Phosphate Coatings Enriched with Copper on Titanium Substrate Fabricated Via DC-PEO Process
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
2016/21/B/ST8/01952
Narodowe Centrum Nauki
PubMed
32182998
PubMed Central
PMC7142448
DOI
10.3390/ma13061295
PII: ma13061295
Knihovny.cz E-zdroje
- Klíčová slova
- copper(II) nitrate(V) trihydrate, micro arc oxidation (MAO), orthophosphoric acid, plasma electrolytic oxidation (PEO), titanium,
- Publikační typ
- časopisecké články MeSH
The present paper covers the possible ways to fabricate advanced porous coatings that are enriched in copper on a titanium substrate through Direct Current Plasma Electrolytic Oxidation (DC-PEO) with voltage control, in electrolytes made of concentrated orthophosphoric acid with the addition of copper(II) nitrate(V) trihydrate. In these studies, solutions containing from 0 to 650 g salt per 1 dm3 of acid and anodic voltages from 450 V up to 650 V were used. The obtained coatings featuring variable porosity could be best defined by the three-dimensional (3D) parameter Sz, which lies in the range 9.72 to 45.18 μm. The use of copper(II) nitrate(V) trihydrate in the electrolyte, resulted, for all cases, in the incorporation of the two oxidation forms, i.e., Cu+ and Cu2+ into the coatings. Detailed X-Ray Photoelectron Spectroscopy (XPS) studies layers allowed for stating that the percentage of copper in the surface layer of the obtained coatings was in the range of 0.24 at% to 2.59 at%. The X-Ray Diffraction (XRD) studies showed the presence of copper (α-Cu2P2O7, and Cu3(PO4)2) and titanium (TiO2-anatase, TiO3, TiP2O7, and Ti0.73O0.91) compounds in coatings. From Energy-Dispersive X-Ray Spectroscopy (EDS) and XPS studies, it was found that the Cu/P ratio increases with the increase of voltage and the amount of salt in the electrolyte. The depth profile analysis by Glow-Discharge Optical Emission Spectroscopy (GDOES) method showed that a three-layer model consisting of a top porous layer, a semi-porous layer, and a transient/barrier layer might describe the fabricated coatings.
Department of Physics Norwegian University of Science and Technology 7491 Trondheim Norway
HORIBA FRANCE S A S Boulevard Thomas Gobert Passage Jobin Yvon 91120 Palaiseau France
Zobrazit více v PubMed
Rokosz K., Hryniewicz T., Raaen S., Chapon P., Dudek L. GDOES, XPS, and SEM with EDS analysis of porous coatings obtained on titanium after plasma electrolytic oxidation. Surf. Interface Anal. 2017;49:303–315. doi: 10.1002/sia.6136. DOI
Rokosz K., Hryniewicz T., Raaen S., Chapon P. Investigation of porous coatings obtained on Ti-Nb-Zr-Sn alloy biomaterial by plasma electrolytic oxidation: Characterisation and modelling. Int. J. Adv. Manuf. Technol. 2016;87:3497–3512. doi: 10.1007/s00170-016-8692-3. DOI
Rokosz K., Hryniewicz T., Matysek D., Dudek L., Malorny W. SEM and EDS analysis of nitinol surfaces treated by plasma electrolytic oxidation. Adv. Mater. Sci. 2015;15:41–47. doi: 10.1515/adms-2015-0014. DOI
Rokosz K., Hryniewicz T., Raaen S., Matysek D., Dudek L., Pietrzak K. SEM, EDS, and XPS characterization of coatings obtained on titanium during AC plasma electrolytic process enriched in magnesium. Adv. Mater. Sci. 2018;18:68–78. doi: 10.1515/adms-2017-0042. DOI
Marques I.S.V., Nilson C.C., Landers R., Yuan J.C.C., Mesquita M.F., Sukotjo C., Mathew T., Barao V.A.D. Incorporation of Ca, P, and Si on bioactive coatings produced by plasma electrolytic oxidation: The role of electrolyte concentration and treatment duration. Biointerphases. 2015;10:1–12. doi: 10.1116/1.4932579. PubMed DOI
Zhang L., Guo J.Q., Huang X.Y., Zhang Y.N., Han Y. The dual function of Cu-doped TiO2 coatings on titanium for application in percutaneous implants. J. Mater. Chem. B. 2016;4:3788–3800. doi: 10.1039/C6TB00563B. PubMed DOI
Zhou R., Wei D., Cheng S., Zhou Y., Jia D., Wang Y., Li B. The effect of titanium bead diameter of porous titanium on the formation of micro-arc oxidized TiO2-based coatings containing Si and Ca. Ceram. Int. 2013;39:5725–5732. doi: 10.1016/j.ceramint.2012.12.090. DOI
Yavari S.A., Necula B.S., Fratila-Apachitei L.E., Duszczyk J., Apachitei I. Biofunctional surfaces by plasma electrolytic oxidation on titanium biomedical alloys. Surf. Eng. 2016;32:411–417. doi: 10.1179/1743294415Y.0000000101. DOI
Zhou R., Wei D., Yang H., Cheng S., Feng W., Li B., Wang Y., Jia D., Zhou Y. Osseointegration of bioactive microarc oxidized amorphous phase/TiO2 nanocrystals composited coatings on titanium after implantation into rabbit tibia. J. Mater. Sci. Mater. Med. 2014;25:1307–1318. doi: 10.1007/s10856-014-5154-z. PubMed DOI
Mirelman L.K., Curran J.A., Clyne T.W. The production of anatase-rich photoactive coatings by plasma electrolytic oxidation. Surf. Coat. Technol. 2012;207:66–71. doi: 10.1016/j.surfcoat.2012.05.076. DOI
Peláez-Abellán E., Duarte L.T., Biaggio S.R., Rocha-Filho R.C., Bocchi N. Modification of the titanium oxide morphology and composition by a combined chemical-electrochemical treatment on cp Ti. Mater. Res. 2012;15:159–165. doi: 10.1590/S1516-14392012005000002. DOI
Zhu L., Ye X., Tang G., Zhao N., Gong Y., Zhao Y., Zhao J., Zhang X. Corrosion test, cell behavior test, and in vivo study of gradient TiO2 layers produced by compound electrochemical oxidation. J. Biomed. Mater. Res. A. 2006;78:515–522. doi: 10.1002/jbm.a.30745. PubMed DOI
Terleeva O.P., Sharkeev Y.P., Slonova A.I., Mironov I.V., Legostaeva E.V., Khlusov I.A., Matykina E., Skeldon P., Thompson G.E. Effect of microplasma modes and electrolyte composition on micro-arc oxidation coatings on titanium for medical applications. Surf. Coat. Technol. 2010;205:1723–1729. doi: 10.1016/j.surfcoat.2010.10.019. DOI
Wang S., Zhao Q., Liu D., Du N. Microstructure and elevated temperature tribological behavior of TiO2/Al2O3 composite ceramic coating formed by microarc oxidation of Ti6Al4V alloy. Surf. Coat. Technol. 2015;272:343–349. doi: 10.1016/j.surfcoat.2015.03.044. DOI
Teh T.H., Berkani A., Mato S., Skeldon P., Thompson G.E., Habazaki H., Shimizu K. Initial stages of plasma electrolytic oxidation of titanium. Corros. Sci. 2003;45:2757–2768. doi: 10.1016/S0010-938X(03)00101-X. DOI
Hariprasad S., Ashfaq M., Arunnellaiappan T., Harilal M., Rameshbabu N. Role of electrolyte additives on in-vitro corrosion behavior of DC plasma electrolytic oxidization coatings formed on CP-Ti. Surf. Coat. Technol. 2016;292:20–29.
Rudnev V.S., Yarovaya T.P., Egorkin V.S., Sinebryukov S.L., Gnedenkov S.V. Properties of coatings formed on titanium by plasma electrolytic oxidation in a phosphate-borate electrolyte. Russ. J. Appl. Chem. 2010;83:664–670. doi: 10.1134/S1070427210040178. DOI
Sharifi H., Aliofkhazraei M., Darband G., Rouhaghdam A.S. Characterization of PEO nanocomposite coatings on titanium formed in electrolyte containing atenolol. Surf. Coat. Technol. 2016;304:438–449. doi: 10.1016/j.surfcoat.2016.07.048. DOI
Tang H., Sun Q., Yi C.G., Jiang Z.H., Wang F.P. High emissivity coatings on titanium alloy prepared by micro-arc oxidation for high temperature application. J. Mater. Sci. 2012;47:2162–2168. doi: 10.1007/s10853-011-6017-3. DOI
Tang H., Xin T.Z., Sun Q., Yi C.G., Jiang Z.H., Wang F.P. Influence of FeSO4 concentration on thermal emissivity of coatings formed on titanium alloy by micro-arc oxidation. Appl. Surf. Sci. 2011;257:10839–10844. doi: 10.1016/j.apsusc.2011.07.118. DOI
Tang H., Sun Q., Xin T.Z., Yi C.G., Jiang Z.H., Wang F.P. Influence of Co(CH3COO)2 concentration on thermal emissivity of coatings formed on titanium alloy by micro-arc oxidation. Curr. Appl. Phys. 2012;12:284–290. doi: 10.1016/j.cap.2011.06.023. DOI
Aliasghari S. Ph.D. Thesis. The University of Manchester; Manchester, UK: 2014. Plasma Electrolytic Oxidation of Titanium.
Liu S.M., Yang X.J., Cui Z.D., Zhu S.L., Wei Q. One-step synthesis of petal-like apatite/titania composite coating on a titanium by micro-arc treating. Mater. Lett. 2011;65:1041–1044. doi: 10.1016/j.matlet.2010.11.050. DOI
Zhang W., Du K., Yan C., Wang F. Preparation and characterization of a novel Si-incorporated ceramic film on pure titanium by plasma electrolytic oxidation. Appl. Surf. Sci. 2008;254:5216–5223. doi: 10.1016/j.apsusc.2008.02.047. DOI
Rokosz K., Hryniewicz T., Kacalak W., Tandecka K., Raaen S., Gaiaschi S., Chapon P., Malorny W., Matysek D., Dudek L., et al. Characterization of Porous Phosphate Coatings Enriched with Calcium, Magnesium, Zinc and Copper Created on CP Titanium Grade 2 by Plasma Electrolytic Oxidation. Metals. 2018;8:112. doi: 10.3390/met8020112. DOI
Metal Ions Supported Porous Coatings by Using AC Plasma Electrolytic Oxidation Processing