Adsorption and Thermal Stability of Phenylphosphonic Acid on Cerium Oxides

. 2025 Aug 28 ; 129 (34) : 15265-15281. [epub] 20250813

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40901020

This paper reports on a study of the adsorption and thermal stability of phenylphosphonic acid (PPA) adsorbed by physical vapor deposition on the surfaces of epitaxial cerium oxide films of different structure, stoichiometry and composition. Advanced analytical methods based on photoelectron spectroscopy combined with DFT calculations showed that the binding of PPA to cerium oxide is through the phosphonate group, while the decomposition temperature is defined by the nature of the oxide. Tridentate PPA species are present on all substrates (CeO2, CeO1.7, Ce2O3, and Ce6WO12), indicating a strong affinity of PPA for cerium oxide. The presence of vacancies in the oxide influences the molecular orientation. The phenyl ring of the PPA tilts about 10° more toward the surface plane of the reduced cerium oxides compared to CeO2, which is attributed to the adsorption of phosphonate groups on Ce4+ and Ce3+ cations. The PPA adlayer is more stable on the surfaces with higher concentrations of oxygen vacancies and/or Ce3+ cations, increasing the temperature to initiate cleavage of the P-C bond from 225 °C for PPA/CeO2 to 350 °C for the other systems. The PPA decomposition is signaled by the desorption of carbonaceous species above a critical temperature, while the phosphorus species remain stable even after annealing at 450 °C for all the cerium oxides. Overall, the results provide a comprehensive understanding of the binding of PPA to cerium oxides, allowing further development of functionalization strategies for inorganic materials by phosphonic acids.

Zobrazit více v PubMed

Goodman E. D., Zhou C., Cargnello M.. Design of Organic/Inorganic Hybrid Catalysts for Energy and Environmental Applications. ACS Cent. Sci. 2020;6(11):1916–1937. doi: 10.1021/acscentsci.0c01046. PubMed DOI PMC

Park W., Shin H., Choi B., Rhim W.-K., Na K., Keun Han D.. Advanced Hybrid Nanomaterials for Biomedical Applications. Prog. Mater. Sci. 2020;114:100686. doi: 10.1016/j.pmatsci.2020.100686. DOI

Queffélec C., Petit M., Janvier P., Knight D. A., Bujoli B.. Surface Modification Using Phosphonic Acids and Esters. Chem. Rev. 2012;112(7):3777–3807. doi: 10.1021/cr2004212. PubMed DOI

Pujari S. P., Scheres L., Marcelis A. T. M., Zuilhof H.. Covalent Surface Modification of Oxide Surfaces. Angew. Chem., Int. Ed. 2014;53(25):6322–6356. doi: 10.1002/anie.201306709. PubMed DOI

Cattani-Scholz A.. Functional Organophosphonate Interfaces for Nanotechnology: A Review. ACS Appl. Mater. Interfaces. 2017;9(31):25643–25655. doi: 10.1021/acsami.7b04382. PubMed DOI

Nilsing M., Lunell S., Persson P., Ojamäe L.. Phosphonic Acid Adsorption at the TiO2 Anatase (101) Surface Investigated by Periodic Hybrid HF-DFT Computations. Surf. Sci. 2005;582(1):49–60. doi: 10.1016/j.susc.2005.02.044. DOI

Luschtinetz R., Frenzel J., Milek T., Seifert G.. Adsorption of Phosphonic Acid at the TiO2 Anatase (101) and Rutile (110) Surfaces. J. Phys. Chem. C. 2009;113(14):5730–5740. doi: 10.1021/jp8110343. DOI

Pang C. L., Watkins M., Cabailh G., Ferrero S., Ngo L. T., Chen Q., Humphrey D. S., Shluger A. L., Thornton G.. Bonding of Methyl Phosphonate to TiO2(110) J. Phys. Chem. C. 2010;114(40):16983–16988. doi: 10.1021/jp1018923. DOI

Wagstaffe M., Thomas A. G., Jackman M. J., Torres-Molina M., Syres K. L., Handrup K.. An Experimental Investigation of the Adsorption of a Phosphonic Acid on the Anatase TiO2(101) Surface. J. Phys. Chem. C. 2016;120(3):1693–1700. doi: 10.1021/acs.jpcc.5b11258. DOI

Geldof D., Tassi M., Carleer R., Adriaensens P., Roevens A., Meynen V., Blockhuys F.. Binding Modes of Phosphonic Acid Derivatives Adsorbed on TiO2 Surfaces: Assignments of Experimental IR and NMR Spectra Based on DFT/PBC Calculations. Surf. Sci. 2017;655:31–38. doi: 10.1016/j.susc.2016.09.001. DOI

Schuschke C., Schwarz M., Hohner C., Silva T. N., Fromm L., Döpper T., Görling A., Libuda J.. Phosphonic Acids on an Atomically Defined Oxide Surface: The Binding Motif Changes with Surface Coverage. J. Phys. Chem. Lett. 2018;9(8):1937–1943. doi: 10.1021/acs.jpclett.8b00668. PubMed DOI

Schuschke C., Schwarz M., Hohner C., Silva T. N., Libuda J.. Phosphonic Acids on Well-Ordered CoO Surfaces: The Binding Motif Depends on the Surface Structure. J. Phys. Chem. C. 2018;122(28):16221–16233. doi: 10.1021/acs.jpcc.8b06147. DOI

Köbl J., Wechsler D., Kataev E. Y., Williams F. J., Tsud N., Franchi S., Steinrück H.-P., Lytken O.. Adsorption of Phenylphosphonic Acid on Rutile TiO2(110) Surf. Sci. 2020;698:121612. doi: 10.1016/j.susc.2020.121612. DOI

Wolfram A., Muth M., Köbl J., Mölkner A., Mehl S., Tsud N., Steinrück H.-P., Meyer B., Lytken O.. Phenylphosphonic Acid on Rutile TiO2(110): Using Theoretically Predicted O 1s Spectra to Identify the Adsorption Binding Modes. J. Phys. Chem. C. 2024;128(30):12735–12753. doi: 10.1021/acs.jpcc.4c03690. DOI

Ben Jannet A., Said M., Badawi M., Pastore M.. First-Principles Modeling of Dye Anchoring on (001) γ-Monoclinic WO3 Surfaces: The Role of Oxygen Vacancies. J. Phys. Chem. C. 2022;126(12):5424–5434. doi: 10.1021/acs.jpcc.1c10397. DOI

Wan X., Lieberman I., Asyuda A., Resch S., Seim H., Kirsch P., Zharnikov M.. Thermal Stability of Phosphonic Acid Self-Assembled Monolayers on Alumina Substrates. J. Phys. Chem. C. 2020;124(4):2531–2542. doi: 10.1021/acs.jpcc.9b10628. DOI

Ostapenko A., Klöffel T., Meyer B., Witte G.. Formation and Stability of Phenylphosphonic Acid Monolayers on ZnO: Comparison of In Situ and Ex Situ SAM Preparation. Langmuir. 2016;32(20):5029–5037. doi: 10.1021/acs.langmuir.6b00487. PubMed DOI

Gao S., Yu D., Zhou S., Zhang C., Wang L., Fan X., Yu X., Zhao Z.. Construction of Cerium-Based Oxide Catalysts with Abundant Defects/Vacancies and Their Application to Catalytic Elimination of Air Pollutants. J. Mater. Chem. A. 2023;11(36):19210–19243. doi: 10.1039/D3TA03310D. DOI

Laosiripojana N., Assabumrungrat S.. Catalytic Steam Reforming of Ethanol over High Surface Area CeO2: The Role of CeO2 as an Internal Pre-Reforming Catalyst. Appl. Catal., B. 2006;66(1):29–39. doi: 10.1016/j.apcatb.2006.01.011. DOI

Dvořák F., Szabová L., Johánek V., Farnesi Camellone M., Stetsovych V., Vorokhta M., Tovt A., Skála T., Matolínová I., Tateyama Y.. et al. Bulk Hydroxylation and Effective Water Splitting by Highly Reduced Cerium Oxide: The Role of O Vacancy Coordination. ACS Catal. 2018;8(5):4354–4363. doi: 10.1021/acscatal.7b04409. DOI

Mullins D. R.. The Surface Chemistry of Cerium Oxide. Surf. Sci. Rep. 2015;70(1):42–85. doi: 10.1016/j.surfrep.2014.12.001. DOI

Ta K. M., Neal C. J., Coathup M. J., Seal S., Phillips R. M., Molinari M.. The Interaction of Phosphate Species with Cerium Oxide: The Known, the Ambiguous and the Unexplained. Biomater. Adv. 2025;166:214063. doi: 10.1016/j.bioadv.2024.214063. PubMed DOI

Bercha S., Beranová K., Acres R. G., Vorokhta M., Dubau M., Matolínová I., Skála T., Prince K. C., Matolín V., Tsud N.. Thermally Controlled Bonding of Adenine to Cerium Oxide: Effect of Substrate Stoichiometry, Morphology, Composition, and Molecular Deposition Technique. J. Phys. Chem. C. 2017;121(45):25118–25131. doi: 10.1021/acs.jpcc.7b06925. DOI

Chen D. A., Ratliff J. S., Hu X., Gordon W. O., Senanayake S. D., Mullins D. R.. Dimethyl Methylphosphonate Decomposition on Fully Oxidized and Partially Reduced Ceria Thin Films. Surf. Sci. 2010;604(5–6):574–587. doi: 10.1016/j.susc.2009.12.028. DOI

Bhasker-Ranganath S., Zhao C., Xu Y.. Theoretical Analysis of the Adsorption of Phosphoric Acid and Model Phosphate Monoesters on CeO2(111) Surf. Sci. 2021;705:121776. doi: 10.1016/j.susc.2020.121776. DOI

Ta K. M., Cooke D. J., Gillie L. J., Parker S. C., Seal S., Wilson P. B., Phillips R. M., Skelton J. M., Molinari M.. Infrared and Raman Diagnostic Modeling of Phosphate Adsorption on Ceria Nanoparticles. J. Phys. Chem. C. 2023;127(40):20183–20193. doi: 10.1021/acs.jpcc.3c05409. PubMed DOI PMC

Duchoň T., Dvořák F., Aulická M., Stetsovych V., Vorokhta M., Mazur D., Veltruská K., Skála T., Mysliveček J., Matolínová I.. et al. Ordered Phases of Reduced Ceria As Epitaxial Films on Cu(111) J. Phys. Chem. C. 2014;118(1):357–365. doi: 10.1021/jp409220p. DOI

Skála T., Tsud N., Orti M. A. ´. N., Menteş T. O., Locatelli A., Prince K. C., Matolín V.. In Situ Growth of Epitaxial Cerium Tungstate (100) Thin Films. Phys. Chem. Chem. Phys. 2011;13(15):7083–7089. doi: 10.1039/c0cp03012k. PubMed DOI

Skála T., Šutara F., Cabala M., Škoda M., Prince K. C., Matolín V.. A Photoemission Study of the Interaction of Ga with CeO2(111) Thin Films. Appl. Surf. Sci. 2008;254(21):6860–6864. doi: 10.1016/j.apsusc.2008.04.102. DOI

Perdew J. P., Burke K., Ernzerhof M.. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996;77(18):3865–3868. doi: 10.1103/PhysRevLett.77.3865. PubMed DOI

Klimeš J., Bowler D. R., Michaelides A.. Van Der Waals Density Functionals Applied to Solids. Phys. Rev. B. 2011;83(19):195131. doi: 10.1103/PhysRevB.83.195131. DOI

Kresse G., Furthmüller J.. Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set. Phys. Rev. B. 1996;54(16):11169–11186. doi: 10.1103/PhysRevB.54.11169. PubMed DOI

Blöchl P. E.. Projector Augmented-Wave Method. Phys. Rev. B. 1994;50(24):17953–17979. doi: 10.1103/PhysRevB.50.17953. PubMed DOI

Kresse G., Joubert D.. From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method. Phys. Rev. B. 1999;59(3):1758–1775. doi: 10.1103/PhysRevB.59.1758. DOI

Dudarev S. L., Botton G. A., Savrasov S. Y., Humphreys C. J., Sutton A. P.. Electron-Energy-Loss Spectra and the Structural Stability of Nickel Oxide: An LSDA+U Study. Phys. Rev. B. 1998;57(3):1505–1509. doi: 10.1103/PhysRevB.57.1505. DOI

Gerward L., Olsen J. S.. Powder Diffraction Analysis of Cerium Dioxide at High Pressure. Powder Diffr. 1993;8(02):127–129. doi: 10.1017/S0885715600017966. DOI

Adachi G., Imanaka N.. The Binary Rare Earth Oxides. Chem. Rev. 1998;98(4):1479–1514. doi: 10.1021/cr940055h. PubMed DOI

Neugebauer J., Scheffler M.. Adsorbate-Substrate and Adsorbate-Adsorbate Interactions of Na and K Adlayers on Al(111) Phys. Rev. B. 1992;46(24):16067–16080. doi: 10.1103/PhysRevB.46.16067. PubMed DOI

Stetsovych V., Skála T., Beran J., Dvořák F., Mazur D., Tsud N., Mašek K., Mysliveček J., Matolín V.. Two-Dimensional, High Valence-Doped Ceria: Ce6WO12(100)/W­(110) Appl. Surf. Sci. 2016;372:152–157. doi: 10.1016/j.apsusc.2016.03.050. DOI

Vayssilov G. N., Lykhach Y., Migani A., Staudt T., Petrova G. P., Tsud N., Skála T., Bruix A., Illas F., Prince K. C.. et al. Support Nanostructure Boosts Oxygen Transfer to Catalytically Active Platinum Nanoparticles. Nat. Mater. 2011;10(4):310–315. doi: 10.1038/nmat2976. PubMed DOI

Lykhach Y., Johánek V., Aleksandrov H. A., Kozlov S. M., Happel M., Skála T., Petkov P. St., Tsud N., Vayssilov G. N., Prince K. C.. et al. Water Chemistry on Model Ceria and Pt/Ceria Catalysts. J. Phys. Chem. C. 2012;116(22):12103–12113. doi: 10.1021/jp302229x. DOI

Stetsovych V., Pagliuca F., Dvořák F., Duchoň T., Vorokhta M., Aulická M., Lachnitt J., Schernich S., Matolínová I., Veltruská K.. et al. Epitaxial Cubic Ce2O3 Films via Ce-CeO2 Interfacial Reaction. J. Phys. Chem. Lett. 2013;4(6):866–871. doi: 10.1021/jz400187j. PubMed DOI

Kalinovych V., Saeedur Rahman M., Piliai L., Kosto Y., Mehl S. L., Skála T., Matolínová I., Matolín V., Prince K. C., Xu Y.. et al. Thermal Stability and Protective Properties of Phenylphosphonic Acid on Cu(111) Appl. Surf. Sci. 2022;600:154036. doi: 10.1016/j.apsusc.2022.154036. DOI

Mullins D. R., Robbins M. D., Zhou J.. Adsorption and Reaction of Methanol on Thin-Film Cerium Oxide. Surf. Sci. 2006;600(7):1547–1558. doi: 10.1016/j.susc.2006.02.011. DOI

Zhou J., Mullins D. R.. Adsorption and Reaction of Formaldehyde on Thin-Film Cerium Oxide. Surf. Sci. 2006;600(7):1540–1546. doi: 10.1016/j.susc.2006.02.009. DOI

Senanayake S. D., Mullins D. R.. Redox Pathways for HCOOH Decomposition over CeO2 Surfaces. J. Phys. Chem. C. 2008;112(26):9744–9752. doi: 10.1021/jp8016425. DOI

Calaza F. C., Chen T.-L., Mullins D. R., Xu Y., Overbury S. H.. Reactivity and Reaction Intermediates for Acetic Acid Adsorbed on CeO2(111) Catal. Today. 2015;253:65–76. doi: 10.1016/j.cattod.2015.03.033. DOI

Neitzel A., Lykhach Y., Johánek V., Tsud N., Skála T., Prince K. C., Matolín V., Libuda J.. Decomposition of Acetic Acid on Model Pt/CeO2 Catalysts: The Effect of Surface Crowding. J. Phys. Chem. C. 2015;119(24):13721–13734. doi: 10.1021/acs.jpcc.5b03079. DOI

Bhasker-Ranganath S., Xu Y.. Hydrolysis of Acetamide on Low-Index CeO2 Surfaces: Ceria as a Deamidation and General De-Esterification Catalyst. ACS Catal. 2022;12(16):10222–10234. doi: 10.1021/acscatal.2c02514. PubMed DOI PMC

Lykhach Y., Kozlov S. M., Skala T., Tovt A., Stetsovych V., Tsud N., Dvorak F., Johanek V., Neitzel A., Myslivecek J.. et al. Counting Electrons on Supported Nanoparticles. Nat. Mater. 2016;15(3):284–288. doi: 10.1038/nmat4500. PubMed DOI

Fernández-Torre D., Carrasco J., Ganduglia-Pirovano M. V., Pérez R.. Hydrogen Activation, Diffusion, and Clustering on CeO2(111): A DFT+U Study. J. Chem. Phys. 2014;141(1):14703. doi: 10.1063/1.4885546. PubMed DOI

Bhasker-Ranganath S., Rahman M. S., Zhao C., Calaza F., Wu Z., Xu Y.. Elucidating the Mechanism of Ambient-Temperature Aldol Condensation of Acetaldehyde on Ceria. ACS Catal. 2021;11(14):8621–8634. doi: 10.1021/acscatal.1c01216. PubMed DOI PMC

Tsud N., Yoshitake M.. Vacuum Vapour Deposition of Phenylphosphonic Acid on Amorphous Alumina. Surf. Sci. 2007;601(14):3060–3066. doi: 10.1016/j.susc.2007.05.007. DOI

Bertram M., Schuschke C., Waidhas F., Schwarz M., Hohner C., Montero M. A., Brummel O., Libuda J.. Molecular Anchoring to Oxide Surfaces in Ultrahigh Vacuum and in Aqueous Electrolytes: Phosphonic Acids on Atomically-Defined Cobalt Oxide. Phys. Chem. Chem. Phys. 2019;21(42):23364–23374. doi: 10.1039/C9CP03779A. PubMed DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...