Porous Coatings Containing Copper and Phosphorus Obtained by Plasma Electrolytic Oxidation of Titanium
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
2016/21/B/ST8/01952
Narodowym Centrum Nauki
PubMed
32059415
PubMed Central
PMC7078615
DOI
10.3390/ma13040828
PII: ma13040828
Knihovny.cz E-zdroje
- Klíčová slova
- antibacterial and antifungal coatings, copper(II) nitrate(V) trihydrate, micro arc oxidation (MAO), orthophosphoric acid, plasma electrolytic oxidation (PEO), titanium,
- Publikační typ
- časopisecké články MeSH
To fabricate porous copper coatings on titanium, we used the process of plasma electrolytic oxidation (PEO) with voltage control. For all experiments, the three-phase step-up transformer with six-diode Graetz bridge was used. The voltage and the amount of salt used in the electrolyte were determined so as to obtain porous coatings. Within the framework of this study, the PEO process was carried out at a voltage of 450 VRMS in four electrolytes containing the salt as copper(II) nitrate(V) trihydrate. Moreover, we showed that the content of salt in the electrolyte needed to obtain a porous PEO coating was in the range 300-600 g/dm3. After exceeding this amount of salts in the electrolyte, some inclusions on the sample surface were observed. It is worth noting that this limitation of the amount of salts in the electrolyte was not connected with the maximum solubility of copper(II) nitrate(V) trihydrate in the concentrated (85%) orthophosphoric acid. To characterize the obtained coatings, numerous techniques were used. In this work, we used scanning electron microscopy (SEM) coupled with electron-dispersive X-ray spectroscopy (EDS), conducted surface analysis using confocal laser scanning microscopy (CLSM), and studied the surface layer chemical composition of the obtained coatings by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), glow discharge of optical emission spectroscopy (GDOES), and biological tests. It was found that the higher the concentration of Cu(NO3)2∙3H2O in the electrolyte, the higher the roughness of the coatings, which may be described by 3D roughness parameters, such as Sa (1.17-1.90 μm) and Sp (7.62-13.91 μm). The thicknesses of PEO coatings obtained in the electrolyte with 300-600 g/dm3 Cu(NO3) 2∙3H2O were in the range 7.8 to 10 μm. The Cu/P ratio of the whole volume of coating measured by EDS was in the range 0.05-0.12, while the range for the top layer (measured using XPS) was 0.17-0.24. The atomic concentration of copper (0.54-0.72 at%) resulted in antibacterial and fungicidal properties in the fabricated coatings, which can be dedicated to biocompatible applications.
Zobrazit více v PubMed
Alsaran A., Purcek G., Hacisalihoglu I., Vangolu Y., Bayrak Ö., Karaman I., Celik A. Hydroxyapatite production on ultrafine-grained pure titanium by micro-arc oxidation and hydrothermal treatment. Surf. Coat. Technol. 2011;205:S537–S542. doi: 10.1016/j.surfcoat.2011.03.032. DOI
Wan H.-Y., Zhu R.-F., Lu Y.-P., Xiao G.-Y., Ma J., Yuan Y.F. Preparation and mechanism of controllable micropores on bioceramic TiO2 coatings by plasma electrolytic oxidation. Surf. Rev. Lett. 2013;20:1350051.
Wang Y.M., Guo J.W., Zhuang J.P., Jing Y.B., Shao Z.K., Jin M.S., Zhang J., Wei D.Q., Zhoua Y. Development and characterization of MAO bioactive ceramic coating grown on micro-patterned Ti6Al4V alloy surface. Appl. Surf. Sci. 2014;299:58–65. doi: 10.1016/j.apsusc.2014.01.185. DOI
Wang X., Qu Z., Li J., Zhang E. Comparison study on the solution-based surface biomodification of titanium: Surface characteristics and cell biocompatibility. Surf. Coat. Technol. 2017;329:109–119. doi: 10.1016/j.surfcoat.2017.08.014. DOI
Zhu W., Fang Y.-J., Zheng H., Tan G., Cheng H., Ning C. Effect of applied voltage on phase components of composite coatings prepared by micro-arc oxidation. Thin Solid Films. 2013;544:79–82. doi: 10.1016/j.tsf.2013.04.121. DOI
Zhao D., Lu Y., Wang Z., Zeng X., Liu S., Wang T. Antifouling properties of micro arc oxidation coatings containing Cu2O/ZnO nanoparticles on Ti6Al4V. Int. J. Refract. Metals Hard Mater. 2016;54:417–421. doi: 10.1016/j.ijrmhm.2015.10.003. DOI
Yao X., Zhang X., Wu H., Tian L., Ma Y., Tang B. Microstructure and antibacterial properties of Cu-doped TiO2 coating on titanium by micro-arc oxidation. Appl. Surf. Sci. 2014;292:944–947. doi: 10.1016/j.apsusc.2013.12.083. DOI
Rokosz K., Hryniewicz T., Matysek D., Dudek L., Malorny W. SEM and EDS analysis of nitinol surfaces treated by plasma electrolytic oxidation. Adv. Mater. Sci. 2015;15:41–47. doi: 10.1515/adms-2015-0014. DOI
Rokosz K., Hryniewicz T., Raaen S. Development of plasma electrolytic oxidation for improved Ti6Al4V biomaterial surface properties. Int. J. Adv. Manuf. Technol. 2016;85:2425–2437. doi: 10.1007/s00170-015-8086-y. DOI
Rokosz K., Hryniewicz T., Dudek L., Matysek D., Valicek J., Harnicarova M. SEM and EDS Analysis of Surface Layer Formed on Titanium after Plasma Electrolytic Oxidation in H3PO4 with the Addition of Cu(NO3)2. J. Nanosci. Nanotechnol. 2016;16:7814–7817. doi: 10.1166/jnn.2016.12558. DOI
Rokosz K., Hryniewicz T., Kacalak W., Tandecka K., Raaen S., Gaiaschi S., Chapon P., Malorny W., Matysek D., Dudek L., et al. Characterization of Porous Phosphate Coatings Enriched with Calcium, Magnesium, Zinc and Copper Created on CP Titanium Grade 2 by Plasma Electrolytic Oxidation. Metals. 2018;8:411. doi: 10.3390/met8060411. DOI
Rokosz K., Hryniewicz T., Raaen S., Matysek D., Dudek L., Pietrzak K. SEM, EDS, and XPS characterization of coatings obtained on titanium during AC plasma electrolytic process enriched in magnesium. Adv. Mater. Sci. 2018;18:68–78. doi: 10.1515/adms-2017-0042. DOI
Rokosz K., Hryniewicz T., Gaiaschi S., Chapon P., Raaen S., Matysek D., Dudek L., Pietrzak K., Malorny W. Fabrication and Characterisation of Porous Coatings Enriched with Copper on CP Titanium Grade 2 under Plasma Electrolytic Oxidation. Teh. Vjesn. Tech. Gaz. 2019;26:128–134.
Rokosz K., Hryniewicz T., Gaiaschi S., Chapon P., Raaen S., Matysek D., Dudek L., Pietrzak K. Novel Porous Phosphorus-Calcium-Magnesium Coatings on Titanium with Copper or Zinc Obtained by DC Plasma Electrolytic Oxidation: Fabrication and Characterization. Materials. 2018;11:1680. doi: 10.3390/ma11091680. PubMed DOI PMC
Rokosz K., Hryniewicz T., Raaen S., Chapon P., Dudek L. GDOES, XPS, and SEM with EDS analysis of porous coatings obtained on titanium after plasma electrolytic oxidation. Surf. Interface Anal. 2017;49:303–315. doi: 10.1002/sia.6136. DOI
Rokosz K., Hryniewicz T., Raaen S., Chapon P. Investigation of porous coatings obtained on Ti-Nb-Zr-Sn alloy biomaterial by plasma electrolytic oxidation: Characterisation and modelling. Int. J. Adv. Manuf. Technol. 2016;87:3497–3512. doi: 10.1007/s00170-016-8692-3. DOI
Półtorak K., Podlewska M., Szram A., Sokołowski J., Łukomska–Szymańska M. Composite materials with antimicrobial properties—Literature review. Stomatol. Prakt. Pol. Engl. J. Dent. 2016;2:84–89.
Wassmann T., Kreis S., Behr M., Buergers R. The influence of surface texture and wettability on initial bacterial adhesion on titanium and zirconium oxide dental implants. Int. J. Implant Dent. 2017;3:1–11. doi: 10.1186/s40729-017-0093-3. PubMed DOI PMC
Metal Ions Supported Porous Coatings by Using AC Plasma Electrolytic Oxidation Processing