Development of Porous Coatings Enriched with Magnesium and Zinc Obtained by DC Plasma Electrolytic Oxidation

. 2018 Jul 02 ; 9 (7) : . [epub] 20180702

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30424265

Grantová podpora
2016/21/B/ST8/01952 Narodowe Centrum Nauki

Coatings with developed surface stereometry, being based on a porous system, may be obtained by plasma electrolytic oxidation, PEO (micro arc oxidation, MAO). In this paper, we present novel porous coatings, which may be used, e.g., in micromachine's biocompatible sensors' housing, obtained in electrolytes containing magnesium nitrate hexahydrate Mg(NO₃)₂·6H₂O and/or zinc nitrate hexahydrate Zn(NO₃)₂·6H₂O in concentrated phosphoric acid H₃PO₄ (85% w/w). Complementary techniques are used for coatings' surface characterization, such as scanning electron microscopy (SEM), for surface imaging as well as for chemical semi-quantitative analysis via energy dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), glow discharge optical emission spectroscopy (GDOES), and X-ray powder diffraction (XRD). The results have shown that increasing contents of salts (here, 250 g/L Mg(NO₃)₂·6H₂O and 250 g/L Zn(NO₃)₂·6H₂O) in electrolyte result in increasing of Mg/P and Zn/P ratios, as well as coating thickness. It was also found that by increasing the PEO voltage, the Zn/P and Mg/P ratios increase as well. In addition, the analysis of XPS spectra revealed the existence in 10 nm top of coating magnesium (Mg2+), zinc (Zn2+), titanium (Ti4+), and phosphorus compounds (PO₄3-, or HPO₄2-, or H₂PO₄-, or P₂O₇4-).

Zobrazit více v PubMed

Stojadinović S., Jovović J., Petković M., Vasilić R., Konjević N. Spectroscopic and real-time imaging investigation of tantalum plasma electrolytic oxidation (PEO) Surf. Coat. Technol. 2011;205:5406–5413. doi: 10.1016/j.surfcoat.2011.06.013. DOI

Fidan S., Muhaffel F., Riool M., Cempura G., de Boer L., Zaat S.A.J., Czyrska-Filemonowicz A., Cimenoglu H. Fabrication of oxide layer on zirconium by micro-arc oxidation: Structural and antimicrobial characteristics. Mater. Sci. Eng. C. 2017;71:565–569. doi: 10.1016/j.msec.2016.11.035. PubMed DOI

Aktug S.L., Kutbay I., Usta M. Characterization and formation of bioactive hydroxyapatite coating on commercially pure zirconium by micro arc oxidation. J. Alloys Compd. 2017;695:998–1004. doi: 10.1016/j.jallcom.2016.10.217. DOI

Stojadinović S., Tadić N., Ćirić A., Vasilić R. Photoluminescence properties of Eu3+ doped HfO2 coatings formed by plasma electrolytic oxidation of hafnium. Opt. Mater. 2018;77:19–24. doi: 10.1016/j.optmat.2018.01.014. DOI

Stojadinović S., Tadić N., Vasilić R. Plasma electrolytic oxidation of hafnium. Int. J. Refract. Met. Hard Mater. 2017;69:153–157. doi: 10.1016/j.ijrmhm.2017.08.011. DOI

Sowa M., Simka W. Electrochemical behavior of plasma electrolytically oxidized niobium in simulated physiological environment. Surf. Coat. Technol. 2018;344:121–131. doi: 10.1016/j.surfcoat.2018.03.013. DOI

Sowa M., Worek J., Dercz G., Korotin D.M., Kukharenko A.I., Kurmaev E.Z., Cholakh S.O., Basiaga M., Simka W. Surface characterisation and corrosion behaviour of niobium treated in a Ca- and P-containing solution under sparking conditions. Electrochim. Acta. 2016;198:91–103. doi: 10.1016/j.electacta.2016.03.069. DOI

Sowa M., Woszczak M., Kazek-Kęsik A., Dercz G., Korotin D.M., Zhidkov I.S., Kurmaev E.Z., Cholakh S.O., Basiaga M., Simka W. Influence of process parameters on plasma electrolytic surface treatment of tantalum for biomedical applications. Appl. Surf. Sci. 2017;407:52–63. doi: 10.1016/j.apsusc.2017.02.170. DOI

Sowa M., Kazek-Kȩsik A., Socha R.P., Dercz G., Michalska J., Simka W. Modification of tantalum surface via plasma electrolytic oxidation in silicate solutions. Electrochim. Acta. 2013;114:627–636. doi: 10.1016/j.electacta.2013.10.047. DOI

Farhadi S.S., Aliofkhazraei M., Barati Darband G., Abolhasani A., Sabour Rouhaghdam A. Corrosion and wettability of PEO coatings on magnesium by addition of potassium stearate. J. Magnes. Alloys. 2017;5:210–216. doi: 10.1016/j.jma.2017.06.002. DOI

Egorkin V.S., Gnedenkov S.V., Sinebryukhov S.L., Vyaliy I.E., Gnedenkov A.S., Chizhikov R.G. Increasing thickness and protective properties of PEO-coatings on aluminum alloy. Surf. Coat. Technol. 2018;334:29–42. doi: 10.1016/j.surfcoat.2017.11.025. DOI

Mingo B., Arrabal R., Mohedano M., Llamazares Y., Matykina E., Yerokhin A., Pardo A. Influence of sealing post-treatments on the corrosion resistance of PEO coated AZ91 magnesium alloy. Appl. Surf. Sci. 2018;433:653–667. doi: 10.1016/j.apsusc.2017.10.083. DOI

Gao Y., Yerokhin A., Matthews A. Mechanical behaviour of cp-magnesium with duplex hydroxyapatite and PEO coatings. Mater. Sci. Eng. C. 2015;49:190–200. doi: 10.1016/j.msec.2014.12.081. PubMed DOI

Kasalica B., Radić-Perić J., Perić M., Petković-Benazzouz M., Belča I., Sarvan M. The mechanism of evolution of microdischarges at the beginning of the PEO process on aluminum. Surf. Coat. Technol. 2016;298:24–32. doi: 10.1016/j.surfcoat.2016.04.044. DOI

Guan Y., Xia Y., Li G. Growth mechanism and corrosion behavior of ceramic coatings on aluminum produced by autocontrol AC pulse PEO. Surf. Coat. Technol. 2008;202:4602–4612. doi: 10.1016/j.surfcoat.2008.03.031. DOI

Hryniewicz T., Rokosz K., Sandim H.R.Z. SEM/EDX and XPS studies of niobium after electropolishing. Appl. Surf. Sci. 2012;263:357–361. doi: 10.1016/j.apsusc.2012.09.060. DOI

Hryniewicz T., Rokosz K., Rokicki R., Prima F. Nanoindentation and XPS studies of Titanium TNZ alloy after electrochemical polishing in a magnetic field. Materials. 2015;8:205–215. doi: 10.3390/ma8010205. PubMed DOI PMC

Rokosz K., Lahtinen J., Hryniewicz T., Rzadkiewicz S. XPS depth profiling analysis of passive surface layers formed on austenitic AISI 304L and AISI 316L SS after high-current-density electropolishing. Surf. Coat. Technol. 2015;276:516–520. doi: 10.1016/j.surfcoat.2015.06.022. DOI

Yao Z., Cui R., Jiang Z., Wang F. Effects of duty ratio at low frequency on growth mechanism of micro-plasma oxidation ceramic coatings on Ti alloy. Appl. Surf. Sci. 2007;253:6778–6783. doi: 10.1016/j.apsusc.2007.01.088. DOI

Curran J.A., Kalkanci H., Magurova Y., Clyne T.W. Mullite-rich plasma electrolytic oxide coatings for thermal barrier applications. Surf. Coat. Technol. 2007;201:8683–8687. doi: 10.1016/j.surfcoat.2006.06.050. DOI

Lukiyanchuk I.V., Chernykh I.V., Rudnev V.S., Ustinov A.Y., Tyrina L.M., Nedozorov P.M., Dmitrieva E.E. Catalytically active cobalt-copper-oxide layers on aluminum and titanium. Prot. Metals Phys. Chem. Surf. 2014;50:209–217. doi: 10.1134/S2070205114020105. DOI

Hu H., Zhang W., Qiao Y., Jiang X., Liu X., Ding C. Antibacterial activity and increased bone marrow stem cell functions of Zn-incorporated TiO2 coatings on titanium. Acta Biomater. 2012;8:904–915. doi: 10.1016/j.actbio.2011.09.031. PubMed DOI

Peng B.Y., Nie X., Chen Y. Effects of surface coating preparation and sliding modes on titanium oxide coated titanium alloy for aerospace applications. Int. J. Aerosp. Eng. 2014;2014:1–10. doi: 10.1155/2014/640364. DOI

El Achhaba M., Schierbaum K. Structure and hydrogen sensing properties of plasma electrochemically oxidized titanium foils. Procedia Eng. 2012;47:566–569. doi: 10.1016/j.proeng.2012.09.210. DOI

Tekin K.C., Malayoglu U., Shrestha S. Tribological behaviour of plasma electrolytic oxide coatings on Ti6Al4V and cp-Ti alloys. Surf. Eng. 2016;32:435–442. doi: 10.1179/1743294415Y.0000000075. DOI

Han Y., Hong S.H., Xu K., Cheng S., Feng W., Li B., Wang Y., Jia D., Zhou Y., Göttlicher M., et al. Synthesis of nanocrystalline titania films by micro-arc oxidation. Mater. Lett. 2002;56:744–747. doi: 10.1016/S0167-577X(02)00606-7. DOI

Han Y., Xu K. Photoexcited formation of bone apatite-like coatings on micro-arc oxidized titanium. J. Biomed. Mater. Res. 2004;71A:608–614. doi: 10.1002/jbm.a.30177. PubMed DOI

Huang P., Xu K.W., Han Y., Luo Q., Zhang D.Q., Li X.W., Zhao X., Sun W., Zhou Y., Göttlicher M., et al. Preparation and apatite layer formation of plasma electrolytic oxidation film on titanium for biomedical application. Mater. Lett. 2005;59:185–189. doi: 10.1016/j.matlet.2004.09.045. DOI

Song W.H., Jun Y.K., Han Y., Hong S.H., Kim H.E., Heo S.J., Koak J.Y. Biomimetic apatite coatings on micro-arc oxidized titania. Biomaterials. 2004;25:3341–3349. doi: 10.1016/j.biomaterials.2003.09.103. PubMed DOI

Zhang Y.M., Bataillon-Linez P., Huang P., Zhao Y.M., Han Y., Traisnel M., Xu K.W., Hildebrand H.F. Surface analyses of micro-arc oxidized and hydrothermally treated titanium and effect on osteoblast behavior. J. Biomed. Mater. Res. 2003;68A:383–391. doi: 10.1002/jbm.a.20063. PubMed DOI

Li L.H., Kong Y.M., Kim H.W., Kim Y.W., Kim H.E., Heo S.J., Koak J.Y. Improved biological performance of Ti implants due to surface modification by micro-arc oxidation. Biomaterials. 2004;25:2867–2875. doi: 10.1016/j.biomaterials.2003.09.048. PubMed DOI

Lee S.H., Kim H.W., Lee E.J., Li L.H., Kim H.E. Hydroxyapatite–TiO2 hybrid coating on Ti implants. J. Biomater. Appl. 2006;20:194–208. doi: 10.1177/0885328206050518. PubMed DOI

Han Y., Hong S.H., Xu K., Puz’ A.V., Gnedenkov A.S., Minaev A.N., He J.L., Jia D., Zhou Y., Göttlicher M., et al. Structure and in vitro bioactivity of titania-based films by micro-arc oxidation. Surf. Coat. Technol. 2003;168:249–258. doi: 10.1016/S0257-8972(03)00016-1. DOI

Teh T.H., Berkani A., Mato S., Skeldon P., Thompson G.E., Habazaki H., Shimizu K., Habazaki H., Zhou Y., Göttlicher M., et al. Initial stages of plasma electrolytic oxidation of titanium. Corros. Sci. 2003;45:2757–2768. doi: 10.1016/S0010-938X(03)00101-X. DOI

Rudnev V.S., Vasilyeva M.S., Kondrikov N.B., Tyrina L.M., Feng J., Wang Y.J., Wu K., Habazaki H., Zhou Y., Göttlicher M., et al. Plasma-electrolytic formation, composition and catalytic activity of manganese oxide containing structures on titanium. Appl. Surf. Sci. 2005;252:1211–1220. doi: 10.1016/j.apsusc.2004.12.054. DOI

Ryu H.S., Song W.H., Hong S.H., Nedozorov P.M., Kondrikov N.B., Didenko N.A., Gerasimenko A.V., Habazaki H., Zhou Y., Göttlicher M., et al. Biomimetic apatite induction on Ca-containing titania. Curr. Appl. Phys. 2005;5:512–515. doi: 10.1016/j.cap.2005.01.022. DOI

Chen J.Z., Shi Y.L., Wang L., Yan F.Y., Zhang F.Y., Janghorban K., Wang Y., Jia D., Zhou Y., Göttlicher M., et al. Preparation and properties of hydroxyapatite-containing titania coating by micro-arc oxidation. Mater. Lett. 2006;60:2538–2543. doi: 10.1016/j.matlet.2006.01.035. DOI

Matykina E., Montuori M., Gough J., Monfort F., Berkani A., Skeldon P., Thompson G.E., Habazaki H., Zhou Y., Göttlicher M., et al. Spark anodising of titanium for biomedical applications. Trans. IMF. 2006;84:125–133. doi: 10.1179/174591906X123967. DOI

Han I.H., Choi J.H., Zhao B.H., Baik H.K., Lee I.S., Minaev A.N., He J.L., Jia D., Zhou Y., Göttlicher M., et al. Effects of electrical wave form on pore size of micro-arc oxidized TiO2 film. Key Eng. Mater. 2006;309–311:375–378. doi: 10.4028/www.scientific.net/KEM.309-311.375. DOI

Shokouhfar M., Dehghanian C., Montazeri M., Baradaran A., Avramenko V.A., Tsvetnikov A.K., Sergienko V.I., Kurjavyj V.G., Ye H., Opra D.P., et al. Preparation of ceramic coating on Ti substrate by plasma electrolytic oxidation in different electrolytes and evaluation of its corrosion resistance: Part II. Appl. Surf. Sci. 2012;258:2416–2423. doi: 10.1016/j.apsusc.2011.10.064. DOI

Zhu L., Ye X., Tang G., Zhao N., Gong Y., Zhao Y., Zhao J., Zhang X. Corrosion test, cell behavior test, and in vivo study of gradient TiO2 layers produced by compound electrochemical oxidation. J. Biomed. Mater. Res. A. 2006;78:515–522. doi: 10.1002/jbm.a.30745. PubMed DOI

Habazaki H., Onodera T., Fushimi K., Konno H., Toyotake K., Zhao Y., Zhao J., Zhang X., Liang Z.H., Landers R., et al. Spark anodizing of β-Ti alloy for wear-resistant coating. Surf. Coat. Technol. 2007;201:8730–8737. doi: 10.1016/j.surfcoat.2006.05.041. DOI

Kim M.S., Ryu J.J., Sung Y.M., Nan K., Han Y., Ustinov A.Y., He J.L., Chu P.K., Matykina E., Landers R., et al. One-step approach for nano-crystalline hydroxyapatite coating on titanium via micro-arc oxidation. Electrochem. Commun. 2007;9:1886–1891. doi: 10.1016/j.elecom.2007.04.023. DOI

Ragalevičius R., Stalnionis G., Niaura G., Jagminas A. Micro-arc oxidation of Ti in a solution of sulfuric acid and Ti+3 salt. Appl. Surf. Sci. 2008;254:1608–1613. doi: 10.1016/j.apsusc.2007.07.111. DOI

Zhang W., Du K., Yan C., Wang F., Chuvilin A., Jiang J.Z., Valiev R.Z., Qi M., Fecht H.J., Göttlicher M., et al. Preparation and characterization of a novel Si-incorporated ceramic film on pure titanium by plasma electrolytic oxidation. Appl. Surf. Sci. 2008;254:5216–5223. doi: 10.1016/j.apsusc.2008.02.047. DOI

Lebukhova N.V., Rudnev V.S., Kirichenko E.A., Chigrin P.G., Lukiyanchuk I.V., Yarovaya T.P., Zavidnaya A.G., Puz’ A.V., Khlusov I.A., Opra D.P., et al. Effect of the structure of the oxidized titanium surface on the particle size and properties of the deposited copper-molybdate catalyst. Prot. Met. Phys. Chem. Surf. 2016;52:1024–1030. doi: 10.1134/S2070205116060149. DOI

Rokosz K., Hryniewicz T., Gaiaschi S., Chapon P., Raaen S., Pietrzak K., Malorny W. Characterisation of calcium- and phosphorus-enriched porous coatings on cp titanium grade 2 fabricated by plasma electrolytic oxidation. Metals. 2017;7:354. doi: 10.3390/met7090354. DOI

Rokosz K., Hryniewicz T., Gaiaschi S., Chapon P., Raaen S., Pietrzak K., Malorny W., Salvador Fernandes J. Characterization of porous phosphate coatings enriched with magnesium or zinc on cp titanium grade 2 under DC plasma electrolytic oxidation. Metals. 2018;8:112. doi: 10.3390/met8020112. DOI

Rokosz K., Hryniewicz T., Raaen S. Development of plasma electrolytic oxidation for improved Ti6Al4V biomaterial surface properties. Int. J. Adv. Manuf. Technol. 2016;85:2425–2437. doi: 10.1007/s00170-015-8086-y. DOI

Rokosz K., Hryniewicz T., Raaen S., Chapon P. Investigation of porous coatings obtained on Ti-Nb-Zr-Sn alloy biomaterial by plasma electrolytic oxidation: Characterisation and modelling. Int. J. Adv. Manuf. Technol. 2016;87:3497–3512. doi: 10.1007/s00170-016-8692-3. DOI

Nelis T., Payling R. Practical guide to glow discharge optical emission spectroscopy. In: Barnett N.W., editor. RSC Analytical Spectroscopy Monographs. Royal Society of Chemistry; Cambridge, UK: 2002.

Casa Software Ltd. CasaXPS: Processing software for XPS, AES, SIMS and More. [(accessed on 25 May 2018)];2009 Available online: http://www.casaxps.com.

Rokosz K., Hryniewicz T., Raaen S. Cr/Fe ratio by XPS spectra of magnetoelectropolished AISI 316L SS fitted by Gaussian-Lorentzian shape lines. Teh. Vjesn. 2014;21:533–538.

Naumkin A.V., Kraut-Vass A., Gaarenstroom S.W., Powell C.J. NIST X-ray Photoelectron Spectroscopy Database: NIST Standard Reference Database 20, Version 4.1. [(accessed on 25 May 2018)];2012 Available online: https://srdata.nist.gov/xps/

Moulder J.F., Stickle W.F., Sobol P.E., Bomben K.D. In: Handbook of X-ray Photoelectron Spectroscopy. Chastain J., editor. Perkin-Elmer Corporation; Eden Prairie, MN, USA: 1992.

Khashayar P., Amoabediny G., Larijani B., Hosseini M., Verplancke R., Schaubroeck D., Van Put S., Razi F., De Keersmaecker M., Adriaens A., et al. A multiplexed microfluidic platform for bone marker measurement: A proof-of-concept. Micromachines. 2017;8:133. doi: 10.3390/mi8050133. DOI

Erickson D., Li D. Integrated microfluidic devices. Anal. Chim. Acta. 2004;507:11–26. doi: 10.1016/j.aca.2003.09.019. DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...