Adsorption and Thermal Stability of Phenylphosphonic Acid on Cerium Oxides
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
40901020
PubMed Central
PMC12400423
DOI
10.1021/acs.jpcc.5c04065
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
This paper reports on a study of the adsorption and thermal stability of phenylphosphonic acid (PPA) adsorbed by physical vapor deposition on the surfaces of epitaxial cerium oxide films of different structure, stoichiometry and composition. Advanced analytical methods based on photoelectron spectroscopy combined with DFT calculations showed that the binding of PPA to cerium oxide is through the phosphonate group, while the decomposition temperature is defined by the nature of the oxide. Tridentate PPA species are present on all substrates (CeO2, CeO1.7, Ce2O3, and Ce6WO12), indicating a strong affinity of PPA for cerium oxide. The presence of vacancies in the oxide influences the molecular orientation. The phenyl ring of the PPA tilts about 10° more toward the surface plane of the reduced cerium oxides compared to CeO2, which is attributed to the adsorption of phosphonate groups on Ce4+ and Ce3+ cations. The PPA adlayer is more stable on the surfaces with higher concentrations of oxygen vacancies and/or Ce3+ cations, increasing the temperature to initiate cleavage of the P-C bond from 225 °C for PPA/CeO2 to 350 °C for the other systems. The PPA decomposition is signaled by the desorption of carbonaceous species above a critical temperature, while the phosphorus species remain stable even after annealing at 450 °C for all the cerium oxides. Overall, the results provide a comprehensive understanding of the binding of PPA to cerium oxides, allowing further development of functionalization strategies for inorganic materials by phosphonic acids.
Zobrazit více v PubMed
Goodman E. D., Zhou C., Cargnello M.. Design of Organic/Inorganic Hybrid Catalysts for Energy and Environmental Applications. ACS Cent. Sci. 2020;6(11):1916–1937. doi: 10.1021/acscentsci.0c01046. PubMed DOI PMC
Park W., Shin H., Choi B., Rhim W.-K., Na K., Keun Han D.. Advanced Hybrid Nanomaterials for Biomedical Applications. Prog. Mater. Sci. 2020;114:100686. doi: 10.1016/j.pmatsci.2020.100686. DOI
Queffélec C., Petit M., Janvier P., Knight D. A., Bujoli B.. Surface Modification Using Phosphonic Acids and Esters. Chem. Rev. 2012;112(7):3777–3807. doi: 10.1021/cr2004212. PubMed DOI
Pujari S. P., Scheres L., Marcelis A. T. M., Zuilhof H.. Covalent Surface Modification of Oxide Surfaces. Angew. Chem., Int. Ed. 2014;53(25):6322–6356. doi: 10.1002/anie.201306709. PubMed DOI
Cattani-Scholz A.. Functional Organophosphonate Interfaces for Nanotechnology: A Review. ACS Appl. Mater. Interfaces. 2017;9(31):25643–25655. doi: 10.1021/acsami.7b04382. PubMed DOI
Nilsing M., Lunell S., Persson P., Ojamäe L.. Phosphonic Acid Adsorption at the TiO2 Anatase (101) Surface Investigated by Periodic Hybrid HF-DFT Computations. Surf. Sci. 2005;582(1):49–60. doi: 10.1016/j.susc.2005.02.044. DOI
Luschtinetz R., Frenzel J., Milek T., Seifert G.. Adsorption of Phosphonic Acid at the TiO2 Anatase (101) and Rutile (110) Surfaces. J. Phys. Chem. C. 2009;113(14):5730–5740. doi: 10.1021/jp8110343. DOI
Pang C. L., Watkins M., Cabailh G., Ferrero S., Ngo L. T., Chen Q., Humphrey D. S., Shluger A. L., Thornton G.. Bonding of Methyl Phosphonate to TiO2(110) J. Phys. Chem. C. 2010;114(40):16983–16988. doi: 10.1021/jp1018923. DOI
Wagstaffe M., Thomas A. G., Jackman M. J., Torres-Molina M., Syres K. L., Handrup K.. An Experimental Investigation of the Adsorption of a Phosphonic Acid on the Anatase TiO2(101) Surface. J. Phys. Chem. C. 2016;120(3):1693–1700. doi: 10.1021/acs.jpcc.5b11258. DOI
Geldof D., Tassi M., Carleer R., Adriaensens P., Roevens A., Meynen V., Blockhuys F.. Binding Modes of Phosphonic Acid Derivatives Adsorbed on TiO2 Surfaces: Assignments of Experimental IR and NMR Spectra Based on DFT/PBC Calculations. Surf. Sci. 2017;655:31–38. doi: 10.1016/j.susc.2016.09.001. DOI
Schuschke C., Schwarz M., Hohner C., Silva T. N., Fromm L., Döpper T., Görling A., Libuda J.. Phosphonic Acids on an Atomically Defined Oxide Surface: The Binding Motif Changes with Surface Coverage. J. Phys. Chem. Lett. 2018;9(8):1937–1943. doi: 10.1021/acs.jpclett.8b00668. PubMed DOI
Schuschke C., Schwarz M., Hohner C., Silva T. N., Libuda J.. Phosphonic Acids on Well-Ordered CoO Surfaces: The Binding Motif Depends on the Surface Structure. J. Phys. Chem. C. 2018;122(28):16221–16233. doi: 10.1021/acs.jpcc.8b06147. DOI
Köbl J., Wechsler D., Kataev E. Y., Williams F. J., Tsud N., Franchi S., Steinrück H.-P., Lytken O.. Adsorption of Phenylphosphonic Acid on Rutile TiO2(110) Surf. Sci. 2020;698:121612. doi: 10.1016/j.susc.2020.121612. DOI
Wolfram A., Muth M., Köbl J., Mölkner A., Mehl S., Tsud N., Steinrück H.-P., Meyer B., Lytken O.. Phenylphosphonic Acid on Rutile TiO2(110): Using Theoretically Predicted O 1s Spectra to Identify the Adsorption Binding Modes. J. Phys. Chem. C. 2024;128(30):12735–12753. doi: 10.1021/acs.jpcc.4c03690. DOI
Ben Jannet A., Said M., Badawi M., Pastore M.. First-Principles Modeling of Dye Anchoring on (001) γ-Monoclinic WO3 Surfaces: The Role of Oxygen Vacancies. J. Phys. Chem. C. 2022;126(12):5424–5434. doi: 10.1021/acs.jpcc.1c10397. DOI
Wan X., Lieberman I., Asyuda A., Resch S., Seim H., Kirsch P., Zharnikov M.. Thermal Stability of Phosphonic Acid Self-Assembled Monolayers on Alumina Substrates. J. Phys. Chem. C. 2020;124(4):2531–2542. doi: 10.1021/acs.jpcc.9b10628. DOI
Ostapenko A., Klöffel T., Meyer B., Witte G.. Formation and Stability of Phenylphosphonic Acid Monolayers on ZnO: Comparison of In Situ and Ex Situ SAM Preparation. Langmuir. 2016;32(20):5029–5037. doi: 10.1021/acs.langmuir.6b00487. PubMed DOI
Gao S., Yu D., Zhou S., Zhang C., Wang L., Fan X., Yu X., Zhao Z.. Construction of Cerium-Based Oxide Catalysts with Abundant Defects/Vacancies and Their Application to Catalytic Elimination of Air Pollutants. J. Mater. Chem. A. 2023;11(36):19210–19243. doi: 10.1039/D3TA03310D. DOI
Laosiripojana N., Assabumrungrat S.. Catalytic Steam Reforming of Ethanol over High Surface Area CeO2: The Role of CeO2 as an Internal Pre-Reforming Catalyst. Appl. Catal., B. 2006;66(1):29–39. doi: 10.1016/j.apcatb.2006.01.011. DOI
Dvořák F., Szabová L., Johánek V., Farnesi Camellone M., Stetsovych V., Vorokhta M., Tovt A., Skála T., Matolínová I., Tateyama Y.. et al. Bulk Hydroxylation and Effective Water Splitting by Highly Reduced Cerium Oxide: The Role of O Vacancy Coordination. ACS Catal. 2018;8(5):4354–4363. doi: 10.1021/acscatal.7b04409. DOI
Mullins D. R.. The Surface Chemistry of Cerium Oxide. Surf. Sci. Rep. 2015;70(1):42–85. doi: 10.1016/j.surfrep.2014.12.001. DOI
Ta K. M., Neal C. J., Coathup M. J., Seal S., Phillips R. M., Molinari M.. The Interaction of Phosphate Species with Cerium Oxide: The Known, the Ambiguous and the Unexplained. Biomater. Adv. 2025;166:214063. doi: 10.1016/j.bioadv.2024.214063. PubMed DOI
Bercha S., Beranová K., Acres R. G., Vorokhta M., Dubau M., Matolínová I., Skála T., Prince K. C., Matolín V., Tsud N.. Thermally Controlled Bonding of Adenine to Cerium Oxide: Effect of Substrate Stoichiometry, Morphology, Composition, and Molecular Deposition Technique. J. Phys. Chem. C. 2017;121(45):25118–25131. doi: 10.1021/acs.jpcc.7b06925. DOI
Chen D. A., Ratliff J. S., Hu X., Gordon W. O., Senanayake S. D., Mullins D. R.. Dimethyl Methylphosphonate Decomposition on Fully Oxidized and Partially Reduced Ceria Thin Films. Surf. Sci. 2010;604(5–6):574–587. doi: 10.1016/j.susc.2009.12.028. DOI
Bhasker-Ranganath S., Zhao C., Xu Y.. Theoretical Analysis of the Adsorption of Phosphoric Acid and Model Phosphate Monoesters on CeO2(111) Surf. Sci. 2021;705:121776. doi: 10.1016/j.susc.2020.121776. DOI
Ta K. M., Cooke D. J., Gillie L. J., Parker S. C., Seal S., Wilson P. B., Phillips R. M., Skelton J. M., Molinari M.. Infrared and Raman Diagnostic Modeling of Phosphate Adsorption on Ceria Nanoparticles. J. Phys. Chem. C. 2023;127(40):20183–20193. doi: 10.1021/acs.jpcc.3c05409. PubMed DOI PMC
Duchoň T., Dvořák F., Aulická M., Stetsovych V., Vorokhta M., Mazur D., Veltruská K., Skála T., Mysliveček J., Matolínová I.. et al. Ordered Phases of Reduced Ceria As Epitaxial Films on Cu(111) J. Phys. Chem. C. 2014;118(1):357–365. doi: 10.1021/jp409220p. DOI
Skála T., Tsud N., Orti M. A. ´. N., Menteş T. O., Locatelli A., Prince K. C., Matolín V.. In Situ Growth of Epitaxial Cerium Tungstate (100) Thin Films. Phys. Chem. Chem. Phys. 2011;13(15):7083–7089. doi: 10.1039/c0cp03012k. PubMed DOI
Skála T., Šutara F., Cabala M., Škoda M., Prince K. C., Matolín V.. A Photoemission Study of the Interaction of Ga with CeO2(111) Thin Films. Appl. Surf. Sci. 2008;254(21):6860–6864. doi: 10.1016/j.apsusc.2008.04.102. DOI
Perdew J. P., Burke K., Ernzerhof M.. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996;77(18):3865–3868. doi: 10.1103/PhysRevLett.77.3865. PubMed DOI
Klimeš J., Bowler D. R., Michaelides A.. Van Der Waals Density Functionals Applied to Solids. Phys. Rev. B. 2011;83(19):195131. doi: 10.1103/PhysRevB.83.195131. DOI
Kresse G., Furthmüller J.. Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set. Phys. Rev. B. 1996;54(16):11169–11186. doi: 10.1103/PhysRevB.54.11169. PubMed DOI
Blöchl P. E.. Projector Augmented-Wave Method. Phys. Rev. B. 1994;50(24):17953–17979. doi: 10.1103/PhysRevB.50.17953. PubMed DOI
Kresse G., Joubert D.. From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method. Phys. Rev. B. 1999;59(3):1758–1775. doi: 10.1103/PhysRevB.59.1758. DOI
Dudarev S. L., Botton G. A., Savrasov S. Y., Humphreys C. J., Sutton A. P.. Electron-Energy-Loss Spectra and the Structural Stability of Nickel Oxide: An LSDA+U Study. Phys. Rev. B. 1998;57(3):1505–1509. doi: 10.1103/PhysRevB.57.1505. DOI
Gerward L., Olsen J. S.. Powder Diffraction Analysis of Cerium Dioxide at High Pressure. Powder Diffr. 1993;8(02):127–129. doi: 10.1017/S0885715600017966. DOI
Adachi G., Imanaka N.. The Binary Rare Earth Oxides. Chem. Rev. 1998;98(4):1479–1514. doi: 10.1021/cr940055h. PubMed DOI
Neugebauer J., Scheffler M.. Adsorbate-Substrate and Adsorbate-Adsorbate Interactions of Na and K Adlayers on Al(111) Phys. Rev. B. 1992;46(24):16067–16080. doi: 10.1103/PhysRevB.46.16067. PubMed DOI
Stetsovych V., Skála T., Beran J., Dvořák F., Mazur D., Tsud N., Mašek K., Mysliveček J., Matolín V.. Two-Dimensional, High Valence-Doped Ceria: Ce6WO12(100)/W(110) Appl. Surf. Sci. 2016;372:152–157. doi: 10.1016/j.apsusc.2016.03.050. DOI
Vayssilov G. N., Lykhach Y., Migani A., Staudt T., Petrova G. P., Tsud N., Skála T., Bruix A., Illas F., Prince K. C.. et al. Support Nanostructure Boosts Oxygen Transfer to Catalytically Active Platinum Nanoparticles. Nat. Mater. 2011;10(4):310–315. doi: 10.1038/nmat2976. PubMed DOI
Lykhach Y., Johánek V., Aleksandrov H. A., Kozlov S. M., Happel M., Skála T., Petkov P. St., Tsud N., Vayssilov G. N., Prince K. C.. et al. Water Chemistry on Model Ceria and Pt/Ceria Catalysts. J. Phys. Chem. C. 2012;116(22):12103–12113. doi: 10.1021/jp302229x. DOI
Stetsovych V., Pagliuca F., Dvořák F., Duchoň T., Vorokhta M., Aulická M., Lachnitt J., Schernich S., Matolínová I., Veltruská K.. et al. Epitaxial Cubic Ce2O3 Films via Ce-CeO2 Interfacial Reaction. J. Phys. Chem. Lett. 2013;4(6):866–871. doi: 10.1021/jz400187j. PubMed DOI
Kalinovych V., Saeedur Rahman M., Piliai L., Kosto Y., Mehl S. L., Skála T., Matolínová I., Matolín V., Prince K. C., Xu Y.. et al. Thermal Stability and Protective Properties of Phenylphosphonic Acid on Cu(111) Appl. Surf. Sci. 2022;600:154036. doi: 10.1016/j.apsusc.2022.154036. DOI
Mullins D. R., Robbins M. D., Zhou J.. Adsorption and Reaction of Methanol on Thin-Film Cerium Oxide. Surf. Sci. 2006;600(7):1547–1558. doi: 10.1016/j.susc.2006.02.011. DOI
Zhou J., Mullins D. R.. Adsorption and Reaction of Formaldehyde on Thin-Film Cerium Oxide. Surf. Sci. 2006;600(7):1540–1546. doi: 10.1016/j.susc.2006.02.009. DOI
Senanayake S. D., Mullins D. R.. Redox Pathways for HCOOH Decomposition over CeO2 Surfaces. J. Phys. Chem. C. 2008;112(26):9744–9752. doi: 10.1021/jp8016425. DOI
Calaza F. C., Chen T.-L., Mullins D. R., Xu Y., Overbury S. H.. Reactivity and Reaction Intermediates for Acetic Acid Adsorbed on CeO2(111) Catal. Today. 2015;253:65–76. doi: 10.1016/j.cattod.2015.03.033. DOI
Neitzel A., Lykhach Y., Johánek V., Tsud N., Skála T., Prince K. C., Matolín V., Libuda J.. Decomposition of Acetic Acid on Model Pt/CeO2 Catalysts: The Effect of Surface Crowding. J. Phys. Chem. C. 2015;119(24):13721–13734. doi: 10.1021/acs.jpcc.5b03079. DOI
Bhasker-Ranganath S., Xu Y.. Hydrolysis of Acetamide on Low-Index CeO2 Surfaces: Ceria as a Deamidation and General De-Esterification Catalyst. ACS Catal. 2022;12(16):10222–10234. doi: 10.1021/acscatal.2c02514. PubMed DOI PMC
Lykhach Y., Kozlov S. M., Skala T., Tovt A., Stetsovych V., Tsud N., Dvorak F., Johanek V., Neitzel A., Myslivecek J.. et al. Counting Electrons on Supported Nanoparticles. Nat. Mater. 2016;15(3):284–288. doi: 10.1038/nmat4500. PubMed DOI
Fernández-Torre D., Carrasco J., Ganduglia-Pirovano M. V., Pérez R.. Hydrogen Activation, Diffusion, and Clustering on CeO2(111): A DFT+U Study. J. Chem. Phys. 2014;141(1):14703. doi: 10.1063/1.4885546. PubMed DOI
Bhasker-Ranganath S., Rahman M. S., Zhao C., Calaza F., Wu Z., Xu Y.. Elucidating the Mechanism of Ambient-Temperature Aldol Condensation of Acetaldehyde on Ceria. ACS Catal. 2021;11(14):8621–8634. doi: 10.1021/acscatal.1c01216. PubMed DOI PMC
Tsud N., Yoshitake M.. Vacuum Vapour Deposition of Phenylphosphonic Acid on Amorphous Alumina. Surf. Sci. 2007;601(14):3060–3066. doi: 10.1016/j.susc.2007.05.007. DOI
Bertram M., Schuschke C., Waidhas F., Schwarz M., Hohner C., Montero M. A., Brummel O., Libuda J.. Molecular Anchoring to Oxide Surfaces in Ultrahigh Vacuum and in Aqueous Electrolytes: Phosphonic Acids on Atomically-Defined Cobalt Oxide. Phys. Chem. Chem. Phys. 2019;21(42):23364–23374. doi: 10.1039/C9CP03779A. PubMed DOI