SEM, EDS and XPS Analysis of the Coatings Obtained on Titanium after Plasma Electrolytic Oxidation in Electrolytes Containing Copper Nitrate
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
28773443
PubMed Central
PMC5503094
DOI
10.3390/ma9050318
PII: ma9050318
Knihovny.cz E-zdroje
- Klíčová slova
- Energy Dispersive X-ray Spectroscopy (EDS), Scanning Electron Microscopy (SEM), X-ray Photoelectron Spectroscopy (XPS), copper nitrate, micro arc oxidation (MAO), plasma electrolytic oxidation (PEO), titanium,
- Publikační typ
- časopisecké články MeSH
In the paper, the Scanning Electron Microscopy (SEM) with Energy Dispersive X-ray Spectroscopy (EDS) and X-ray Photoelectron Spectroscopy (XPS) results of the surface layer formed on pure titanium after plasma electrolytic oxidation (micro arc oxidation) at the voltage of 450 V are shown. As an electrolyte, the mixture of copper nitrate Cu(NO₃)₂ (10-600 g/L) in concentrated phosphoric acid H₃PO₄ (98 g/mol) was used. The thickness of the obtained porous surface layer equals about 10 μm, and it consists mainly of titanium phosphates and oxygen with embedded copper ions as a bactericidal agent. The maximum percent of copper in the PEO surface layer was equal to 12.2 ± 0.7 wt % (7.6 ± 0.5 at %), which is the best result that the authors obtained. The top surface layer of all obtained plasma electrolytic oxidation (PEO) coatings consisted most likely mainly of Ti₃(PO₄)₄∙nH₃PO₄ and Cu₃(PO₄)₂∙nH₃PO₄ with a small addition of CuP₂, CuO and Cu₂O.
Zobrazit více v PubMed
Simka W., Sadowski A., Warczak M., Iwaniak A., Dercz G., Michalska J., Maciej A. Modification of titanium oxide layer by calcium and phosphorus. Electrochim. Acta. 2011;56:8962–8968. doi: 10.1016/j.electacta.2011.07.129. DOI
Hryniewicz T., Rokosz K., Valiček J., Rokicki R. Effect of magnetoelectropolishing on nanohardness and Young’s modulus of titanium biomaterial. Mater. Lett. 2012;83:69–72. doi: 10.1016/j.matlet.2012.06.010. DOI
Hryniewicz T., Rokosz K., Zschommler Sandim H.R. SEM/EDX and XPS studies of niobium after electropolishing. Appl. Surf. Sci. 2012;263:357–361. doi: 10.1016/j.apsusc.2012.09.060. DOI
Simka W., Sowa M., Socha R.P., Maciej A., Michalska J. Anodic oxidation of zirconium in silicate solutions. Electrochim. Acta. 2013;104:518–525. doi: 10.1016/j.electacta.2012.10.130. DOI
Sowa M., Kazek-Kęsik A., Socha R.P., Dercz G., Michalska J., Simka W. Modification of tantalum surface via plasma electrolytic oxidation in silicate solutions. Electrochim. Acta. 2013;114:627–636. doi: 10.1016/j.electacta.2013.10.047. DOI
Simka W., Nawrat G., Chlode J., Maciej A., Winiarski A., Szade J., Radwanski K., Gazdowicz J. Electropolishing and anodic passivation of Ti6Al7Nb alloy. Przemysl Chem. 2011;90:84–90.
Hryniewicz T., Rokosz K., Rokicki R., Prima F. Nanoindentation and XPS Studies of Titanium TNZ Alloy after electrochemical polishing in a magnetic field. Materials. 2015;8:205–215. doi: 10.3390/ma8010205. PubMed DOI PMC
Yu S., Yu Z., Wang G., Han J., Ma X., Dargusch M.S. Preparation and osteoinduction of active micro-arc oxidation films on Ti-3Zr-2Sn-3Mo-25Nb alloy. Trans. Nonferr. Met. Soc. China. 2011;21:573–580. doi: 10.1016/S1003-6326(11)60753-X. DOI
Hryniewicz T., Rokosz K. Analysis of XPS results of AISI 316L SS electropolished and magnetoelectropolished at varying conditions. Surf. Coat. Technol. 2010;204:2583–2592. doi: 10.1016/j.surfcoat.2010.02.005. DOI
Hryniewicz T., Rokicki R., Rokosz K. Magnetoelectropolishing for metal surface modification. Trans. Inst. Met. Finish. 2007;85:325–332. doi: 10.1179/174591907X246537. DOI
Rokosz K., Hryniewicz T., Raaen S. Cr/Fe ratio by XPS spectra of magnetoelectropolished AISI 316L SS fitted by gaussian-lorentzian shape lines. Teh. Vjesn. Tech. Gaz. 2014;21:533–538.
Rokosz K., Simon F., Hryniewicz T., Rzadkiewicz S. Comparative XPS analysis of passive layers composition formed on AISI 304 L SS after standard and high-current density electropolishing. Surf. Interface Anal. 2015;47:87–92. doi: 10.1002/sia.5676. DOI
Rokosz K., Hryniewicz T., Rokicki R. XPS measurements of AISI 316LVM SS biomaterial tubes after magnetoelectropolishing. Teh. Vjesn. Tech. Gaz. 2014;21:799–805.
Hryniewicz T., Rokosz K. Corrosion resistance of magnetoelectropolished AISI 316L SS biomaterial. Anti-Corros. Methods Mater. 2014;61:57–64. doi: 10.1108/ACMM-03-2013-1249. DOI
Hryniewicz T., Rokosz K. Highlights of magnetoelectropolishing. Front. Mater. 2014;1:1–7. doi: 10.3389/fmats.2014.00003. DOI
Rokosz K., Hryniewicz T., Rzadkiewicz S., Raaen S. High-current density electropolishing (HDEP) of AISI 316L (EN 1.4404) stainless steel. Teh. Vjesn. Tech. Gaz. 2015;22:415–424. doi: 10.17559/TV-20140722110711. DOI
Jelinek M., Kocourek T., Remsa J., Weiserovác M., Jurek K., Mikšovský J., Strnad J., Galandáková A., Ulrichová J. Antibacterial, cytotoxicity and physical properties of laser—Silver doped hydroxyapatite layers. Mater. Sci. Eng. C. 2013;33:1242–1246. doi: 10.1016/j.msec.2012.12.018. PubMed DOI
Mishra G., Dash B., Pandey S., Mohanty P.P. Antibacterial actions of silver nanoparticles incorporated Zn–Al layered double hydroxide and its spinel. J. Environ. Chem. Eng. 2013;1:1124–1130. doi: 10.1016/j.jece.2013.08.031. DOI
Rajendrana A., Pattanayak D.K. Silver incorporated antibacterial, cell compatible and bioactive titania layer on Ti metal for biomedical applications. RSC Adv. 2014;106:61444–61455. doi: 10.1039/C4RA13107J. DOI
Trujillo N.A., Oldinski R.A., Mad H., Bryers J.D., Williams J.D., Popat K.C. Antibacterial effects of silver-doped hydroxyapatite thin films sputter deposited on titanium. Mater. Sci. Eng. C. 2012;32:2135–2144. doi: 10.1016/j.msec.2012.05.012. DOI
Zhang X., Huang X., Ma Y., Lin N., Fan A., Tang B. Bactericidal behavior of Cu-containing stainless steel surfaces. Appl. Surf. Sci. 2012;258:10058–10063. doi: 10.1016/j.apsusc.2012.06.074. DOI
Truong V.K., Lapovok R., Estrin Y.S., Rundell S., Wang Y.Y., Fluke C.J., Crawford R.J., Ivanova E.P. The influence of nano-scale surface roughness on bacterial adhesion to ultrafine-grained titanium. Biomaterials. 2010;31:3674–3683. doi: 10.1016/j.biomaterials.2010.01.071. PubMed DOI
Hempel F., Finke B., Zietz C., Bader R., Weltmann K.D., Polak M. Antimicrobial surface modification of titanium substrates by means of plasma immersion ion implantation and deposition of copper. Surf. Coat. Technol. 2014;256:52–58. doi: 10.1016/j.surfcoat.2014.01.027. DOI
Park T.-E., Choe H.-C., Brantley W.A. Bioactivity evaluation of porous TiO2 surface formed on titanium in mixed electrolyte by spark anodization. Surf. Coat. Technol. 2013;235:706–713. doi: 10.1016/j.surfcoat.2013.08.051. DOI
Stojadinović S., Vasilić R., Petković M., Kasalica B., Belča I., Žekić A., Zeković L. Characterization of the plasma electrolytic oxidation of titanium in sodium metasilicate. Appl. Surf. Sci. 2013;265:226–233. doi: 10.1016/j.apsusc.2012.10.183. DOI
Krupa D., Baszkiewicz J., Zdunek J., Smolik J., Słomka Z., Sobczak J.W. Characterization of the surface layers formed on titanium by plasma electrolytic oxidation. Surf. Coat. Technol. 2010;205:1743–1749. doi: 10.1016/j.surfcoat.2010.05.015. DOI
Baszkiewicz J., Krupa D., Mizera J., Sobczak J.W., Biliński A. Corrosion resistance of the surface layers formed on titanium by plasma electrolytic oxidation and hydrothermal treatment. Vacuum. 2005;78:143–147. doi: 10.1016/j.vacuum.2005.01.017. DOI
Shin K.R., Kob Y.G., Shin D.H. Effect of electrolyte on surface properties of pure titanium coated by plasma electrolytic oxidation. J. Alloy. Compd. 2011;509:S478–S481. doi: 10.1016/j.jallcom.2011.02.056. DOI
Laurindo C.A.H., Torres R.D., Mali S.A., Gilbert J.L., Soares P. Incorporation of Ca and P on anodized titanium surface: Effect of high current density. Mater. Sci. Eng. C. 2014;37:223–231. doi: 10.1016/j.msec.2014.01.006. PubMed DOI
Shin K.R., Ko Y.G., Shin D.H. Influence of zirconia on biomimetic apatite formation in pure titanium coated via plasma electrolytic oxidation. Mater. Lett. 2010;64:2714–2717. doi: 10.1016/j.matlet.2010.08.069. DOI
Aliasghari S., Skeldon P., Thompson G.E. Plasma electrolytic oxidation of titanium in a phosphate/silicateelectrolyte and tribological performance of the coatings. Appl. Surf. Sci. 2014;316:463–476. doi: 10.1016/j.apsusc.2014.08.037. DOI
Stojadinović S., Vasilić R., Petković M., Zeković L. Plasma electrolytic oxidation of titanium in heteropolytungstate acids. Surf. Coat. Technol. 2011;206:575–581. doi: 10.1016/j.surfcoat.2011.07.090. DOI
Zhang W., Du K., Yan C., Wang F. Preparation and characterization of a novel Si-incorporated ceramic film on pure titanium by plasma electrolytic oxidation. Appl. Surf. Sci. 2008;254:5216–5223. doi: 10.1016/j.apsusc.2008.02.047. DOI
Rudnev V.S., Lukiyanchuk I.V., Adigamova M.V., Morozova V.P., Tkachenko I.A. The effect of nanocrystallites in the pores of PEO coatings on their magnetic properties. Surf. Coat. Technol. 2015;269:23–29. doi: 10.1016/j.surfcoat.2015.01.073. DOI
Yao X., Zhang X., Wu H., Tian L., Ma Y., Tang B. Microstructure and antibacterial properties of Cu-doped TiO2 coating on titanium by micro-arc oxidation. Appl. Surf. Sci. 2014;292:944–947. doi: 10.1016/j.apsusc.2013.12.083. DOI
Zhu W., Zhang Z., Gu B., Sun J., Zhu L. Biological activity and antibacterial property of nano-structured TiO2 coating incorporated with Cu prepared by micro-arc oxidation. J. Mater. Sci. Technol. 2013;29:237–244. doi: 10.1016/j.jmst.2012.12.015. DOI
Teker D., Muhaffel F., Menekse M., Karaguler N.G., Baydogan M., Cimenoglu H. Characteristics of multi-layer coating formed on commercially pure titanium for biomedical applications. Mater. Sci. Eng. C. 2015;48:579–585. doi: 10.1016/j.msec.2014.12.058. PubMed DOI
Rokosz K., Hryniewicz T. Plasma Electrolytic Oxidation as a modern method to form porous coatings enriched in phosphorus, and copper on biomaterials. World Sci. News. 2016;35:44–61.
STATISTICA (Data Analysis Software System) StatSoft, Inc.; 2011. [(accessed on 8 January 2016)]. Version 10. Available online: http://www.statsoft.com.
Biesinger M.C., Lau L.W.M., Gerson A.R., Smart R.S.C. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn. Appl. Surf. Sci. 2010;257:887–898. doi: 10.1016/j.apsusc.2010.07.086. DOI
Wagner C.D., Naumkin A.V., Kraut-Vass A., Allison J.W., Powell C.J., Rumble J.R., Jr. NIST X-ray Photoelectron Spectroscopy Database. [(accessed on 8 January 2016)]; Available online: http://srdata.nist.gov/xps.