Novel Porous Phosphorus⁻Calcium⁻Magnesium Coatings on Titanium with Copper or Zinc Obtained by DC Plasma Electrolytic Oxidation: Fabrication and Characterization
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
2016/21/B/ST8/01952
Narodowe Centrum Nauki
PubMed
30208598
PubMed Central
PMC6164096
DOI
10.3390/ma11091680
PII: ma11091680
Knihovny.cz E-zdroje
- Klíčová slova
- 85% phosphoric acid, DC MAO, DC PEO, calcium nitrate tetrahydrate, copper(II) nitrate trihydrate, magnesium nitrate hexahydrate, micro arc oxidation, plasma electrolytic oxidation, titanium,
- Publikační typ
- časopisecké články MeSH
In this paper, the characteristics of new porous coatings fabricated at three voltages in electrolytes based on H₃PO₄ with calcium nitrate tetrahydrate, magnesium nitrate hexahydrate, and copper(II) nitrate trihydrate are presented. The SEM, energy dispersive spectroscopy (EDS), glow discharge optical emission spectroscopy (GDOES), X-ray photoelectron spectroscopy (XPS), and XRD techniques for coating identification were used. It was found that the higher the plasma electrolytic oxidation (PEO) (micro arc oxidation (MAO)) voltage, the thicker the porous coating with higher amounts of built-in elements coming from the electrolyte and more amorphous phase with signals from crystalline Ca(H₂PO₄)₂∙H₂O and/or Ti(HPO₄)₂∙H₂O. Additionally, the external parts of the obtained porous coatings formed on titanium consisted mainly of Ti4+, Ca2+, Mg2+ and PO₄3-, HPO₄2-, H₂PO₄-, P₂O₇4- as well as Zn2+ or copper Cu⁺/Cu2+. The surface should be characterized by high biocompatibility, due to the presence of structures based on calcium and phosphates, and have bactericidal properties, due to the presence of zinc and copper ions. Furthermore, the addition of magnesium ions should accelerate the healing of postoperative wounds, which could lead to faster patient recovery.
Zobrazit více v PubMed
Sluginov N. On luminous phenomen, observed in liquids during electrolysis. Russ. Phys. Chem. Soc. 1880;12:193–203.
Braun F. Ueber Lichtemission an einige Electroden in Electrolyten. Annalen der Physik und Chemie. 1898;65:361–364. doi: 10.1002/andp.18983010610. DOI
Dufford R.T. Luminescence Associated with Electrolysis. J. Opt. Soc. Am. 1929;18:17–28. doi: 10.1364/JOSA.18.000017. DOI
McNeill W., Gruss L.L. Anodic Spark Reaction Processes and Articles. US3293158. U.S. Patent. 1963 Sep 17;
Yerokhin A.L., Nie X., Leyland A., Matthews A., Dowey S.J. Plasma electrolysis for surface engineering. Surf. Coat. Technol. 1999;122:73–93. doi: 10.1016/S0257-8972(99)00441-7. DOI
Yerokhin A., Parfenov E.V., Matthews A. In situ impedance spectroscopy of the plasma electrolytic oxidation process for deposition of Ca- and P-containing coatings on Ti. Surf. Coat. Technol. 2016;301:54–62. doi: 10.1016/j.surfcoat.2016.02.035. DOI
Aliasghari S. Ph.D. Thesis. The University of Manchester; Manchester, UK: 2014. Plasma Electrolytic Oxidation of Titanium; p. 223.
Hussein R.O., Northwood D.O., Nie X. Coating growth behavior during the plasma electrolytic oxidation process. J. Vac. Sci. Technol. A. 2010;28:766–773. doi: 10.1116/1.3429583. DOI
Hussein R.O., Nie X., Northwood D.O. An investigation of ceramic coating growth mechanisms in plasma electrolytic oxidation (PEO) processing. Electrochim. Acta. 2013;112:111–119. doi: 10.1016/j.electacta.2013.08.137. DOI
Monfort F., Berkani A., Matykina E., Skeldon P., Thompson G.E., Habazaki H., Shimizu K. A tracer study of oxide growth during spark anodizing of aluminum. J. Electrochem. Soc. 2005;152:C382–C387. doi: 10.1149/1.1905968. DOI
Hussein R.O., Nie X., Northwood D.O., Yerokhin A., Matthews A. Spectroscopic study of electrolytic plasma and discharging behaviour during the plasma electrolytic oxidation (PEO) process. J. Phys. D Appl. Phys. 2010;43:105203–105215. doi: 10.1088/0022-3727/43/10/105203. DOI
Dunleavy C.S., Golosnoy I.O., Curran J.A., Clyne T.W. Characterisation of discharge events during plasma electrolytic oxidation. Surf. Coat. Technol. 2009;203:3410–3419. doi: 10.1016/j.surfcoat.2009.05.004. DOI
Yerokhin A.L., Snizhko L.O., Gurevina N.L., Leyland A., Pilkington A., Matthews A. Discharge characterization in plasma electrolytic oxidation of aluminium. J. Phys. D Appl. Phys. 2003;36:2110–2120. doi: 10.1088/0022-3727/36/17/314. DOI
Nominé A., Troughton S.C., Nominé A.V., Henrion G., Clyne T.W. High speed video evidence for localised discharge cascades during plasma electrolytic oxidation. Surf. Coat. Technol. 2015;269:125–130. doi: 10.1016/j.surfcoat.2015.01.043. DOI
Simchen F., Sieber M., Lampke T. Electrolyte influence on ignition of plasma electrolytic oxidation processes on light metals. Surf. Coat. Technol. 2017;315:205–213. doi: 10.1016/j.surfcoat.2017.02.041. DOI
Curran A., Clyne T.W. Thermo-physical properties of plasma electrolytic oxide coatings on aluminium. Surf. Coat. Technol. 2005;199:168–179. doi: 10.1016/j.surfcoat.2004.09.037. DOI
Curran J.A., Clyne T.W. Porosity in plasma electrolytic oxide coatings. Acta Mater. 2006;54:1985–1993. doi: 10.1016/j.actamat.2005.12.029. DOI
Snizhko L.O., Yerokhin A.L., Gurevina N.L., Patalakha V.A., Matthews A. Excessive oxygen evolution during plasma electrolytic oxidation of aluminium. Thin Solid Films. 2007;516:460–464. doi: 10.1016/j.tsf.2007.06.158. DOI
Martin J., Melhem A., Shchedrina I., Duchanoy T., Nominè A., Henrion G., Czerwiec T., Belmonte T. Effects of electrical parameters on plasma electrolytic oxidation of aluminium. Surf. Coat. Technol. 2013;221:70–76. doi: 10.1016/j.surfcoat.2013.01.029. DOI
Yerokhin A.L., Lyubimov V.V., Ashitkov R.V. Phase formation in ceramic coatings during plasma electrolytic oxidation of aluminium alloys. Ceram. Int. 1998;24:1–6. doi: 10.1016/S0272-8842(96)00067-3. DOI
Tillous K., Toll-Duchanoy T., Bauer-Grosse E., Hericher L., Geandier G. Microstructure and phase composition of microarc oxidation surface layers formed on aluminium and its alloys 2214-T6 and 7050-T74. Surf. Coat. Technol. 2009;203:2969–2973. doi: 10.1016/j.surfcoat.2009.03.021. DOI
Liu C., Liu P., Huang Z., Yan Q., Guo R., Li D., Jiang G., Shen D. The correlation between the coating structure and the corrosion behavior of the plasma electrolytic oxidation coating on aluminum. Surf. Coat. Technol. 2016;286:223–230. doi: 10.1016/j.surfcoat.2015.12.040. DOI
Hariprasad S., Ashfaq M., Arunnellaiappan T., Harilal M., Rameshbabu N. Role of electrolyte additives on in-vitro corrosion behavior of DC plasma electrolytic oxidization coatings formed on CP-Ti. Surf. Coat. Technol. 2016;292:20–29.
Rokosz K., Hryniewicz T., Kacalak W., Tandecka K., Raaen S., Gaiaschi S., Chapon P., Malorny W., Matýsek D., Dudek Ł., et al. Characterization of Porous Phosphate Coatings Enriched with Calcium, Magnesium, Zinc and Copper Created on CP Titanium Grade 2 by Plasma Electrolytic Oxidation. Metals. 2018;8:411. doi: 10.3390/met8060411. DOI
Matykina E., Arrabal R., Skeldon P., Thompson G.E. Investigation of the growth processes of coatings formed by AC plasma electrolytic oxidation of aluminium. Surf. Coat. Technol. 2009;54:6767–6778. doi: 10.1016/j.electacta.2009.06.088. DOI
Matykina E., Arrabal R., Skeldon P., Thompson G.E. Incorporation of zirconia nanoparticles into coatings formed on aluminium by AC plasma electrolytic oxidation. J. Appl. Electrochem. 2008;38:1375–1383. doi: 10.1007/s10800-008-9575-6. DOI
Dehnavi V., Luan B.L., Liu X.Y., Shoesmith D.W., Rohani S. Correlation between plasma electrolytic oxidation treatment stages and coating microstructure on aluminum under unipolar pulsed DC mode. Surf. Coat. Technol. 2015;269:91–99. doi: 10.1016/j.surfcoat.2014.11.007. DOI
Fatkullin A.R., Parfenov E.V., Yerokhin A., Lazarev D.M., Matthews A. Effect of positive and negative pulse voltages on surface properties and equivalent circuit of the plasma electrolytic oxidation process. Surf. Coat. Technol. 2015;284:427–437. doi: 10.1016/j.surfcoat.2015.07.075. DOI
Krzakala A., Kazek-Kesik A., Simka W. Application of plasma electrolytic oxidation to bioactive surface formation on titanium and its alloys. RSC Adv. 2013;3:19725–19743. doi: 10.1039/c3ra43465f. DOI
Rokosz K., Hryniewicz T., Raaen S. Development of Plasma Electrolytic Oxidation for improved Ti6Al4V biomaterial surface properties. Int. J. Adv. Manuf. Technol. 2016;85:2425–2437. doi: 10.1007/s00170-015-8086-y. DOI
Rokosz K., Hryniewicz T., Matysek D., Raaen S., Valíček J., Dudek Ł., Harničárová M. SEM, EDS and XPS analysis of the coatings obtained on titanium after plasma electrolytic oxidation in electrolytes containing copper nitrate. Materials. 2016;9:318. doi: 10.3390/ma9050318. PubMed DOI PMC
Rokosz K., Hryniewicz T., Raaen S., Chapon P. Development of copper-enriched porous coatings on ternary Ti-Nb-Zr alloy by Plasma Electrolytic Oxidation. Int. J. Adv. Manuf. Technol. 2017;89:2953–2965. doi: 10.1007/s00170-016-9206-z. DOI
Wang S., Zhao Q., Liu D., Du N. Microstructure and elevated temperature tribological behavior of TiO2/Al2O3 composite ceramic coating formed by microarc oxidation of Ti6Al4V alloy. Surf. Coat. Technol. 2015;272:343–349. doi: 10.1016/j.surfcoat.2015.03.044. DOI
Ma C., Zhang M., Yuan Y., Jing X., Bai X. Tribological behavior of plasma electrolytic oxidation coatings on the surface of Mg–8Li–1Al alloy. Tribol. Int. 2012;47:62–68. doi: 10.1016/j.triboint.2011.10.006. DOI
Rokosz K., Hryniewicz T., Gaiaschi S., Chapon P., Raaen S., Pietrzak S., Malorny W., Fernandes J.S. Characterization of Porous Phosphate Coatings Enriched with Magnesium or Zinc on CP Titanium Grade 2 under DC Plasma Electrolytic Oxidation. Metals. 2018;8:112. doi: 10.3390/met8020112. DOI
Sowa M., Simka W. Effect of DC Plasma Electrolytic Oxidation on Surface Characteristics and Corrosion Resistance of Zirconium. Materials. 2018;11:723. doi: 10.3390/ma11050723. PubMed DOI PMC
Liu C., He D., Yan Q., Huang Z., Liu P., Li D., Jiang G., Ma H., Nash P., Shen D. An investigation of the coating/substrate interface of plasma electrolytic oxidation coated aluminum. Surf. Coat. Technol. 2015;280:86–91. doi: 10.1016/j.surfcoat.2015.08.050. DOI
Gu W., Lv G., Chen H., Chen G., Feng W., Yang S. Characterisation of ceramic coatings produced by plasma electrolytic oxidation of aluminum alloy. Mater. Sci. Eng. A. 2007;447:158–162. doi: 10.1016/j.msea.2006.09.004. DOI
Zhu L., Guo Z., Zhang Y., Li Z., Sui M. A mechanism for the growth of a plasma electrolytic oxide coating on Al. Electrochim. Acta. 2016;208:296–303. doi: 10.1016/j.electacta.2016.04.186. DOI
Tillous E.K., Toll-Duchanoy T., Bauer-Grosse E. Microstructure and 3D microtomographic characterization of porosity of MAO surface layers formed on aluminium and 2214-T6 alloy. Surf. Coat. Technol. 2009;203:1850–1855. doi: 10.1016/j.surfcoat.2009.01.014. DOI
Li Q., Liu C., Yang W., Liang J. Growth mechanism and adhesion of PEO coatings on 2024 Al alloy. Surf. Eng. 2017;33:760–766. doi: 10.1080/02670844.2016.1200860. DOI
Wang Z., Wu L., Qi Y., Cai W., Jiang Z. Self-lubricating Al2O3/PTFE composite coating formation on surface of aluminium alloy. Surf. Coat. Technol. 2010;204:3315–3318. doi: 10.1016/j.surfcoat.2010.03.049. DOI
Li W., Qian Z., Liu X., Zhu L., Liu H. Investigation of micro-arc oxidation coating growth patterns of aluminum alloy by two-step oxidation method. Appl. Surf. Sci. 2015;356:581–586. doi: 10.1016/j.apsusc.2015.07.005. DOI
Zhang X.M., Chen D.F., Gong X.Z., Yang S.Q., Tian X.B. Modulation effects of K2ZrF6 additive on microstructure and heat resistance of micro-arc oxide coatings fabricated on LY12 aluminum alloy. J. Inorg. Mater. 2010;25:865–870. doi: 10.3724/SP.J.1077.2010.00865. DOI
Yang J., Lu X., Blawert C., Di S., Zheludkevich M.L. Microstructure and corrosion behavior of Ca/P coatings prepared on magnesium by plasma electrolytic oxidation. Surf. Coat. Technol. 2017;319:359–369. doi: 10.1016/j.surfcoat.2017.04.001. DOI
Lu X., Blawert C., Huang Y., Ovri H., Zheludkevich M.L., Kainer K.U. Plasma electrolytic oxidation coatings on Mg alloy with addition of SiO2 particles. Electrochim. Acta. 2016;187:20–33. doi: 10.1016/j.electacta.2015.11.033. DOI
Lu X., Blawert C., Kainer K.U., Zheludkevich M.L. Investigation of the formation mechanisms of plasma electrolytic oxidation coatings on Mg alloy AM50 using particles. Electrochim. Acta. 2016;196:680–691. doi: 10.1016/j.electacta.2016.03.042. DOI
Ma H., Li D., Liu C., Huang Z., He D., Yan Q., Liu P., Nash P., Shen D.J. An investigation of (NaPO3)6 effects and mechanisms during micro-arc oxidation of AZ31 magnesium alloy. Surf. Coat. Technol. 2015;266:151–159. doi: 10.1016/j.surfcoat.2015.02.033. DOI
Ezhilselvi V., Nithin J., Balaraju J.N., Subramanian S. The influence of current density on the morphology and corrosion properties of MAO coatings on AZ31B magnesium alloy. Surf. Coat. Technol. 2016;288:221–229. doi: 10.1016/j.surfcoat.2016.01.040. DOI
Sobrinho P.H., Savguira Y., Ni Q., Thorpe S.J. Statistical analysis of the voltage-time response produced during PEO coating of AZ31B magnesium alloy. Surf. Coat. Technol. 2017;315:530–545. doi: 10.1016/j.surfcoat.2017.02.029. DOI
Lu X., Sah S.P., Scharnagl N., Störmer M., Starykevich M., Mohedano M., Blawert C., Zheludkevich M.L., Kainer K.U. Degradation behavior of PEO coating on AM50 magnesium alloy produced from electrolytes with clay particle addition. Surf. Coat. Technol. 2015;269:155–169. doi: 10.1016/j.surfcoat.2014.11.027. DOI
Pezzato L., Brunelli K., Gross S., Magrini M., Dabalà M. Effect of process parameters of plasma electrolytic oxidation on microstructure and corrosion properties of magnesium alloys. J. Appl. Electrochem. 2014;44:867–879. doi: 10.1007/s10800-014-0695-x. DOI
Zhang R.F., Zhang S.F., Xiang J.H., Zhang L.H., Zhang Y.Q., Guo S.B. Influence of sodium silicate concentration on properties of micro arc oxidation coatings formed on AZ91HP magnesium alloys. Surf. Coat. Technol. 2012;206:5072–5079. doi: 10.1016/j.surfcoat.2012.06.018. DOI
Cao F.H., Lin L.Y., Zhang Z., Zhang J.Q., Cao C.N. Environmental friendly plasma electrolytic oxidation of AM60 magnesium alloy and its corrosion resistance. Trans. Nonferrous Met. Soc. China. 2008;18:240–247. doi: 10.1016/S1003-6326(08)60043-6. DOI
Tang H., Xin T.Z., Sun Q., Yi C.G., Jiang Z.H., Wang F.P. Influence of FeSO4 concentration on thermal emissivity of coatings formed on titanium alloy by micro-arc oxidation. Appl. Surf. Sci. 2011;257:10839–10844. doi: 10.1016/j.apsusc.2011.07.118. DOI
Shokouhfar M., Allahkaram S.R. Formation mechanism and surface characterization of ceramic composite coatings on pure titanium prepared by micro-arc oxidation in electrolytes containing nanoparticles. Surf. Coat. Technol. 2016;291:396–405. doi: 10.1016/j.surfcoat.2016.03.013. DOI
Rokosz K., Hryniewicz T., Dudek Ł., Matysek D., Valíček J., Harničárová M. SEM and EDS analysis of surface layer formed on titanium after plasma electrolytic oxidation in H3PO4 with the addition of Cu(NO3)2. J. Nanosci. Nanotechnol. 2016;16:7814–7817. doi: 10.1166/jnn.2016.12558. DOI
Liu S.M., Yang X.J., Cui Z.D., Zhu S.L., Wei Q. One-step synthesis of petal-like apatite/titania composite coating on a titanium by micro-arc treating. Mater. Lett. 2011;65:1041–1044. doi: 10.1016/j.matlet.2010.11.050. DOI
Yan Y.Y., Sun J.F., Han Y., Li D.C., Cui K. Microstructure and bioactivity of Ca, P and Sr doped TiO2 coating formed on porous titanium by micro-arc oxidation. Surf. Coat. Technol. 2010;205:1702–1713. doi: 10.1016/j.surfcoat.2010.09.040. DOI
Rokosz K., Hryniewicz T., Gaiaschi S., Chapon P., Raaen S., Pietrzak K., Malorny W. Characterisation of calcium- and phosphorus-enriched porous coatings on CP Titanium Grade 2 fabricated by plasma electrolytic oxidation. Metals. 2017;7:354. doi: 10.3390/met7090354. DOI
Tang H., Sun Q., Xin T.Z., Yi C.G., Jiang Z.H., Wang F.P. Influence of Co(CH3COO)2 concentration on thermal emissivity of coatings formed on titanium alloy by micro-arc oxidation. Curr. Appl. Phys. 2012;12:284–290. doi: 10.1016/j.cap.2011.06.023. DOI
Rudnev V.S., Yarovaya T.P., Egorkin V.S., Sinebryukov S.L., Gnedenkov S.V. Properties of coatings formed on titanium by plasma electrolytic oxidation in a phosphate-borate electrolyte. Russ. J. Appl. Chem. 2010;83:664–670. doi: 10.1134/S1070427210040178. DOI
Xu Y.J., Yao Z.P., Jia F.Z., Wang Y.L., Jiang Z.H., Bu H.T. Preparation of PEO ceramic coating on Ti alloy and its high temperature oxidation resistance. Curr. Appl. Phys. 2010;10:698–702. doi: 10.1016/j.cap.2009.09.003. DOI
Qiao L.P., Lou J., Zhang S.F., Qu B., Chang W.H., Zhang R.F. The entrance mechanism of calcium and phosphorus elements into micro arc oxidation coatings developed on Ti6Al4V alloy. Surf. Coat. Technol. 2016;285:187–196. doi: 10.1016/j.surfcoat.2015.11.041. DOI
Wang Y.H., Liu Z.G., Ouyang J.H., Wang Y.M., Zhou Y. Influence of electrolyte compositions on structure and high-temperature oxidation resistance of microarc oxidation coatings formed on Ti2AlNb alloy. J. Alloys Compd. 2015;647:431–437. doi: 10.1016/j.jallcom.2015.05.154. DOI
Karbowniczek J., Muhaffel F., Cempura G., Cimenoglu H., Filemonowicz A.C. Influence of electrolyte composition on microstructure, adhesion and bioactivity of micro-arc oxidation coatings produced on biomedical Ti6Al7Nb alloy. Surf. Coat. Technol. 2017;321:97–107. doi: 10.1016/j.surfcoat.2017.04.031. DOI
Montazeri M., Dehghanian C., Shokouhfar M., Baradaran A. Investigation of the voltage and time effects on the formation of hydroxyapatite-containing titania prepared by plasma electrolytic oxidation on Ti-6Al-4V alloy and its corrosion behavior. Appl. Surf. Sci. 2011;257:7268–7275. doi: 10.1016/j.apsusc.2011.03.103. DOI
Simka W., Sowa M., Socha R.P., Maciej A., Michalska J. Anodic oxidation of zirconium in silicate solutions. Electrochim. Acta. 2013;104:518–525. doi: 10.1016/j.electacta.2012.10.130. DOI
Sowa M., Dercz G., Suchanek K., Simka W. Investigation of anodic oxide coatings on zirconium after heat treatment. Appl. Surf. Sci. 2015;346:534–542. doi: 10.1016/j.apsusc.2015.04.040. DOI
Matykina E., Arrabal R., Skeldon P., Thompson G.E.E., Wang P., Wood P. Plasma electrolytic oxidation of a zirconium alloy under AC conditions. Surf. Coat. Technol. 2010;204:2142–2151. doi: 10.1016/j.surfcoat.2009.11.042. DOI
Cengiz S., Uzunoglu A., Stanciu L., Tarakci M., Gencer Y. Direct fabrication of crystalline hydroxyapatite coating on zirconium by single-step plasma electrolytic oxidation process. Surf. Coat. Technol. 2016;301:74–79. doi: 10.1016/j.surfcoat.2015.12.069. DOI
Fidan S., Muhaffel F., Riool M., Cempura G., de Boer L., Zaat S.A.J., Filemonowicz A.C., Cimenoglu H. Fabrication of oxide layer on zirconium by micro-arc oxidation: Structural and antimicrobial characteristics. Mater. Sci. Eng. C. 2017;71:565–569. doi: 10.1016/j.msec.2016.11.035. PubMed DOI
Cengiz S., Gencer Y. The characterization of the oxide based coating synthesized on pure zirconium by plasma electrolytic oxidation. Surf. Coat. Technol. 2014;242:132–140. doi: 10.1016/j.surfcoat.2014.01.032. DOI
Cengiz S., Azakli Y., Tarakci M., Stanciu L., Gencer Y. Microarc oxidation discharge types and bio properties of the coating synthesized on zirconium. Mater. Sci. Eng. C. 2017;77:374–383. doi: 10.1016/j.msec.2017.03.230. PubMed DOI
Ha J.-Y.Y., Tsutsumi Y., Doi H., Nomura N., Kim K.-H.H., Hanawa T. Enhancement of calcium phosphate formation on zirconium by micro-arc oxidation and chemical treatments. Surf. Coat. Technol. 2011;205:4948–4955. doi: 10.1016/j.surfcoat.2011.04.079. DOI
Sandhyarani M., Rameshbabu N., Venkateswarlu K., Rama Krishna L. Fabrication, characterization and in-vitro evaluation of nanostructured zirconia/hydroxyapatite composite film on zirconium. Surf. Coat. Technol. 2014;238:58–67.
Sandhyarani M., Prasadrao T., Rameshbabu N. Role of electrolyte composition on structural, morphological and in-vitro biological properties of plasma electrolytic oxidation films formed on zirconium. Appl. Surf. Sci. 2014;317:198–209.
Apelfeld A.V., Betsofen S.Y., Borisov A.M., Vladimirov B.V., Savushkina S.V., Knyazev E.V. Stabilization of the high-temperature phases in ceramic coatings on zirconium alloy produced by plasma electrolytic oxidation. J. Phys. Conf. Ser. 2016;748:12019. doi: 10.1088/1742-6596/748/1/012019. DOI
Apelfeld A.V., Ashmarin A.A., Borisov A.M., Vinogradov A.V., Savushkina S.V., Shmytkova E.A. Formation of zirconia tetragonal phase by plasma electrolytic oxidation of zirconium alloy in electrolyte comprising additives of yttria nanopowder. Surf. Coat. Technol. 2017;328:513–517. doi: 10.1016/j.surfcoat.2016.09.071. DOI
Sowa M., Simka W. Electrochemical Impedance and Polarization Corrosion Studies of Tantalum Surface Modified by DC Plasma Electrolytic Oxidation. Materials. 2018;11:545. doi: 10.3390/ma11040545. PubMed DOI PMC
Sowa M., Woszczak M., Kazek-Kęsik A., Dercz G., Korotin D.M., Zhidkov I.S., Kurmaev E.Z., Cholakh S.O., Basiaga M., Simka W. Influence of process parameters on plasma electrolytic surface treatment of tantalum for biomedical applications. Appl. Surf. Sci. 2017;407:52–63. doi: 10.1016/j.apsusc.2017.02.170. DOI
Rokosz K., Hryniewicz T., Chapon P., Raaen S., Ricardo Zschommler Sandim H. XPS and GDOES characterization of porous coating enriched with copper and calcium obtained on tantalum via plasma electrolytic oxidation. J. Spectrosc. 2016;2016:7093071. doi: 10.1155/2016/7093071. DOI
Fattah-alhosseini A., Pourmahmoud M. Passive and semiconducting properties assessment of commercially pure tantalum in Hank’s physiological solution. J. Mater. Eng. Perform. 2018;27:116–123. doi: 10.1007/s11665-017-3108-6. DOI
Sowa M., Worek J., Dercz G., Korotin D.M., Kukharenko A.I., Kurmaev E.Z., Cholakh S.O., Basiaga M., Simka W. Surface characterisation and corrosion behaviour of niobium treated in a Ca- and P-containing solution under sparking conditions. Electrochim. Acta. 2016;198:91–103. doi: 10.1016/j.electacta.2016.03.069. DOI
Sowa M., Simka W. Electrochemical behavior of plasma electrolytically oxidized niobium in simulated physiological environment. Surf. Coat. Technol. 2018;344:21–131. doi: 10.1016/j.surfcoat.2018.03.013. DOI
Rokosz K., Hryniewicz T. Comparative SEM and EDX analysis of surface coatings created on niobium and titanium alloys after Plasma Electrolytic Oxidation (PEO) Tehnički Vjesnik-Technical Gazette. 2017;24:465–472.
Gomes M.A.B., Onofre S., Juanto S., Bulhões L.O.S. Anodization of niobium in sulphuric acid media. J. Appl. Electrochem. 1991;21:1023–1026. doi: 10.1007/BF01077589. DOI
Pereira B.L., Lepienski C.M., Mazzaro I., Kuromoto N.K. Apatite grown in niobium by two-step plasma electrolytic oxidation. Mater. Sci. Eng. C Mater. 2017;77:1235–1241. doi: 10.1016/j.msec.2016.10.073. PubMed DOI
Stojadinović S., Tadić N., Vasilic R. Plasma electrolytic oxidation of hafnium. J. Refract. Met. Hard Mater. 2017;69:153–157. doi: 10.1016/j.ijrmhm.2017.08.011. DOI
Han Y., Hong S.H., Xu K.W. Synthesis of nanocrystalline titania films by micro-arc oxidation. Mater. Lett. 2002;56:744–747. doi: 10.1016/S0167-577X(02)00606-7. DOI
Han Y., Xu K. Photoexcited formation of bone apatite-like coatings on micro-arc oxidized titanium. J. Biomed. Mater. Res. 2004;71A:608–614. doi: 10.1002/jbm.a.30177. PubMed DOI
Huang P., Xu K.W., Han Y. Preparation and apatite layer formation of plasma electrolytic oxidation film on titanium for biomedical application. Mater. Lett. 2005;59:185–189. doi: 10.1016/j.matlet.2004.09.045. DOI
Song W.H., Jun Y.K., Han Y., Hong S.H., Kim H.E., Heo S.J., Koak J.Y. Biomimetic apatite coatings on micro-arc oxidized titania. Biomaterials. 2004;25:3341–3349. doi: 10.1016/j.biomaterials.2003.09.103. PubMed DOI
Zhang Y.M., Bataillon-Linez P., Huang P., Zhao Y.M., Han Y., Traisnel M., Xu K.W., Hildebrand H.F. Surface analyses of micro-arc oxidized and hydrothermally treated titanium and effect on osteoblast behavior. J. Biomed. Mater. Res. 2003;68:383–391. doi: 10.1002/jbm.a.20063. PubMed DOI
Li L.H., Kong Y.M., Kim H.W., Kim Y.W., Kim H.E., Heo S.J., Koak J.Y. Improved biological performance of Ti implants due to surface modification by micro-arc oxidation. Biomaterials. 2004;25:2867–2875. doi: 10.1016/j.biomaterials.2003.09.048. PubMed DOI
Lee S.H., Kim H.W., Lee E.J., Li L.H., Kim H.E. Hydroxyapatite–TiO2 hybrid coating on Ti implants. J. Biomater. Appl. 2006;20:194–208. doi: 10.1177/0885328206050518. PubMed DOI
Han Y., Hong S.H., Xu K.W. Structure and in vitro bioactivity of titania-based films by micro-arc oxidation. Surf. Coat. Technol. 2003;168:249–258. doi: 10.1016/S0257-8972(03)00016-1. DOI
Teh T.H., Berkani A., Mato S., Skeldon P., Thompson G.E., Habazaki H., Shimizu K. Initial stages of plasma electrolytic oxidation of titanium. Corros. Sci. 2003;45:2757–2768. doi: 10.1016/S0010-938X(03)00101-X. DOI
Rudnev V.S., Vasilyeva M.S., Kondrikov N.B., Tyrina L.M. Plasma-electrolytic formation, composition and catalytic activity of manganese oxide containing structures on titanium. Appl. Surf. Sci. 2005;252:1211–1220. doi: 10.1016/j.apsusc.2004.12.054. DOI
Ryu H.S., Song W.H., Hong S.H. Biomimetic apatite induction on Ca-containing titania. Curr. Appl. Phys. 2005;5:512–515. doi: 10.1016/j.cap.2005.01.022. DOI
Chen J.Z., Shi Y.L., Wang L., Yan F.Y., Zhang F.Y. Preparation and properties of hydroxyapatite-containing titania coating by micro-arc oxidation. Mater. Lett. 2006;60:2538–2543. doi: 10.1016/j.matlet.2006.01.035. DOI
Matykina E., Montuori M., Gough J., Monfort F., Berkani A., Skeldon P., Thompson G.E., Habazaki H. Spark anodising of titanium for biomedical applications. Trans. IMF. 2006;84:125–133. doi: 10.1179/174591906X123967. DOI
Han I.H., Choi J.H., Zhao B.H., Baik H.K., Lee I.S. Effects of electrical wave form on pore size of micro-arc oxidized TiO2 film. Key Eng. Mater. 2006;309–311:375–378. doi: 10.4028/www.scientific.net/KEM.309-311.375. DOI
Shokouhfar M., Dehghanian C., Montazeri M., Baradaran A. Preparation of ceramic coating on Ti substrate by plasma electrolytic oxidation in different electrolytes and evaluation of its corrosion resistance: Part II. Appl. Surf. Sci. 2012;258:2416–2423. doi: 10.1016/j.apsusc.2011.10.064. DOI
Zhu L., Ye X., Tang G., Zhao N., Gong Y., Zhao Y., Zhao J., Zhang X. Corrosion test, cell behavior test, and in vivo study of gradient TiO2 layers produced by compound electrochemical oxidation. J. Biomed. Mater. Res. A. 2006;78:515–522. doi: 10.1002/jbm.a.30745. PubMed DOI
Habazaki H., Onodera T., Fushimi K., Konno H., Toyotake K. Spark anodizing of β-Ti alloy for wear-resistant coating. Surf. Coat. Technol. 2007;201:8730–8737. doi: 10.1016/j.surfcoat.2006.05.041. DOI
Kim M.S., Ryu J.J., Sung Y.M. One-step approach for nano-crystalline hydroxyapatite coating on titanium via micro-arc oxidation. Electrochem. Commun. 2007;9:1886–1891. doi: 10.1016/j.elecom.2007.04.023. DOI
Ragalevičius R., Stalnionis G., Niaura G., Jagminas A. Micro-arc oxidation of Ti in a solution of sulfuric acid and Ti+3 salt. Appl. Surf. Sci. 2008;254:1608–1613. doi: 10.1016/j.apsusc.2007.07.111. DOI
Zhang W., Du K., Yan C., Wang F. Preparation and characterization of a novel Si-incorporated ceramic film on pure titanium by plasma electrolytic oxidation. Appl. Surf. Sci. 2008;254:5216–5223. doi: 10.1016/j.apsusc.2008.02.047. DOI
Lebukhova N.V., Rudnev V.S., Kirichenko E.A., Chigrin P.G., Lukiyanchuk I.V., Yarovaya T.P. Effect of the structure of the oxidized titanium surface on the particle size and properties of the deposited copper-molybdate catalyst. Prot. Met. Phys. Chem. Surf. 2016;52:1024–1030. doi: 10.1134/S2070205116060149. DOI
Terleeva O.P., Sharkeev Y.P., Slonova A.I., Mironov I.V., Legostaeva E.V., Khlusov I.A., Matykina E., Skeldon P., Thompson G.E. Effect of microplasma modes and electrolyte composition on micro-arc oxidation coatings on titanium for medical applications. Surf. Coat. Technol. 2010;205:1723–1729. doi: 10.1016/j.surfcoat.2010.10.019. DOI
Wang Y.M., Lei T.Q., Jiang B.L., Guo L.X. Growth, microstructure and mechanical properties of microarc oxidation coatings on titanium alloy in phosphate-containing solution. Appl. Surf. Sci. 2004;233:258–267. doi: 10.1016/j.apsusc.2004.03.231. DOI
Tang H., Sun Q., Yi C.G., Jiang Z.H., Wang F.P. High emissivity coatings on titanium alloy prepared by micro-arc oxidation for high temperature application. J. Mater. Sci. 2012;47:2162–2168. doi: 10.1007/s10853-011-6017-3. DOI
Santos A.D., Araujo J.R., Landi S.M., Kuznetsov A., Granjeiro J.M., Sena L.A.D., Achete C.A. A study of the physical, chemical and biological properties of TiO2 coatings produced by micro-arc oxidation in a Ca-P-based electrolyte. J. Mater. Sci. Mater. Med. 2014;25:1769–1780. doi: 10.1007/s10856-014-5207-3. PubMed DOI
Li Q.B., Yang W.B., Liu C.C., Wang D.A., Liang J. Correlations between the growth mechanism and properties of micro-arc oxidation coatings on titanium alloy: Effects of electrolytes. Surf. Coat. Technol. 2017;316:162–170. doi: 10.1016/j.surfcoat.2017.03.021. DOI
Sharifi H., Aliofkhazraei M., Darband G., Rouhaghdam A.S. Characterization of PEO nanocomposite coatings on titanium formed in electrolyte containing atenolol. Surf. Coat. Technol. 2016;304:438–449. doi: 10.1016/j.surfcoat.2016.07.048. DOI
Zhu X.L., Chen J., Scheideler L., Reichl R., Geis-Gerstorfer J. Effects of topography and composition of titanium surface oxides on osteoblast responses. Biomaterials. 2004;25:4087–4103. doi: 10.1016/j.biomaterials.2003.11.011. PubMed DOI
Geetha M., Singh A.K., Asokamani R., Gogia A.K. Ti based biomaterials, the ultimate choice for orthopaedic implants—A review. Prog. Mater. Sci. 2009;54:397–425. doi: 10.1016/j.pmatsci.2008.06.004. DOI
Jayaraman M., Meyer U., Bühner M., Joos U., Wiesmann H.P. Influence of titanium surfaces on attachment of osteoblast-like cells in vitro. Biomaterials. 2004;25:625–631. doi: 10.1016/S0142-9612(03)00571-4. PubMed DOI
Cai Y.L., Zhang J.J., Zhang S., Venkatraman S.S., Zeng X.T., Du H.J., Mondal D. Osteoblastic cell response on fluoridated hydroxyapatite coatings: The effect of magnesium incorporation. Biomed. Mater. 2010;5:054114. doi: 10.1088/1748-6041/5/5/054114. PubMed DOI
Piocha D., Zima A., Paszkiewicz Z., Slosarczyk A. Physicochemical properties of the novel biphasic hydroxyapatite–magnesium phosphate biomaterial. Acta Bioeng. Biomech. 2013;15:53–63. PubMed
Grigolato R., Pizzi N., Brotto M.C., Corrocher G., Desando G., Grigolo B. Magnesium-enriched hydroxyapatite as bone filler in an ameloblastoma mandibular defect. Int. J. Clin. Exp. Med. 2015;8:281–288. PubMed PMC
Nygren H., Bigdeli N., Ilver L., Malmberg P. Mg-corrosion, hydroxyapatite, and bone healing. Biointerphases. 2017;12:02C407. doi: 10.1116/1.4982601. PubMed DOI
Laurencin D., Almora-Barrios N., de Leeuw N.H., Gervais C., Bonhomme C., Mauri F., Chrzanowski W., Knowles J.C., Newport R.J., Wong A., et al. Magnesium incorporation into hydroxyapatite. Biomaterials. 2011;32:1826–1837. doi: 10.1016/j.biomaterials.2010.11.017. PubMed DOI
Farzadi A., Bakhshi F., Solati-Hashjin M., Asadi-Eydivand M., Abu Osman A.A. Magnesium incorporated hydroxyapatite: Synthesis and structural properties characterization. Ceram. Int. 2014;40:6021–6029. doi: 10.1016/j.ceramint.2013.11.051. DOI
Hu H., Zhang W., Qiao Y., Jiang X., Liu X., Ding C. Antibacterial activity and increased bone marrow stem cell functions of Zn-incorporated TiO2 coatings on titanium. Acta Biomater. 2012;8:904–915. doi: 10.1016/j.actbio.2011.09.031. PubMed DOI
Zhang X., Wang H., Li J., He X., Hang R., Huang X., Tian L., Tang B. Corrosion behavior of Zn-incorporated antibacterial TiO2 porous coating on titanium. Ceram. Int. 2016;42:17095–17100. doi: 10.1016/j.ceramint.2016.07.220. DOI
Zhang L., Gao Q., Han Y. Zn and Ag co-doped anti-microbial TiO2 coatings on Ti by micro-arc oxidation. J. Mater. Sci. Technol. 2016;32:919–924. doi: 10.1016/j.jmst.2016.01.008. DOI
Zhang J.Y., Ai H.J., Qi M. Osteoblast growth on the surface of porous Zn-containing HA/TiO2 hybrid coatings on Ti substrate by MAO plus sol-gel methods. Surf. Coat. Technol. 2013;228:S202–S205. doi: 10.1016/j.surfcoat.2012.06.028. DOI
Zhao B.H., Zhang W., Wang D.N., Feng W., Liu Y., Lin Z., Du K.Q., Deng C.F. Effect of Zn content on cytoactivity and bacteriostasis of micro-arc oxidation coatings on pure titanium. Surf. Coat. Technol. 2013;228:S428–S432. doi: 10.1016/j.surfcoat.2012.05.037. DOI
Jin G.D., Qin H., Cao H.L., Qian S., Zhao Y.C., Peng X.C., Zhang X.L., Liu X.Y., Chu P.K. Synergistic effects of dual Zn/Ag ion implantation in osteogenic activity and antibacterial ability of titanium. Biomaterials. 2014;35:7699–7713. doi: 10.1016/j.biomaterials.2014.05.074. PubMed DOI
Huang Y., Zhang X.J., Mao H.H., Li T.T., Zhao R.L., Yan Y.J., Pang X.F. Osteoblastic cell responses and antibacterial efficacy of Cu/Zn co-substitued hydroxyapatite coatings on pure titanium using electrodeposition method. RSC Adv. 2015;5:17076–17086. doi: 10.1039/C4RA12118J. DOI
Rokosz K., Hryniewicz T., Gaiaschi S., Chapon P., Raaen S., Malorny W., Matysek W., Pietrzak K. Development of porous coatings enriched with magnesium and zinc obtained by DC Plasma Electrolytic Oxidation. Micromachines. 2018;9:332. doi: 10.3390/mi9070332. PubMed DOI PMC
Zhao L.Z., Chu P.K., Zhang Y.M., Wu Z.F. Antibacterial coatings on titanium implants. J. Biomed. Mater. Res. Part B. 2009;91:470–480. doi: 10.1002/jbm.b.31463. PubMed DOI
Zhu W., Zhang Z., Gu B., Sun J., Zhu L. Biological activity and antibacterial property of nano-structured TiO2 coating incorporated with Cu prepared by micro-arc oxidation. J. Mater. Sci. Technol. 2013;29:237–244. doi: 10.1016/j.jmst.2012.12.015. DOI
Zhang L., Guo J., Huang X., Zhang Y., Han Y. The dual function of Cu-doped TiO2 coatings on titanium for application in percutaneous implants. J. Mater. Chem. B. 2016;4:3788–3800. doi: 10.1039/C6TB00563B. PubMed DOI
Moulder J.F., Stickle W.F., Sobol P.E., Bomben K.D. Handbook of X-ray Photoelectron Spectroscopy. Perkin-Elmer Corporation; Eden Prairie, MN, USA: 1992.
Wagner C.D., Naumkin A.V., Kraut-Vass A., Allison J.W., Powell C.J., Rumble J.R., Jr. NIST Standard Reference Database 20, Version 3.4. [(accessed on 1 July 2018)];2003 Available online: http://srdata.nist.gov/xps.
Casa Software Ltd CasaXPS: Processing Software for XPS, AES, SIMS and More. [(accessed on 1 July 2018)];2009 Available online: http://www.casaxps.com.
Gaiaschi S., Richard S., Chapon P., Acher O. Real-time measurement in glow discharge optical emission spectrometry via differential interferometric profiling. J. Anal. Atom. Spectrom. 2017;32:1798–1804. doi: 10.1039/C7JA00146K. DOI
Pulsed RF Glow Discharge Optical Emission Spectrometry—Ultra Fast Elemental Depth Profiling, HORIBA Scientific, Printed in France—©HORIBA Jobin Yvon. [(accessed on 1 July 2018)];2014 :7. Available online: http://www.horiba.com/scientific/products/atomic-emission-spectroscopy/glow-discharge/
Metal Ions Supported Porous Coatings by Using AC Plasma Electrolytic Oxidation Processing