Putz B, Kraft E, Lipinski B, Schill J, Holsboer F. Reduced glutamate in the anterior cingulate cortex in depression: an in vivo proton magnetic resonance spectroscopy study. Biol Psychiatry (2000) 47(4):305–13. 10.1016/s0006-3223(99)00159-6 PubMed DOI

Cao X, Deng C, Su X, Guo Y. Response and remission rates following high-frequency vs. low-frequency repetitive transcranial magnetic stimulation (rTMS) over right DLPFC for treating Major Depressive Disorder (MDD): A meta-analysis of randomized, double-blind trials. Front Psychiatry (2018) 9:413. 10.3389/fpsyt.2018.00413 PubMed DOI PMC

Milev RV, Giacobbe P, Kennedy SH, Blumberger DM, Daskalakis ZJ, Downar J, et al. Canadian Network for Mood and Anxiety Treatments (CANMAT) 2016 clinical guidelines for the management of adults with major depressive disorder: section 4. neurostimulation treatments. Can J Psychiatry (2016) 61(9):561–75. 10.1177/0706743716660033 PubMed DOI PMC

McClintock SM, Reti IM, Carpenter LL, McDonald WM, Dubin M, Taylor SF, et al. Consensus Recommendations for the Clinical Application of Repetitive Transcranial Magnetic Stimulation (rTMS) in the treatment of depression. J Clin Psychiatry (2018) 79(1). 10.4088/JCP.16cs10905 PubMed DOI PMC

Thatcher RW, North DM, Biver CJ. LORETA EEG phase reset of the default mode network. Front Hum Neurosci (2014) 8:529. 10.3389/fnhum.2014.00529 PubMed DOI PMC

Ghaderi AH, Andevari MN, Sowman PF. Evidence for a resting state network abnormality in adults who stutter. Front Integr Neurosci (2018) 12:16. 10.3389/fnint.2018.00016 PubMed DOI PMC

Aoki Y, Ishii R, Pascual-Marqui RD, Canuet L, Ikeda S, Hata M, et al. Detection of EEG-resting state independent networks by eLORETA-ICA method. Front Hum Neurosci (2015) 9:31. 10.3389/fnhum.2015.00031 PubMed DOI PMC

Clemens B, Puskas S, Spisak T, Lajtos I, Opposits G, Besenyei M, et al. Increased resting-state EEG functional connectivity in benign childhood epilepsy with centro-temporal spikes. Seizure (2016) 35:50–5. 10.1016/j.seizure.2016.01.001 PubMed DOI

Hata M, Kazui H, Tanaka T, Ishii R, Canuet L, Pascual-Marqui RD, et al. Functional connectivity assessed by resting state EEG correlates with cognitive decline of Alzheimer's disease - An eLORETA study. Clin Neurophysiol (2016) 127(2):1269–78. 10.1016/j.clinph.2015.10.030 PubMed DOI

Mumtaz W, Xia L, Ali SSA, Yasin MAM, Hussain M, Malik AS. Electroencephalogram (EEG)-based computer-aided technique to diagnose major depressive disorder (MDD). Biomed Signal Process Control (2017) 31:108–15. 10.1016/j.bspc.2016.07.006 DOI

20th Biennial IPEG Meeting 2018 in Zürich. Neuropsychobiology (2018) 77:119–62 10.1159/000496817 DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...