Metal Ions Supported Porous Coatings by Using AC Plasma Electrolytic Oxidation Processing
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
2016/21/B/ST8/01952
Narodowe Centrum Nauki
PubMed
32878109
PubMed Central
PMC7503912
DOI
10.3390/ma13173838
PII: ma13173838
Knihovny.cz E-zdroje
- Klíčová slova
- calcium, copper, magnesium, micro arc oxidation (MAO), plasma electrolytic oxidation (PEO), titanium, zinc,
- Publikační typ
- časopisecké články MeSH
Coatings enriched with zinc and copper as well as calcium or magnesium, fabricated on titanium substrate by Plasma Electrolytic Oxidation (PEO) under AC conditions (two cathodic voltages, i.e., -35 or -135 V, and anodic voltage of +400 V), were investigated. In all experiments, the electrolytes were based on concentrated orthophosphoric acid (85 wt%) and zinc, copper, calcium and/or magnesium nitrates. It was found that the introduced calcium and magnesium were in the ranges 5.0-5.4 at% and 5.6-6.5 at%, respectively, while the zinc and copper amounts were in the range of 0.3-0.6 at%. Additionally, it was noted that the metals of the block S (Ca and Mg) could be incorporated into the structure about 13 times more than metals of the transition group (Zn and Cu). The incorporated metals (from the electrolyte) into the top-layer of PEO phosphate coatings were on their first (Cu+) or second (Cu2+, Ca2+ and Mg2+) oxidation states. The crystalline phases (TiO and Ti3O) were detected only in coatings fabricated at cathodic voltage of -135 V. It has also been pointed that fabricated porous calcium-phosphate coatings enriched with biocompatible magnesium as well as with antibacterial zinc and copper are dedicated mainly to medical applications. However, their use for other applications (e.g., catalysis and photocatalysis) after additional functionalizations is not excluded.
Zobrazit více v PubMed
Kaneko H., Uchiyama M., Nojiri H., Kiritani N. Electrochemical Etching Method. 5,167,778. U.S. Patent. 1992 Aug 5;
Babilas D., Urbanczyk E., Sowa M., Maciej A., Korotin D.M., Zhidkov I.S., Basiaga M., Krok-Borkowicze M., Szyk-Warszynska L., Pamuła E., et al. On the electropolishing and anodic oxidation of Ti-15Mo alloy. Electrochim. Acta. 2016;205:256–265. doi: 10.1016/j.electacta.2016.01.218. DOI
Rokosz K., Simon F., Hryniewicz T., Rzadkiewicz S. Comparative XPS analysis of passive layers composition formed on AISI 304 L SS after standard and high-current density electropolishing. Surf. Interface Anal. 2015;47:87–92. doi: 10.1002/sia.5676. DOI
Rokosz K., Hryniewicz T., Raaen S. XPS analysis of nanolayer formed on AISI 304L SS after high-voltage electropolishing (HVEP) Teh. Vjesn. Tech. Gaz. 2017;24:321–326.
Rokosz K., Hryniewicz T., Raaen S. Cr/Fe ratio by XPS spectra of magnetoelectropolished AISI 316L SS fitted by gaussian-lorentzian shape lines. Teh. Vjesn. Tech. Gaz. 2014;21:533–538.
Rokosz K. Surface Treatment Technology of Metals and Alloys. Metals. 2019;9:1134. doi: 10.3390/met9111134. DOI
Rokosz K., Hryniewicz T., Dudek Ł. Phosphate Porous Coatings Enriched with Selected Elements via PEO Treatment on Titanium and Its Alloys: A Review. Materials. 2020;13:2468. doi: 10.3390/ma13112468. PubMed DOI PMC
Rokosz K., Hryniewicz T., Raaen S. Development of plasma electrolytic oxidation for improved Ti6Al4V biomaterial surface properties. Int. J. Adv. Manuf. Technol. 2016;85:2425–2437. doi: 10.1007/s00170-015-8086-y. DOI
Rokosz K., Hryniewicz T., Dudek L., Malorny W. SEM and EDS analysis of nitinol surfaces treated by plasma electrolytic oxidation. Adv. Mater. Sci. 2015;15:41–47. doi: 10.1515/adms-2015-0014. DOI
Simka W., Krzakała A., Korotin D.M., Zhidkov I.S., Kurmaev E.Z., Cholakh S.O., Kuna K., Dercz G., Michalska J., Suchanek K., et al. Modification of a Ti-Mo alloy surface via plasma electrolytic oxidation in a solution containing calcium and phosphorus. Electrochim. Acta. 2013;96:180–190. doi: 10.1016/j.electacta.2013.02.102. DOI
Rokosz K., Hryniewicz T., Raaen S., Chapon P., Prima F. Development of copper-enriched porous coatings on ternary Ti-Nb-Zr alloy by plasma electrolytic oxidation. Int. J. Adv. Manuf. Technol. 2017;89:2953–2965. doi: 10.1007/s00170-016-9206-z. DOI
Rokosz K., Hryniewicz T., Kacalak W., Tandecka K., Raaen S., Gaiaschi S., Chapon P., Malorny W., Matysek D., Pietrzak K., et al. Porous Coatings Containing Copper and Phosphorus Obtained by Plasma Electrolytic Oxidation of Titanium. Materials. 2020;13:828. doi: 10.3390/ma13040828. PubMed DOI PMC
Rokosz K., Hryniewicz T., Raaen S., Matysek D., Dudek L., Pietrzak K. SEM, EDS, and XPS characterization of coatings obtained on titanium during AC plasma electrolytic process enriched in magnesium. Adv. Mater. Sci. 2018;18:68–78. doi: 10.1515/adms-2017-0042. DOI
Yerokhin A.L., Voevodin A.A., Lyubimov V.V., Zabinski J., Donley M. Plasma electrolytic fabrication of oxide ceramic surface layers for tribotechnical purposes on aluminium alloys. Surf. Coat. Technol. 1998;110:140–146. doi: 10.1016/S0257-8972(98)00694-X. DOI
Yerokhin A.L., Nie X., Leyland A., Matthews A., Dowey S.J. Plasma electrolysis for surface engineering. Surf. Coat. Technol. 1999;122:73–93. doi: 10.1016/S0257-8972(99)00441-7. DOI
Rokosz K., Hryniewicz T., Kacalak W., Tandecka K., Raaen S., Gaiaschi S., Chapon P., Malorny W., Matysek D., Pietrzak K. Phosphate Coatings Enriched with Copper on Titanium Substrate Fabricated via DC-PEO Process. Materials. 2020;13:1295. doi: 10.3390/ma13061295. PubMed DOI PMC
Rokosz K., Hryniewicz T., Gaiaschi S., Chapon P., Raaen S., Matysek D., Dudek L., Pietrzak K. Novel Porous Phosphorus-Calcium-Magnesium Coatings on Titanium with Copper or Zinc Obtained by DC Plasma Electrolytic Oxidation: Fabrication and Characterization. Materials. 2018;11:1680. doi: 10.3390/ma11091680. PubMed DOI PMC
Sowa M., Parafiniuk M., Mouzelo C.M.S., Kazek-Kesik A., Zhidkov I.S., Kukharenko A.I., Cholakh S.O., Kurmaev E.Z., Simka W. DC plasma electrolytic oxidation treatment of gum metal for dental implants. Electrochim. Acta. 2019;302:10–20. doi: 10.1016/j.electacta.2019.02.024. DOI
Rokosz K., Hryniewicz T., Gaiaschi S., Chapon P., Raaen S., Malorny W., Matýsek D., Pietrzak K. Development of Porous Coatings Enriched with Magnesium and Zinc Obtained by DC Plasma Electrolytic Oxidation. Micromachines. 2018;9:332. doi: 10.3390/mi9070332. PubMed DOI PMC
Rokosz K., Hryniewicz T., Kacalak W., Tandecka K., Raaen S., Gaiaschi S., Chapon P., Malorny W., Matysek D., Dudek L., et al. Characterization of Porous Phosphate Coatings Enriched with Calcium, Magnesium, Zinc and Copper Created on CP Titanium Grade 2 by Plasma Electrolytic Oxidation. Metals. 2018;8:411. doi: 10.3390/met8060411. DOI
Torres-Cerón D.A., Gordillo-Delgado F., Moya-Betancourt S.N. Effect of the voltage pulse frequency on the structure of TiO2 coatings grown by plasma electrolytic oxidation. J. Phys. Conf. Ser. 2017;935:1–7. doi: 10.1088/1742-6596/935/1/012067. DOI
Predoi D., Iconaru S.L., Predoi M.V., Groza A., Gaiaschi S., Rokosz K., Raaen S., Negrila C.C., Prodan A.-M., Costescu A., et al. Development of Cerium-Doped Hydroxyapatite Coatings with Antimicrobial Properties for Biomedical Applications. Coatings. 2020;10:516. doi: 10.3390/coatings10060516. DOI
Lebukhova N.V., Rudnev V.S., Chigrin P.G., Lukiyanchuk I.V., Pugachevsky M.A., Ustinov A.Y., Kirichenko E.A., Yarovaya T.P. The nanostructural catalytic composition CuMoO4/TiO2 + SiO2/Ti for combustion of diesel soot. Surf. Coat. Technol. 2013;231:144–148. doi: 10.1016/j.surfcoat.2012.05.065. DOI
Stojadinovic S., Radic N., Vasilic R., Petkovic M., Stefanov P., Zekovic L., Grbic B. Photocatalytic properties of TiO2/WO3 coatings formed by plasma electrolytic oxidation of titanium in 12-tungstosilicic acid. Appl. Catal. B Environ. 2012;126:334–341. doi: 10.1016/j.apcatb.2012.07.031. DOI
Li L.H., Kong Y.M., Kim H.W., Kim Y.W., Kim H.E., Heo S.J., Koak J.Y. Improved biological performance of Ti implants due to surface modification by micro-arc oxidation. Biomaterials. 2004;25:2867–2875. doi: 10.1016/j.biomaterials.2003.09.048. PubMed DOI
Santos A.D., Araujo J.R., Landi S.M., Kuznetsov A., Granjeiro J.M., Sena L.A.D., Achete C.A. A study of the physical, chemical and biological properties of TiO2 coatings produced by micro-arc oxidation in a Ca-P-based electrolyte. J. Mater. Sci. 2014;25:1769–1780. doi: 10.1007/s10856-014-5207-3. PubMed DOI
Jin J., Li X.H., Wu J.W., Lou B.Y. Improving tribological and corrosion resistance of Ti6Al4V alloy by hybrid microarc oxidation/enameling treatments. Rare Met. 2018;37:26–34. doi: 10.1007/s12598-015-0644-9. DOI
Lebukhov N.V., Rudnev V.S., Kirichenko E.A., Chigrin P.G., Lukiyanchuk I.V., Karpovicha N.F., Pugachevsky M.A., Kurjavyj V.G. The structural catalyst CuMoO4/TiO2/TiO2 + SiO2/Ti for diesel soot combustion. Surf. Coat. Technol. 2015;261:344–349. doi: 10.1016/j.surfcoat.2014.11.002. DOI
Vasilyeva M.S., Rudnev V.S., Wiedenmann F., Wybornov S., Yarovaya T.P., Jiangd X. Thermal behavior and catalytic activity in naphthalene destruction of Ce-, Zr- and Mn-containing oxide layers on titanium. Appl. Surf. Sci. 2011;258:719–726. doi: 10.1016/j.apsusc.2011.07.127. DOI
Lukiyanchuk I.V., Rudnev V.S., Tyrina L.M., Chernykh I.V. Plasma electrolytic oxide coatings on valve metals and their activity in CO oxidation. Appl. Surf. Sci. 2014;315:481–489. doi: 10.1016/j.apsusc.2014.03.040. DOI
Luo Q., Cai Q., Li X., Chen X. Characterization and photocatalytic activity of large-area single crystalline anatase TiO2 nanotube films hydrothermal synthesized on Plasma electrolytic oxidation seed layers. J. Alloys Compd. 2014;597:101–109. doi: 10.1016/j.jallcom.2014.01.216. DOI
Bayati M.R., Golestani-Fard F., Moshfegh A.Z. The effect of growth parameters on photo-catalytic performance of the MAO synthesized TiO2 nano-porous layers. Mater. Chem. Phys. 2010;120:582–589. doi: 10.1016/j.matchemphys.2009.12.005. DOI
Salvador P. On the Nature of Photogenerated Radical Species Active in the Oxidative Degradation of Dissolved Pollutants with TiO2 Aqueous Suspensions: A Revision in the Light of the Electronic Structure of dsorbed Water. J. Phys. Chem. C. 2007;111:17038–17043. doi: 10.1021/jp074451i. DOI
Torres-Cerón D.A., Gordillo-Delgado F., Plazas-Saldaña J. Formation of TiO2 nanostructure by plasma electrolytic oxidation for Cr(VI) reduction. J. Phys. Conf. Ser. 2017;786:012046. doi: 10.1088/1742-6596/786/1/012046. DOI
Xiang N., Zhuang J.J., Song R.G., Xiang B., Xiong Y., Su X.P. Fabrication and photocatalytic activity of MAO–TiO2 films formed on titanium doped with cations. Mater. Technol. Adv. Perform. Mater. 2016;31:332–336.
Alsaran A., Purcek G., Hacisalihoglu I., Vangolu Y., Bayrak Ö., Karaman I., Celik A. Hydroxyapatite production on ultrafine-grained pure titanium by micro-arc oxidation and hydrothermal treatment. Surf. Coat. Technol. 2011;205:S537–S542. doi: 10.1016/j.surfcoat.2011.03.032. DOI
Rudnev V.S., Morozova V.P., Lukiyanchuk I.V., Adigamova M.V. Calcium-Containing Biocompatible Oxide-Phosphate Coatings on Titanium. Russ. J. Appl. Chem. 2010;83:671–679. doi: 10.1134/S107042721004018X. DOI
Wei D., Zhou Y. Preparation, biomimetic apatite induction and osteoblast proliferation test of TiO2-based coatings containing P with a graded structure. Ceram. Int. 2009;35:2343–2350. doi: 10.1016/j.ceramint.2009.01.007. DOI
Rizwan M., Alias R., Zaidi U.Z., Mahmoodian R., Hamdi M. Surface modification of valve metals using plasma electrolytic oxidation for antibacterial applications: A review. J. Biomed. Mater. Res. Part. A. 2018;106:590–605. doi: 10.1002/jbm.a.36259. PubMed DOI
Nie X., Leyland A., Matthews A. Deposition of layered bioceramic hydroxyapatite/TiO2 coatings on titanium alloys using a hybrid technique of micro-arc oxidation and electrophoresis. Surf. Coat. Technol. 1999;125:407–414. doi: 10.1016/S0257-8972(99)00612-X. DOI
Aliofkhazraei M., Rouhaghdam A.S., Shahrabi T. Abrasive wear behaviour of Si3N4/TiO2 nanocomposite coatings fabricated by plasma electrolytic oxidation. Surf. Coat. Technol. 2010;205:S41–S46. doi: 10.1016/j.surfcoat.2010.03.052. DOI
Aliofkhazraei M., Sabour Rouhaghdam A. Wear and coating removal mechanism of alumina/titania nanocomposite layer fabricated by plasma electrolysis. Surf. Coat. Technol. 2011;205:S57–S62. doi: 10.1016/j.surfcoat.2011.02.058. DOI
Aliofkhazraei M., Gharabagh R.S., Teimouri M., Ahmadzadeh M., Darband G.B., Hasannejad H. Ceria embedded nanocomposite coating fabricated by plasma electrolytic oxidation on titanium. J. Alloys Compd. 2016;685:376–383. doi: 10.1016/j.jallcom.2016.05.315. DOI
Gnedenkov S.V., Vovna V.I., Gordienko P.S., Sinebryukhov S.L., Cherednichenko A.I., Shchukarev A.V. Chemical Composition of Antifriction Micro-arc Oxide Coatings on Titanium Alloy BT,’16. Prot. Met. 2001;37:168–172. doi: 10.1023/A:1010334423830. DOI
Kobata I., Toma I., Kodera A., Suzuki T., Makita Y., Saito T. Electrochemical Mechanical Polishing Apparatus Conditioning Method, and Conditioning Solution. 2008/0188162 A1. U.S. Patent. 2008 Aug 7;
Yu S., Yang X., Yang L., Liu Y., Yu Y. Novel Technique for Preparing Ca- and P-Containing Ceramic Coating on Ti-6Al-4V by Micro-Arc Oxidation. J. Biomed. Mater. Res. Part B Appl. Biomater. 2007;83:623–627. doi: 10.1002/jbm.b.30836. PubMed DOI
Ceschini L., Lanzoni E., Martini C., Prandstraller D., Sambogna G. Comparison of dry sliding friction and wear of Ti6Al4V alloy treated by plasma electrolytic oxidation and PVD coating. Wear. 2008;264:86–95. doi: 10.1016/j.wear.2007.01.045. DOI
Wang Y.M., Jiang B.L., Lei T.Q., Guo L.X. Microarc oxidation and spraying graphite duplex coating formed on titanium alloy for antifriction purpose. Appl. Surf. Sci. 2005;246:214–221. doi: 10.1016/j.apsusc.2004.11.010. DOI
Nie X., Wilson A., Leyland A., Matthews A. Deposition of duplex Al2O3/DLC coatings on Al alloys for tribological applications using a combined micro-arc oxidation and plasma-immersion ion implantation technique. Surf. Coat. Technol. 2000;131:506–513. doi: 10.1016/S0257-8972(00)00816-1. DOI
Aliasghari S., Skeldon P., Thompson G.E. Plasma electrolytic oxidation of titanium in a phosphate/silicateelectrolyte and tribological performance of the coatings. Appl. Surf. Sci. 2014;316:463–476. doi: 10.1016/j.apsusc.2014.08.037. DOI
Achhab M.E., Schierbaum K. Structure and hydrogen sensing properties of plasma electrochemically oxidized titanium foils. Proc. Eng. 2012;47:566–569. doi: 10.1016/j.proeng.2012.09.210. DOI
Achhab M.E., Schierbaum K. Gas sensors based on plasma-electrochemically oxidized titanium foils. J. Sens. Sens. Syst. 2016;5:273–281. doi: 10.5194/jsss-5-273-2016. DOI
Adigamova M.V., Rudnev V.S., Lukiyanchuk I.V., Morozova V.P., Tkachenko I.A., Kvach A.A. The Effect of Fe-Containing Colloid Particles in Electrolyte on the Composition and Magnetic Characteristics of Oxide Layers on Titanium Formed Using the Method of Plasma Electrolytic Oxidation. Prot. Met. Phys. Chem. Surf. 2016;52:526–531. doi: 10.1134/S2070205116030023. DOI
Boukhvalov D.W., Korotin D.M., Efremov A.V., Kurmaev E.Z., Borchers C.H., Zhidkov I.S., Gunderov D.V., Valiev R.Z., Gavrilov N.V., Cholakh S.O. Modification of titanium and titanium dioxide surfaces by ion implantation: Combined XPS and DFT study. Phys. Status Solidi B. 2015;252:748–754. doi: 10.1002/pssb.201451362. DOI