SEM, EDS and XPS Analysis of the Coatings Obtained on Titanium after Plasma Electrolytic Oxidation in Electrolytes Containing Copper Nitrate

. 2016 Apr 27 ; 9 (5) : . [epub] 20160427

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid28773443

In the paper, the Scanning Electron Microscopy (SEM) with Energy Dispersive X-ray Spectroscopy (EDS) and X-ray Photoelectron Spectroscopy (XPS) results of the surface layer formed on pure titanium after plasma electrolytic oxidation (micro arc oxidation) at the voltage of 450 V are shown. As an electrolyte, the mixture of copper nitrate Cu(NO₃)₂ (10-600 g/L) in concentrated phosphoric acid H₃PO₄ (98 g/mol) was used. The thickness of the obtained porous surface layer equals about 10 μm, and it consists mainly of titanium phosphates and oxygen with embedded copper ions as a bactericidal agent. The maximum percent of copper in the PEO surface layer was equal to 12.2 ± 0.7 wt % (7.6 ± 0.5 at %), which is the best result that the authors obtained. The top surface layer of all obtained plasma electrolytic oxidation (PEO) coatings consisted most likely mainly of Ti₃(PO₄)₄∙nH₃PO₄ and Cu₃(PO₄)₂∙nH₃PO₄ with a small addition of CuP₂, CuO and Cu₂O.

Zobrazit více v PubMed

Simka W., Sadowski A., Warczak M., Iwaniak A., Dercz G., Michalska J., Maciej A. Modification of titanium oxide layer by calcium and phosphorus. Electrochim. Acta. 2011;56:8962–8968. doi: 10.1016/j.electacta.2011.07.129. DOI

Hryniewicz T., Rokosz K., Valiček J., Rokicki R. Effect of magnetoelectropolishing on nanohardness and Young’s modulus of titanium biomaterial. Mater. Lett. 2012;83:69–72. doi: 10.1016/j.matlet.2012.06.010. DOI

Hryniewicz T., Rokosz K., Zschommler Sandim H.R. SEM/EDX and XPS studies of niobium after electropolishing. Appl. Surf. Sci. 2012;263:357–361. doi: 10.1016/j.apsusc.2012.09.060. DOI

Simka W., Sowa M., Socha R.P., Maciej A., Michalska J. Anodic oxidation of zirconium in silicate solutions. Electrochim. Acta. 2013;104:518–525. doi: 10.1016/j.electacta.2012.10.130. DOI

Sowa M., Kazek-Kęsik A., Socha R.P., Dercz G., Michalska J., Simka W. Modification of tantalum surface via plasma electrolytic oxidation in silicate solutions. Electrochim. Acta. 2013;114:627–636. doi: 10.1016/j.electacta.2013.10.047. DOI

Simka W., Nawrat G., Chlode J., Maciej A., Winiarski A., Szade J., Radwanski K., Gazdowicz J. Electropolishing and anodic passivation of Ti6Al7Nb alloy. Przemysl Chem. 2011;90:84–90.

Hryniewicz T., Rokosz K., Rokicki R., Prima F. Nanoindentation and XPS Studies of Titanium TNZ Alloy after electrochemical polishing in a magnetic field. Materials. 2015;8:205–215. doi: 10.3390/ma8010205. PubMed DOI PMC

Yu S., Yu Z., Wang G., Han J., Ma X., Dargusch M.S. Preparation and osteoinduction of active micro-arc oxidation films on Ti-3Zr-2Sn-3Mo-25Nb alloy. Trans. Nonferr. Met. Soc. China. 2011;21:573–580. doi: 10.1016/S1003-6326(11)60753-X. DOI

Hryniewicz T., Rokosz K. Analysis of XPS results of AISI 316L SS electropolished and magnetoelectropolished at varying conditions. Surf. Coat. Technol. 2010;204:2583–2592. doi: 10.1016/j.surfcoat.2010.02.005. DOI

Hryniewicz T., Rokicki R., Rokosz K. Magnetoelectropolishing for metal surface modification. Trans. Inst. Met. Finish. 2007;85:325–332. doi: 10.1179/174591907X246537. DOI

Rokosz K., Hryniewicz T., Raaen S. Cr/Fe ratio by XPS spectra of magnetoelectropolished AISI 316L SS fitted by gaussian-lorentzian shape lines. Teh. Vjesn. Tech. Gaz. 2014;21:533–538.

Rokosz K., Simon F., Hryniewicz T., Rzadkiewicz S. Comparative XPS analysis of passive layers composition formed on AISI 304 L SS after standard and high-current density electropolishing. Surf. Interface Anal. 2015;47:87–92. doi: 10.1002/sia.5676. DOI

Rokosz K., Hryniewicz T., Rokicki R. XPS measurements of AISI 316LVM SS biomaterial tubes after magnetoelectropolishing. Teh. Vjesn. Tech. Gaz. 2014;21:799–805.

Hryniewicz T., Rokosz K. Corrosion resistance of magnetoelectropolished AISI 316L SS biomaterial. Anti-Corros. Methods Mater. 2014;61:57–64. doi: 10.1108/ACMM-03-2013-1249. DOI

Hryniewicz T., Rokosz K. Highlights of magnetoelectropolishing. Front. Mater. 2014;1:1–7. doi: 10.3389/fmats.2014.00003. DOI

Rokosz K., Hryniewicz T., Rzadkiewicz S., Raaen S. High-current density electropolishing (HDEP) of AISI 316L (EN 1.4404) stainless steel. Teh. Vjesn. Tech. Gaz. 2015;22:415–424. doi: 10.17559/TV-20140722110711. DOI

Jelinek M., Kocourek T., Remsa J., Weiserovác M., Jurek K., Mikšovský J., Strnad J., Galandáková A., Ulrichová J. Antibacterial, cytotoxicity and physical properties of laser—Silver doped hydroxyapatite layers. Mater. Sci. Eng. C. 2013;33:1242–1246. doi: 10.1016/j.msec.2012.12.018. PubMed DOI

Mishra G., Dash B., Pandey S., Mohanty P.P. Antibacterial actions of silver nanoparticles incorporated Zn–Al layered double hydroxide and its spinel. J. Environ. Chem. Eng. 2013;1:1124–1130. doi: 10.1016/j.jece.2013.08.031. DOI

Rajendrana A., Pattanayak D.K. Silver incorporated antibacterial, cell compatible and bioactive titania layer on Ti metal for biomedical applications. RSC Adv. 2014;106:61444–61455. doi: 10.1039/C4RA13107J. DOI

Trujillo N.A., Oldinski R.A., Mad H., Bryers J.D., Williams J.D., Popat K.C. Antibacterial effects of silver-doped hydroxyapatite thin films sputter deposited on titanium. Mater. Sci. Eng. C. 2012;32:2135–2144. doi: 10.1016/j.msec.2012.05.012. DOI

Zhang X., Huang X., Ma Y., Lin N., Fan A., Tang B. Bactericidal behavior of Cu-containing stainless steel surfaces. Appl. Surf. Sci. 2012;258:10058–10063. doi: 10.1016/j.apsusc.2012.06.074. DOI

Truong V.K., Lapovok R., Estrin Y.S., Rundell S., Wang Y.Y., Fluke C.J., Crawford R.J., Ivanova E.P. The influence of nano-scale surface roughness on bacterial adhesion to ultrafine-grained titanium. Biomaterials. 2010;31:3674–3683. doi: 10.1016/j.biomaterials.2010.01.071. PubMed DOI

Hempel F., Finke B., Zietz C., Bader R., Weltmann K.D., Polak M. Antimicrobial surface modification of titanium substrates by means of plasma immersion ion implantation and deposition of copper. Surf. Coat. Technol. 2014;256:52–58. doi: 10.1016/j.surfcoat.2014.01.027. DOI

Park T.-E., Choe H.-C., Brantley W.A. Bioactivity evaluation of porous TiO2 surface formed on titanium in mixed electrolyte by spark anodization. Surf. Coat. Technol. 2013;235:706–713. doi: 10.1016/j.surfcoat.2013.08.051. DOI

Stojadinović S., Vasilić R., Petković M., Kasalica B., Belča I., Žekić A., Zeković L. Characterization of the plasma electrolytic oxidation of titanium in sodium metasilicate. Appl. Surf. Sci. 2013;265:226–233. doi: 10.1016/j.apsusc.2012.10.183. DOI

Krupa D., Baszkiewicz J., Zdunek J., Smolik J., Słomka Z., Sobczak J.W. Characterization of the surface layers formed on titanium by plasma electrolytic oxidation. Surf. Coat. Technol. 2010;205:1743–1749. doi: 10.1016/j.surfcoat.2010.05.015. DOI

Baszkiewicz J., Krupa D., Mizera J., Sobczak J.W., Biliński A. Corrosion resistance of the surface layers formed on titanium by plasma electrolytic oxidation and hydrothermal treatment. Vacuum. 2005;78:143–147. doi: 10.1016/j.vacuum.2005.01.017. DOI

Shin K.R., Kob Y.G., Shin D.H. Effect of electrolyte on surface properties of pure titanium coated by plasma electrolytic oxidation. J. Alloy. Compd. 2011;509:S478–S481. doi: 10.1016/j.jallcom.2011.02.056. DOI

Laurindo C.A.H., Torres R.D., Mali S.A., Gilbert J.L., Soares P. Incorporation of Ca and P on anodized titanium surface: Effect of high current density. Mater. Sci. Eng. C. 2014;37:223–231. doi: 10.1016/j.msec.2014.01.006. PubMed DOI

Shin K.R., Ko Y.G., Shin D.H. Influence of zirconia on biomimetic apatite formation in pure titanium coated via plasma electrolytic oxidation. Mater. Lett. 2010;64:2714–2717. doi: 10.1016/j.matlet.2010.08.069. DOI

Aliasghari S., Skeldon P., Thompson G.E. Plasma electrolytic oxidation of titanium in a phosphate/silicateelectrolyte and tribological performance of the coatings. Appl. Surf. Sci. 2014;316:463–476. doi: 10.1016/j.apsusc.2014.08.037. DOI

Stojadinović S., Vasilić R., Petković M., Zeković L. Plasma electrolytic oxidation of titanium in heteropolytungstate acids. Surf. Coat. Technol. 2011;206:575–581. doi: 10.1016/j.surfcoat.2011.07.090. DOI

Zhang W., Du K., Yan C., Wang F. Preparation and characterization of a novel Si-incorporated ceramic film on pure titanium by plasma electrolytic oxidation. Appl. Surf. Sci. 2008;254:5216–5223. doi: 10.1016/j.apsusc.2008.02.047. DOI

Rudnev V.S., Lukiyanchuk I.V., Adigamova M.V., Morozova V.P., Tkachenko I.A. The effect of nanocrystallites in the pores of PEO coatings on their magnetic properties. Surf. Coat. Technol. 2015;269:23–29. doi: 10.1016/j.surfcoat.2015.01.073. DOI

Yao X., Zhang X., Wu H., Tian L., Ma Y., Tang B. Microstructure and antibacterial properties of Cu-doped TiO2 coating on titanium by micro-arc oxidation. Appl. Surf. Sci. 2014;292:944–947. doi: 10.1016/j.apsusc.2013.12.083. DOI

Zhu W., Zhang Z., Gu B., Sun J., Zhu L. Biological activity and antibacterial property of nano-structured TiO2 coating incorporated with Cu prepared by micro-arc oxidation. J. Mater. Sci. Technol. 2013;29:237–244. doi: 10.1016/j.jmst.2012.12.015. DOI

Teker D., Muhaffel F., Menekse M., Karaguler N.G., Baydogan M., Cimenoglu H. Characteristics of multi-layer coating formed on commercially pure titanium for biomedical applications. Mater. Sci. Eng. C. 2015;48:579–585. doi: 10.1016/j.msec.2014.12.058. PubMed DOI

Rokosz K., Hryniewicz T. Plasma Electrolytic Oxidation as a modern method to form porous coatings enriched in phosphorus, and copper on biomaterials. World Sci. News. 2016;35:44–61.

STATISTICA (Data Analysis Software System) StatSoft, Inc.; 2011. [(accessed on 8 January 2016)]. Version 10. Available online: http://www.statsoft.com.

Biesinger M.C., Lau L.W.M., Gerson A.R., Smart R.S.C. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn. Appl. Surf. Sci. 2010;257:887–898. doi: 10.1016/j.apsusc.2010.07.086. DOI

Wagner C.D., Naumkin A.V., Kraut-Vass A., Allison J.W., Powell C.J., Rumble J.R., Jr. NIST X-ray Photoelectron Spectroscopy Database. [(accessed on 8 January 2016)]; Available online: http://srdata.nist.gov/xps.

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...