Adaptive Software Defined Equalization Techniques for Indoor Visible Light Communication
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
Project No. SP2020/156
Ministry of Education of the Czech Republic
Project No. CZ.02.1.01/0.0/0.0/16_019/0000867
European Regional Development Fund in the Research Centre of Advanced Mechatronic Systems project
PubMed
32183264
PubMed Central
PMC7146392
DOI
10.3390/s20061618
PII: s20061618
Knihovny.cz E-zdroje
- Klíčová slova
- QR decomposition based recursive least squares (RLS), adaptive equalizers, feed-forward software defined equalization (FSDE), multistate quadrature amplitude modulation (M-QAM), software-defined radio (SDR), visible light communication (VLC),
- Publikační typ
- časopisecké články MeSH
This paper focuses on a channel feed-forward software defined equalization (FSDE) of visible light communication (VLC) multistate quadrature amplitude modulation (M-QAM) based system, implemented in the LabVIEW programming environment. A highly modular platform is introduced; the whole experiment is simulated in software and then thoroughly explored and analyzed during practical measurements in the laboratory, simulating real-world situations. The whole platform is based on modified National Instruments software defined radios (NI SDR) and a commercially available Philips light source, often used in Czech government institutions. Three FSDE algorithms were tested: least mean squares (LMS), normalized least mean squares (NLMS), and QR decomposition based RLS (QR-RLS). Based on measurements, QR-RLS provides the best results, improving measured values by up to 10%. The experiments also show that the simulated results are very similar to real measurements, thus proving the validity of the chosen approach. The whole platform manages to improve measured data simply by making changes to the software side of the testing prototype.
Zobrazit více v PubMed
Singh G., Srivastava A., Bohara V.A. Impact of Weather Conditions and Interference on the Performance of VLC based V2V Communication; Proceedings of the 2019 21st International Conference on Transparent Optical Networks (ICTON); Angers, France. 9–13 July 2019; pp. 1–4. DOI
Ebrahim K.J., Al-Omary A. Sandstorm Effect on Visible Light Communication; Proceedings of the 2017 9th IEEE-GCC Conference and Exhibition (GCCCE); Manama, Bahrain. 8–11 May 2017; pp. 1–7. DOI
Elamassie M., Karbalayghareh M., Miramirkhani F., Kizilirmak R.C., Uysal M. Effect of Fog and Rain on the Performance of Vehicular Visible Light Communications; Proceedings of the 2018 IEEE 87th Vehicular Technology Conference (VTC Spring); Porto, Portugal. 3–6 June 2018; pp. 1–6. DOI
Kyselak M., Dvorak F., Maschke J., Vlcek C. Optical Birefringence Fiber Temperature Sensors in the Visible Spectrum of Light. Adv. Electr. Electron. Eng. 2018;15:885–889. doi: 10.15598/aeee.v15i5.2419. DOI
Cheong Y.K., Ng X.W., Chung W.Y. Hazardless Biomedical Sensing Data Transmission Using VLC. IEEE Sens. J. 2013;13:3347–3348. doi: 10.1109/JSEN.2013.2274329. DOI
Kowalczyk M., Siuzdak J. VLC link with LEDs used as both transmitters and photo-detectors; Proceedings of the 2015 Seventh International Conference on Ubiquitous and Future Networks; Sapporo, Japan. 7–10 July 2015; pp. 893–897. DOI
Hu F., Zhao Y., Zou P., Liu Y., Chi N. Non-linear Compensation based on Polynomial Function Linked ANN in Multi-band CAP VLC System; Proceedings of the 2019 26th International Conference on Telecommunications (ICT); Hanoi, Vietnam. 8–10 April 2019; pp. 206–209. DOI
Le Minh H., O’Brien D., Faulkner G., Zeng L., Lee K., Jung D., Oh Y., Won E.T. 100-Mb/s NRZ Visible Light Communications Using a Postequalized White LED. IEEE Photonics Technol. Lett. 2009;21:1063–1065. doi: 10.1109/LPT.2009.2022413. DOI
Obeed M., Salhab A.M., Alouini M.S., Zummo S.A. On Optimizing VLC Networks for Downlink Multi-User Transmission: A Survey. IEEE Commun. Surv. Tutor. 2019;21:2947–2976. doi: 10.1109/COMST.2019.2906225. DOI
Song W., Dong S., Jia Z. The design and realization of APD receiving circuit used in M-ary VLC; Proceedings of the 2015 IEEE 4th Global Conference on Consumer Electronics (GCCE); Osaka, Japan. 27–30 October 2015; pp. 543–544. DOI
Li Y., Safari M., Henderson R., Haas H. Optical OFDM With Single-Photon Avalanche Diode. IEEE Photonics Technol. Lett. 2015;27:943–946. doi: 10.1109/LPT.2015.2402151. DOI
Fuada S., Putra A.P., Adiono T. Analysis of received power characteristics of commercial photodiodes in indoor LoS channel visible light communication. Int. J. Adv. Comput. Sci. Appl. 2017;8:164–172. doi: 10.14569/IJACSA.2017.080722. DOI
Ong Z., Chung W.Y. Long Range VLC Temperature Monitoring System Using CMOS of Mobile Device Camera. IEEE Sens. J. 2016;16:1508–1509. doi: 10.1109/JSEN.2015.2506907. DOI
Liang K., Chow C.W., Liu Y., Yeh C.H. Thresholding schemes for visible light communications with CMOS camera using entropy-based algorithms. Opt. Express. 2016;24:25641. doi: 10.1364/OE.24.025641. PubMed DOI
Goto Y., Takai I., Yamazato T., Okada H., Fujii T., Kawahito S., Arai S., Yendo T., Kamakura K. A New Automotive VLC System Using Optical Communication Image Sensor. IEEE Photonics J. 2016;8:1–17. doi: 10.1109/JPHOT.2016.2555582. DOI
Chow C.W., Chen C.Y., Chen S.H. Enhancement of Signal Performance in LED Visible Light Communications Using Mobile Phone Camera. IEEE Photonics J. 2015;7:1–7. doi: 10.1109/JPHOT.2015.2476757. DOI
Hsu K.L., Wu Y.C., Chuang Y.C., Chow C.W., Liu Y., Liao X.L., Lin K.H., Chen Y.Y. CMOS camera based visible light communication (VLC) using grayscale value distribution and machine learning algorithm. Opt. Express. 2020;28:2427. doi: 10.1364/OE.28.002427. PubMed DOI
Malik B., Zhang X. Solar panel receiver system implementation for visible light communication; Proceedings of the 2015 IEEE International Conference on Electronics, Circuits, and Systems (ICECS); Cairo, Egypt. 6–9 December 2015; pp. 502–503. DOI
Sarwar R., Sun B., Kong M., Ali T., Yu C., Cong B., Xu J. Visible light communication using a solar-panel receiver; Proceedings of the 2017 16th International Conference on Optical Communications and Networks (ICOCN); Wuzhen, China. 7–10 August 2017; pp. 1–3. DOI
Chen H.Y., Liang K., Chen C.Y., Chen S.H., Chow C.W., Yeh C.H. Passive optical receiver for visible light communication (VLC); Proceedings of the TENCON 2015—2015 IEEE Region 10 Conference; Macao, China. 1–4 November 2015; pp. 1–2. DOI
Prakash P., Sharma R., Sindhu S., Shankar T. Visible Light Communication using Solar Panel; Proceedings of the 2017 2nd International Conference on Emerging Computation and Information Technologies (ICECIT); Tumakuru, India. 15–16 December 2017; pp. 1–5. DOI
Hsu C.W., Wu J.T., Wang H.Y., Chow C.W., Lee C.H., Chu M.T., Yeh C.H. Visible Light Positioning and Lighting Based on Identity Positioning and RF Carrier Allocation Technique Using a Solar Cell Receiver. IEEE Photonics J. 2016;8:1–7. doi: 10.1109/JPHOT.2016.2590945. DOI
Tran N.-A., Mai V.V., Thang T.C., Pham A.T. Impact of reflections and ISI on the throughput of TCP over VLC networks with ARQ-SR protocol; Proceedings of the 2013 IEEE 4th International Conference on Photonics (ICP); Melaka, Malaysia. 28–30 October 2013; pp. 172–174. DOI
Wang H., Kim S. Decoding of Polar Codes for Intersymbol Interference in Visible-Light Communication. IEEE Photonics Technol. Lett. 2018;30:1111–1114. doi: 10.1109/LPT.2018.2831783. DOI
Cao P., Chen J., You X. An initialization scheme for blind equalization in VLC systems; Proceedings of the 2017 16th International Conference on Optical Communications and Networks (ICOCN); Wuzhen, China. 7–10 August 2017; pp. 1–3. DOI
Li G., Hu F., Zhao Y., Chi N. Enhanced Performance of a Phosphorescent White LED CAP 64QAM VLC system utilizing Deep Neural Network (DNN) Post Equalization; Proceedings of the 2019 IEEE/CIC International Conference on Communications in China (ICCC); Changchun, China. 11–13 August 2019; pp. 173–176. DOI
Costa W.S., Samatelo J.L., Rocha H.R., Segatto M.E., Silva J.A. Direct Equalization with Convolutional Neural Networks in OFDM based VLC Systems; Proceedings of the 2019 IEEE Latin-American Conference on Communications (LATINCOM); Salvador, Brazil. 11–13 November 2019; pp. 1–6. DOI
Stratil T., Koudelka P., Martinek R., Novak T. Active Pre-Equalizer for Broadband over Visible Light. Adv. Electr. Electron. Eng. 2017;15:553–560. doi: 10.15598/aeee.v15i3.2210. DOI
Wang Y., Teng Z., He W., Li J., Martinek R. A State Evaluation Adaptive Differential Evolution Algorithm for FIR Filter Design. Adv. Electr. Electron. Eng. 2018;15:770–779. doi: 10.15598/aeee.v15i5.2496. DOI
IP-50C Universal Microwave Radio | Ceragon. [(accessed on 9 March 2020)]; Available online: https://www.ceragon.com/products/ip-50c.
Wang Y., Huang X., Tao L., Shi J., Chi N. 45-Gb/s RGB-LED based WDM visible light communication system employing CAP modulation and RLS based adaptive equalization. Opt. Express. 2015;23:13626. doi: 10.1364/OE.23.013626. PubMed DOI
Wang Y., Huang X., Zhang J., Wang Y., Chi N. Enhanced performance of visible light communication employing 512-QAM N-SC-FDE and DD-LMS. Optics Express. 2014;22:15328. doi: 10.1364/OE.22.015328. PubMed DOI
Sirvi S., Tharani L. Wavelet based OFDM system over flat fading channel using NLMS equalization; Proceedings of the 2016 International Conference on Computing, Communication and Automation (ICCCA); Greater Noida, India. 29–30 April 2016; pp. 1460–1463. DOI
Akande K.O., Haigh P.A., Popoola W.O. Joint equalization and synchronization for carrierless amplitude and phase modulation in visible light communication; Proceedings of the 2017 13th International Wireless Communications and Mobile Computing Conference (IWCMC); Valencia, Spain. 26–30 June 2017; pp. 876–881. DOI
Zhang M., Wang Y., Wang Z., Zhao J., Chi N. A novel scalar MCMMA blind equalization utilized in 8-PAM LED based visible light communication system; Proceedings of the 2016 IEEE International Conference on Communications Workshops (ICC); Kuala Lumpur, Malaysia. 23–27 May 2016; pp. 321–325. DOI
Mitra R., Bhatia V. Precoded Chebyshev-NLMS-Based Pre-Distorter for Nonlinear LED Compensation in NOMA-VLC. IEEE Trans. Commun. 2017;65:4845–4856. doi: 10.1109/TCOMM.2017.2736548. DOI
Wang Y., Zhou Y., Gui T., Zhong K., Zhou X., Wang L., Lau A.P.T., Lu C., Chi N. SEFDM Based Spectrum Compressed VLC System Using RLS Time-domain Channel Estimation and ID-FSD Hybrid Decoder; Proceedings of the ECOC 2016 42th European Conference on Optical Communication Proceedings; Dusseldorf, Germany. 18–22 September 2016; OCLC: 959984645.
Martinek R., Danys L., Jaros R. Visible Light Communication System Based on Software Defined Radio: Performance Study of Intelligent Transportation and Indoor Applications. Electronics. 2019;8:433. doi: 10.3390/electronics8040433. DOI
Baros J., Martinek R., Jaros R., Danys L., Soustek L. Development of application for control of SMART parking lot. IFAC-PapersOnLine. 2019;52:19–26. doi: 10.1016/j.ifacol.2019.12.726. DOI
Rademacher M., Jonas K., Kretschmer M. Quantifying the spectrum occupancy in an outdoor 5 GHz WiFi network with directional antennas; Proceedings of the 2018 IEEE Wireless Communications and Networking Conference (WCNC); Barcelona, Spain. 15–18 April 2018; pp. 1–6. DOI
Konings D., Faulkner N., Alam F., Lai E.M.K., Demidenko S. FieldLight: Device-Free Indoor Human Localization Using Passive Visible Light Positioning and Artificial Potential Fields. IEEE Sens. J. 2020;20:1054–1066. doi: 10.1109/JSEN.2019.2944178. DOI
Sun E., Li J., Li Z., Gao D., Chen Y., Wang M. Virtual Training and Ergonomics Evaluation System for Industrial Production Safety Based on Visible Light Communication; Proceedings of the 2019 IEEE 19th International Conference on Communication Technology (ICCT); Xi’an, China. 16–19 October 2019; pp. 695–700. DOI
Zhao H., Wang J., Liu R. High Accuracy Indoor Visible Light Positioning Considering the Shapes of Illuminators; Proceedings of the 2019 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB); Jeju, Korea. 5–7 June 2019; pp. 1–4. DOI
Poola J., Agrawal S., Prasad K., Sundaram S. Visible Light Communications Personal Area Network Controller and Access Point Systems and Methods. WO2014085128A1. Patent. 2014 Jun 5;
Haas H., Yin L., Wang Y., Chen C. What is LiFi? J. Lightwave Technol. 2016;34:1533–1544. doi: 10.1109/JLT.2015.2510021. DOI
Pure LiFi Demos 1Gbps over Visible Light at Mobile World Congress. [(accessed on 9 March 2020)]; Available online: https://www.trustedreviews.com/news/pure-lifi-gigabit-3668418.
Jeon E., Lee W.B., Ahn M., Kim S., Kim J. Adaptive Feedback of the Channel Information for Beamforming in IEEE 802.11ax WLANs; Proceedings of the 2019 IEEE 90th Vehicular Technology Conference (VTC2019-Fall); Honolulu, HI, USA. 22–25 September 2019; pp. 1–6. DOI
Haas H., Cogalan T. LiFi Opportunities and Challenges; Proceedings of the 2019 16th International Symposium on Wireless Communication Systems (ISWCS); Oulu, Finland. 27–30 August 2019; pp. 361–366. DOI
Do T.H., Yoo M. An in-Depth Survey of Visible Light Communication Based Positioning Systems. Sensors. 2016;16:678. doi: 10.3390/s16050678. PubMed DOI PMC
Wagh P., Patil S. Transmission of biomedical signal using VLC based system in hospitals; Proceedings of the 2019 3rd International Conference on Trends in Electronics and Informatics (ICOEI); Tirunelveli, India. 23–25 April 2019; pp. 110–112. DOI
Yatari Putri N.A., Hambali A., Pamukti B. VLC System Performance Evaluation with Addition of Optical Concentrator on Photodetector; Proceedings of the 2019 IEEE International Conference on Signals and Systems (ICSigSys); Bandung, Indonesia. 16–18 July 2019; pp. 167–172. DOI
Mulyawan R., Chun H., Gomez A., Rajbhandari S., Faulkner G., Manousiadis P.P., Vithanage D.A., Turnbull G.A., Samuel I.D.W., Collins S., et al. MIMO Visible Light Communications Using a Wide Field-of-View Fluorescent Concentrator. IEEE Photonics Technol. Lett. 2017;29:306–309. doi: 10.1109/LPT.2016.2647717. DOI
Yun G., Kavehrad M. Spot-diffusing and fly-eye receivers for indoor infrared wireless communications; Proceedings of the 1992 IEEE International Conference on Selected Topics in Wireless Communications; Vancouver, BC, Canada. 25–26 June 1992; pp. 262–265. DOI
Zeng Z., Soltani M.D., Safari M., Haas H. Angle Diversity Receiver in LiFi Cellular Networks; Proceedings of the ICC 2019—2019 IEEE International Conference on Communications (ICC); Shanghai, China. 20–24 May 2019; pp. 1–6. DOI
Alsulami O.Z., Alresheedi M.T., Elmirghani J.M.H. Transmitter Diversity with Beam Steering; Proceedings of the 2019 21st International Conference on Transparent Optical Networks (ICTON); Angers, France. 9–13 July 2019; pp. 1–5. DOI
Zhang L., Chitnis D., Chun H., Rajbhandari S., Faulkner G., O’Brien D., Collins S. A comparison of APD-and SPAD-based receivers for visible light communications. J. Lightwave Technol. 2018;36:2435–2442. doi: 10.1109/JLT.2018.2811180. DOI
Cen N., Dave N., Demirors E., Guan Z., Melodia T. LiBeam: Throughput-Optimal Cooperative Beamforming for Indoor Visible Light Networks; Proceedings of the IEEE INFOCOM 2019—IEEE Conference on Computer Communications; Paris, France. 29 April–2 May 2019; pp. 1972–1980. DOI
Serafino G., Porzi C., Falconi F., Pinna S., Puleri M., D’Errico A., Bogoni A., Ghelfi P. Photonics-Assisted Beamforming for 5G Communications. IEEE Photonics Technol. Lett. 2018;30:1826–1829. doi: 10.1109/LPT.2018.2874468. DOI
Shi L., Li W., Zhang X., Zhang Y., Chen G., Vladimirescu A. Experimental 5G New Radio integration with VLC; Proceedings of the 2018 25th IEEE International Conference on Electronics, Circuits and Systems (ICECS); Bordeaux, France. 9–12 December 2018; pp. 61–64. DOI
Lichtenegger F., Leiner C., Sommer C., Weiss A.P., Wenzl F.P. Ray-tracing based channel modeling for the simulation of the performance of visible light communication in an indoor environment; Proceedings of the 2019 Second Balkan Junior Conference on Lighting (Balkan Light Junior); Plovdiv, Bulgaria. 19–21 September 2019; pp. 1–6. DOI
Bandara K., Chung Y.H. Reduced training sequence using RLS adaptive algorithm with decision feedback equalizer in indoor Visible Light Wireless Communication channel; Proceedings of the 2012 International Conference on ICT Convergence (ICTC); Jeju, Korea. 15–17 October 2012; pp. 149–154. DOI
Martinek R., Koudelka P., Latal J., Vitasek J., Vanus J., Wen H., Nazeran H. Modelling of wireless fading channels with RF impairments using virtual instruments; Proceedings of the 2016 IEEE 17th Annual Wireless and Microwave Technology Conference (WAMICON); Clearwater, FL, USA. 11–13 April 2016; pp. 1–6. DOI
Martinek R., Konecny J., Koudelka P., Zidek J., Nazeran H. Adaptive Optimization of Control Parameters for Feed-Forward Software Defined Equalization. Wirel. Pers. Commun. 2017;95:4001–4011. doi: 10.1007/s11277-017-4036-3. DOI
Tokgoz S.C., Anous N., Yarkan S., Khalil D., Qaraqe K.A. Performance Improvement of White LED-Based VLC Systems Using Blue and Flattening Filters; Proceedings of the 2019 International Conference on Advanced Communication Technologies and Networking (CommNet); Rabat, Morocco. 12–14 April 2019; pp. 1–6. DOI
Avătămăniței S.A., Căilean A.M., Done A., Dimian M., Prelipceanu M. Noise Resilient Outdoor Traffic Light Visible Light Communications System Based on Logarithmic Transimpedance Circuit: Experimental Demonstration of a 50 m Reliable Link in Direct Sun Exposure. Sensors. 2020;20:909. doi: 10.3390/s20030909. PubMed DOI PMC
Vitasek J., Latal J., Stratil T., Hejduk S., Vanderka A., Hajek L., Kolar J. Purposeful Suppression and Reconstruction of White Light from LED for Improvement of Communication Properties. Adv. Electr. Electron. Eng. 2019;17:74–80. doi: 10.15598/aeee.v17i1.2671. DOI
Review of Fundamental Active Current Extraction Techniques for SAPF