Development of Porous Coatings Enriched with Magnesium and Zinc Obtained by DC Plasma Electrolytic Oxidation
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
2016/21/B/ST8/01952
Narodowe Centrum Nauki
PubMed
30424265
PubMed Central
PMC6082254
DOI
10.3390/mi9070332
PII: mi9070332
Knihovny.cz E-zdroje
- Klíčová slova
- 85% phosphoric acid H3PO4, DC PEO, magnesium nitrate hexahydrate Mg(NO3)2·6H2O, micro arc oxidation, plasma electrolytic oxidation, titanium, zinc nitrate hexahydrate Zn(NO3)2·6H2O,
- Publikační typ
- časopisecké články MeSH
Coatings with developed surface stereometry, being based on a porous system, may be obtained by plasma electrolytic oxidation, PEO (micro arc oxidation, MAO). In this paper, we present novel porous coatings, which may be used, e.g., in micromachine's biocompatible sensors' housing, obtained in electrolytes containing magnesium nitrate hexahydrate Mg(NO₃)₂·6H₂O and/or zinc nitrate hexahydrate Zn(NO₃)₂·6H₂O in concentrated phosphoric acid H₃PO₄ (85% w/w). Complementary techniques are used for coatings' surface characterization, such as scanning electron microscopy (SEM), for surface imaging as well as for chemical semi-quantitative analysis via energy dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), glow discharge optical emission spectroscopy (GDOES), and X-ray powder diffraction (XRD). The results have shown that increasing contents of salts (here, 250 g/L Mg(NO₃)₂·6H₂O and 250 g/L Zn(NO₃)₂·6H₂O) in electrolyte result in increasing of Mg/P and Zn/P ratios, as well as coating thickness. It was also found that by increasing the PEO voltage, the Zn/P and Mg/P ratios increase as well. In addition, the analysis of XPS spectra revealed the existence in 10 nm top of coating magnesium (Mg2+), zinc (Zn2+), titanium (Ti4+), and phosphorus compounds (PO₄3-, or HPO₄2-, or H₂PO₄-, or P₂O₇4-).
Zobrazit více v PubMed
Stojadinović S., Jovović J., Petković M., Vasilić R., Konjević N. Spectroscopic and real-time imaging investigation of tantalum plasma electrolytic oxidation (PEO) Surf. Coat. Technol. 2011;205:5406–5413. doi: 10.1016/j.surfcoat.2011.06.013. DOI
Fidan S., Muhaffel F., Riool M., Cempura G., de Boer L., Zaat S.A.J., Czyrska-Filemonowicz A., Cimenoglu H. Fabrication of oxide layer on zirconium by micro-arc oxidation: Structural and antimicrobial characteristics. Mater. Sci. Eng. C. 2017;71:565–569. doi: 10.1016/j.msec.2016.11.035. PubMed DOI
Aktug S.L., Kutbay I., Usta M. Characterization and formation of bioactive hydroxyapatite coating on commercially pure zirconium by micro arc oxidation. J. Alloys Compd. 2017;695:998–1004. doi: 10.1016/j.jallcom.2016.10.217. DOI
Stojadinović S., Tadić N., Ćirić A., Vasilić R. Photoluminescence properties of Eu3+ doped HfO2 coatings formed by plasma electrolytic oxidation of hafnium. Opt. Mater. 2018;77:19–24. doi: 10.1016/j.optmat.2018.01.014. DOI
Stojadinović S., Tadić N., Vasilić R. Plasma electrolytic oxidation of hafnium. Int. J. Refract. Met. Hard Mater. 2017;69:153–157. doi: 10.1016/j.ijrmhm.2017.08.011. DOI
Sowa M., Simka W. Electrochemical behavior of plasma electrolytically oxidized niobium in simulated physiological environment. Surf. Coat. Technol. 2018;344:121–131. doi: 10.1016/j.surfcoat.2018.03.013. DOI
Sowa M., Worek J., Dercz G., Korotin D.M., Kukharenko A.I., Kurmaev E.Z., Cholakh S.O., Basiaga M., Simka W. Surface characterisation and corrosion behaviour of niobium treated in a Ca- and P-containing solution under sparking conditions. Electrochim. Acta. 2016;198:91–103. doi: 10.1016/j.electacta.2016.03.069. DOI
Sowa M., Woszczak M., Kazek-Kęsik A., Dercz G., Korotin D.M., Zhidkov I.S., Kurmaev E.Z., Cholakh S.O., Basiaga M., Simka W. Influence of process parameters on plasma electrolytic surface treatment of tantalum for biomedical applications. Appl. Surf. Sci. 2017;407:52–63. doi: 10.1016/j.apsusc.2017.02.170. DOI
Sowa M., Kazek-Kȩsik A., Socha R.P., Dercz G., Michalska J., Simka W. Modification of tantalum surface via plasma electrolytic oxidation in silicate solutions. Electrochim. Acta. 2013;114:627–636. doi: 10.1016/j.electacta.2013.10.047. DOI
Farhadi S.S., Aliofkhazraei M., Barati Darband G., Abolhasani A., Sabour Rouhaghdam A. Corrosion and wettability of PEO coatings on magnesium by addition of potassium stearate. J. Magnes. Alloys. 2017;5:210–216. doi: 10.1016/j.jma.2017.06.002. DOI
Egorkin V.S., Gnedenkov S.V., Sinebryukhov S.L., Vyaliy I.E., Gnedenkov A.S., Chizhikov R.G. Increasing thickness and protective properties of PEO-coatings on aluminum alloy. Surf. Coat. Technol. 2018;334:29–42. doi: 10.1016/j.surfcoat.2017.11.025. DOI
Mingo B., Arrabal R., Mohedano M., Llamazares Y., Matykina E., Yerokhin A., Pardo A. Influence of sealing post-treatments on the corrosion resistance of PEO coated AZ91 magnesium alloy. Appl. Surf. Sci. 2018;433:653–667. doi: 10.1016/j.apsusc.2017.10.083. DOI
Gao Y., Yerokhin A., Matthews A. Mechanical behaviour of cp-magnesium with duplex hydroxyapatite and PEO coatings. Mater. Sci. Eng. C. 2015;49:190–200. doi: 10.1016/j.msec.2014.12.081. PubMed DOI
Kasalica B., Radić-Perić J., Perić M., Petković-Benazzouz M., Belča I., Sarvan M. The mechanism of evolution of microdischarges at the beginning of the PEO process on aluminum. Surf. Coat. Technol. 2016;298:24–32. doi: 10.1016/j.surfcoat.2016.04.044. DOI
Guan Y., Xia Y., Li G. Growth mechanism and corrosion behavior of ceramic coatings on aluminum produced by autocontrol AC pulse PEO. Surf. Coat. Technol. 2008;202:4602–4612. doi: 10.1016/j.surfcoat.2008.03.031. DOI
Hryniewicz T., Rokosz K., Sandim H.R.Z. SEM/EDX and XPS studies of niobium after electropolishing. Appl. Surf. Sci. 2012;263:357–361. doi: 10.1016/j.apsusc.2012.09.060. DOI
Hryniewicz T., Rokosz K., Rokicki R., Prima F. Nanoindentation and XPS studies of Titanium TNZ alloy after electrochemical polishing in a magnetic field. Materials. 2015;8:205–215. doi: 10.3390/ma8010205. PubMed DOI PMC
Rokosz K., Lahtinen J., Hryniewicz T., Rzadkiewicz S. XPS depth profiling analysis of passive surface layers formed on austenitic AISI 304L and AISI 316L SS after high-current-density electropolishing. Surf. Coat. Technol. 2015;276:516–520. doi: 10.1016/j.surfcoat.2015.06.022. DOI
Yao Z., Cui R., Jiang Z., Wang F. Effects of duty ratio at low frequency on growth mechanism of micro-plasma oxidation ceramic coatings on Ti alloy. Appl. Surf. Sci. 2007;253:6778–6783. doi: 10.1016/j.apsusc.2007.01.088. DOI
Curran J.A., Kalkanci H., Magurova Y., Clyne T.W. Mullite-rich plasma electrolytic oxide coatings for thermal barrier applications. Surf. Coat. Technol. 2007;201:8683–8687. doi: 10.1016/j.surfcoat.2006.06.050. DOI
Lukiyanchuk I.V., Chernykh I.V., Rudnev V.S., Ustinov A.Y., Tyrina L.M., Nedozorov P.M., Dmitrieva E.E. Catalytically active cobalt-copper-oxide layers on aluminum and titanium. Prot. Metals Phys. Chem. Surf. 2014;50:209–217. doi: 10.1134/S2070205114020105. DOI
Hu H., Zhang W., Qiao Y., Jiang X., Liu X., Ding C. Antibacterial activity and increased bone marrow stem cell functions of Zn-incorporated TiO2 coatings on titanium. Acta Biomater. 2012;8:904–915. doi: 10.1016/j.actbio.2011.09.031. PubMed DOI
Peng B.Y., Nie X., Chen Y. Effects of surface coating preparation and sliding modes on titanium oxide coated titanium alloy for aerospace applications. Int. J. Aerosp. Eng. 2014;2014:1–10. doi: 10.1155/2014/640364. DOI
El Achhaba M., Schierbaum K. Structure and hydrogen sensing properties of plasma electrochemically oxidized titanium foils. Procedia Eng. 2012;47:566–569. doi: 10.1016/j.proeng.2012.09.210. DOI
Tekin K.C., Malayoglu U., Shrestha S. Tribological behaviour of plasma electrolytic oxide coatings on Ti6Al4V and cp-Ti alloys. Surf. Eng. 2016;32:435–442. doi: 10.1179/1743294415Y.0000000075. DOI
Han Y., Hong S.H., Xu K., Cheng S., Feng W., Li B., Wang Y., Jia D., Zhou Y., Göttlicher M., et al. Synthesis of nanocrystalline titania films by micro-arc oxidation. Mater. Lett. 2002;56:744–747. doi: 10.1016/S0167-577X(02)00606-7. DOI
Han Y., Xu K. Photoexcited formation of bone apatite-like coatings on micro-arc oxidized titanium. J. Biomed. Mater. Res. 2004;71A:608–614. doi: 10.1002/jbm.a.30177. PubMed DOI
Huang P., Xu K.W., Han Y., Luo Q., Zhang D.Q., Li X.W., Zhao X., Sun W., Zhou Y., Göttlicher M., et al. Preparation and apatite layer formation of plasma electrolytic oxidation film on titanium for biomedical application. Mater. Lett. 2005;59:185–189. doi: 10.1016/j.matlet.2004.09.045. DOI
Song W.H., Jun Y.K., Han Y., Hong S.H., Kim H.E., Heo S.J., Koak J.Y. Biomimetic apatite coatings on micro-arc oxidized titania. Biomaterials. 2004;25:3341–3349. doi: 10.1016/j.biomaterials.2003.09.103. PubMed DOI
Zhang Y.M., Bataillon-Linez P., Huang P., Zhao Y.M., Han Y., Traisnel M., Xu K.W., Hildebrand H.F. Surface analyses of micro-arc oxidized and hydrothermally treated titanium and effect on osteoblast behavior. J. Biomed. Mater. Res. 2003;68A:383–391. doi: 10.1002/jbm.a.20063. PubMed DOI
Li L.H., Kong Y.M., Kim H.W., Kim Y.W., Kim H.E., Heo S.J., Koak J.Y. Improved biological performance of Ti implants due to surface modification by micro-arc oxidation. Biomaterials. 2004;25:2867–2875. doi: 10.1016/j.biomaterials.2003.09.048. PubMed DOI
Lee S.H., Kim H.W., Lee E.J., Li L.H., Kim H.E. Hydroxyapatite–TiO2 hybrid coating on Ti implants. J. Biomater. Appl. 2006;20:194–208. doi: 10.1177/0885328206050518. PubMed DOI
Han Y., Hong S.H., Xu K., Puz’ A.V., Gnedenkov A.S., Minaev A.N., He J.L., Jia D., Zhou Y., Göttlicher M., et al. Structure and in vitro bioactivity of titania-based films by micro-arc oxidation. Surf. Coat. Technol. 2003;168:249–258. doi: 10.1016/S0257-8972(03)00016-1. DOI
Teh T.H., Berkani A., Mato S., Skeldon P., Thompson G.E., Habazaki H., Shimizu K., Habazaki H., Zhou Y., Göttlicher M., et al. Initial stages of plasma electrolytic oxidation of titanium. Corros. Sci. 2003;45:2757–2768. doi: 10.1016/S0010-938X(03)00101-X. DOI
Rudnev V.S., Vasilyeva M.S., Kondrikov N.B., Tyrina L.M., Feng J., Wang Y.J., Wu K., Habazaki H., Zhou Y., Göttlicher M., et al. Plasma-electrolytic formation, composition and catalytic activity of manganese oxide containing structures on titanium. Appl. Surf. Sci. 2005;252:1211–1220. doi: 10.1016/j.apsusc.2004.12.054. DOI
Ryu H.S., Song W.H., Hong S.H., Nedozorov P.M., Kondrikov N.B., Didenko N.A., Gerasimenko A.V., Habazaki H., Zhou Y., Göttlicher M., et al. Biomimetic apatite induction on Ca-containing titania. Curr. Appl. Phys. 2005;5:512–515. doi: 10.1016/j.cap.2005.01.022. DOI
Chen J.Z., Shi Y.L., Wang L., Yan F.Y., Zhang F.Y., Janghorban K., Wang Y., Jia D., Zhou Y., Göttlicher M., et al. Preparation and properties of hydroxyapatite-containing titania coating by micro-arc oxidation. Mater. Lett. 2006;60:2538–2543. doi: 10.1016/j.matlet.2006.01.035. DOI
Matykina E., Montuori M., Gough J., Monfort F., Berkani A., Skeldon P., Thompson G.E., Habazaki H., Zhou Y., Göttlicher M., et al. Spark anodising of titanium for biomedical applications. Trans. IMF. 2006;84:125–133. doi: 10.1179/174591906X123967. DOI
Han I.H., Choi J.H., Zhao B.H., Baik H.K., Lee I.S., Minaev A.N., He J.L., Jia D., Zhou Y., Göttlicher M., et al. Effects of electrical wave form on pore size of micro-arc oxidized TiO2 film. Key Eng. Mater. 2006;309–311:375–378. doi: 10.4028/www.scientific.net/KEM.309-311.375. DOI
Shokouhfar M., Dehghanian C., Montazeri M., Baradaran A., Avramenko V.A., Tsvetnikov A.K., Sergienko V.I., Kurjavyj V.G., Ye H., Opra D.P., et al. Preparation of ceramic coating on Ti substrate by plasma electrolytic oxidation in different electrolytes and evaluation of its corrosion resistance: Part II. Appl. Surf. Sci. 2012;258:2416–2423. doi: 10.1016/j.apsusc.2011.10.064. DOI
Zhu L., Ye X., Tang G., Zhao N., Gong Y., Zhao Y., Zhao J., Zhang X. Corrosion test, cell behavior test, and in vivo study of gradient TiO2 layers produced by compound electrochemical oxidation. J. Biomed. Mater. Res. A. 2006;78:515–522. doi: 10.1002/jbm.a.30745. PubMed DOI
Habazaki H., Onodera T., Fushimi K., Konno H., Toyotake K., Zhao Y., Zhao J., Zhang X., Liang Z.H., Landers R., et al. Spark anodizing of β-Ti alloy for wear-resistant coating. Surf. Coat. Technol. 2007;201:8730–8737. doi: 10.1016/j.surfcoat.2006.05.041. DOI
Kim M.S., Ryu J.J., Sung Y.M., Nan K., Han Y., Ustinov A.Y., He J.L., Chu P.K., Matykina E., Landers R., et al. One-step approach for nano-crystalline hydroxyapatite coating on titanium via micro-arc oxidation. Electrochem. Commun. 2007;9:1886–1891. doi: 10.1016/j.elecom.2007.04.023. DOI
Ragalevičius R., Stalnionis G., Niaura G., Jagminas A. Micro-arc oxidation of Ti in a solution of sulfuric acid and Ti+3 salt. Appl. Surf. Sci. 2008;254:1608–1613. doi: 10.1016/j.apsusc.2007.07.111. DOI
Zhang W., Du K., Yan C., Wang F., Chuvilin A., Jiang J.Z., Valiev R.Z., Qi M., Fecht H.J., Göttlicher M., et al. Preparation and characterization of a novel Si-incorporated ceramic film on pure titanium by plasma electrolytic oxidation. Appl. Surf. Sci. 2008;254:5216–5223. doi: 10.1016/j.apsusc.2008.02.047. DOI
Lebukhova N.V., Rudnev V.S., Kirichenko E.A., Chigrin P.G., Lukiyanchuk I.V., Yarovaya T.P., Zavidnaya A.G., Puz’ A.V., Khlusov I.A., Opra D.P., et al. Effect of the structure of the oxidized titanium surface on the particle size and properties of the deposited copper-molybdate catalyst. Prot. Met. Phys. Chem. Surf. 2016;52:1024–1030. doi: 10.1134/S2070205116060149. DOI
Rokosz K., Hryniewicz T., Gaiaschi S., Chapon P., Raaen S., Pietrzak K., Malorny W. Characterisation of calcium- and phosphorus-enriched porous coatings on cp titanium grade 2 fabricated by plasma electrolytic oxidation. Metals. 2017;7:354. doi: 10.3390/met7090354. DOI
Rokosz K., Hryniewicz T., Gaiaschi S., Chapon P., Raaen S., Pietrzak K., Malorny W., Salvador Fernandes J. Characterization of porous phosphate coatings enriched with magnesium or zinc on cp titanium grade 2 under DC plasma electrolytic oxidation. Metals. 2018;8:112. doi: 10.3390/met8020112. DOI
Rokosz K., Hryniewicz T., Raaen S. Development of plasma electrolytic oxidation for improved Ti6Al4V biomaterial surface properties. Int. J. Adv. Manuf. Technol. 2016;85:2425–2437. doi: 10.1007/s00170-015-8086-y. DOI
Rokosz K., Hryniewicz T., Raaen S., Chapon P. Investigation of porous coatings obtained on Ti-Nb-Zr-Sn alloy biomaterial by plasma electrolytic oxidation: Characterisation and modelling. Int. J. Adv. Manuf. Technol. 2016;87:3497–3512. doi: 10.1007/s00170-016-8692-3. DOI
Nelis T., Payling R. Practical guide to glow discharge optical emission spectroscopy. In: Barnett N.W., editor. RSC Analytical Spectroscopy Monographs. Royal Society of Chemistry; Cambridge, UK: 2002.
Casa Software Ltd. CasaXPS: Processing software for XPS, AES, SIMS and More. [(accessed on 25 May 2018)];2009 Available online: http://www.casaxps.com.
Rokosz K., Hryniewicz T., Raaen S. Cr/Fe ratio by XPS spectra of magnetoelectropolished AISI 316L SS fitted by Gaussian-Lorentzian shape lines. Teh. Vjesn. 2014;21:533–538.
Naumkin A.V., Kraut-Vass A., Gaarenstroom S.W., Powell C.J. NIST X-ray Photoelectron Spectroscopy Database: NIST Standard Reference Database 20, Version 4.1. [(accessed on 25 May 2018)];2012 Available online: https://srdata.nist.gov/xps/
Moulder J.F., Stickle W.F., Sobol P.E., Bomben K.D. In: Handbook of X-ray Photoelectron Spectroscopy. Chastain J., editor. Perkin-Elmer Corporation; Eden Prairie, MN, USA: 1992.
Khashayar P., Amoabediny G., Larijani B., Hosseini M., Verplancke R., Schaubroeck D., Van Put S., Razi F., De Keersmaecker M., Adriaens A., et al. A multiplexed microfluidic platform for bone marker measurement: A proof-of-concept. Micromachines. 2017;8:133. doi: 10.3390/mi8050133. DOI
Erickson D., Li D. Integrated microfluidic devices. Anal. Chim. Acta. 2004;507:11–26. doi: 10.1016/j.aca.2003.09.019. DOI
Metal Ions Supported Porous Coatings by Using AC Plasma Electrolytic Oxidation Processing