Adaptive Software Defined Equalization Techniques for Indoor Visible Light Communication

. 2020 Mar 14 ; 20 (6) : . [epub] 20200314

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32183264

Grantová podpora
Project No. SP2020/156 Ministry of Education of the Czech Republic
Project No. CZ.02.1.01/0.0/0.0/16_019/0000867 European Regional Development Fund in the Research Centre of Advanced Mechatronic Systems project

This paper focuses on a channel feed-forward software defined equalization (FSDE) of visible light communication (VLC) multistate quadrature amplitude modulation (M-QAM) based system, implemented in the LabVIEW programming environment. A highly modular platform is introduced; the whole experiment is simulated in software and then thoroughly explored and analyzed during practical measurements in the laboratory, simulating real-world situations. The whole platform is based on modified National Instruments software defined radios (NI SDR) and a commercially available Philips light source, often used in Czech government institutions. Three FSDE algorithms were tested: least mean squares (LMS), normalized least mean squares (NLMS), and QR decomposition based RLS (QR-RLS). Based on measurements, QR-RLS provides the best results, improving measured values by up to 10%. The experiments also show that the simulated results are very similar to real measurements, thus proving the validity of the chosen approach. The whole platform manages to improve measured data simply by making changes to the software side of the testing prototype.

Zobrazit více v PubMed

Singh G., Srivastava A., Bohara V.A. Impact of Weather Conditions and Interference on the Performance of VLC based V2V Communication; Proceedings of the 2019 21st International Conference on Transparent Optical Networks (ICTON); Angers, France. 9–13 July 2019; pp. 1–4. DOI

Ebrahim K.J., Al-Omary A. Sandstorm Effect on Visible Light Communication; Proceedings of the 2017 9th IEEE-GCC Conference and Exhibition (GCCCE); Manama, Bahrain. 8–11 May 2017; pp. 1–7. DOI

Elamassie M., Karbalayghareh M., Miramirkhani F., Kizilirmak R.C., Uysal M. Effect of Fog and Rain on the Performance of Vehicular Visible Light Communications; Proceedings of the 2018 IEEE 87th Vehicular Technology Conference (VTC Spring); Porto, Portugal. 3–6 June 2018; pp. 1–6. DOI

Kyselak M., Dvorak F., Maschke J., Vlcek C. Optical Birefringence Fiber Temperature Sensors in the Visible Spectrum of Light. Adv. Electr. Electron. Eng. 2018;15:885–889. doi: 10.15598/aeee.v15i5.2419. DOI

Cheong Y.K., Ng X.W., Chung W.Y. Hazardless Biomedical Sensing Data Transmission Using VLC. IEEE Sens. J. 2013;13:3347–3348. doi: 10.1109/JSEN.2013.2274329. DOI

Kowalczyk M., Siuzdak J. VLC link with LEDs used as both transmitters and photo-detectors; Proceedings of the 2015 Seventh International Conference on Ubiquitous and Future Networks; Sapporo, Japan. 7–10 July 2015; pp. 893–897. DOI

Hu F., Zhao Y., Zou P., Liu Y., Chi N. Non-linear Compensation based on Polynomial Function Linked ANN in Multi-band CAP VLC System; Proceedings of the 2019 26th International Conference on Telecommunications (ICT); Hanoi, Vietnam. 8–10 April 2019; pp. 206–209. DOI

Le Minh H., O’Brien D., Faulkner G., Zeng L., Lee K., Jung D., Oh Y., Won E.T. 100-Mb/s NRZ Visible Light Communications Using a Postequalized White LED. IEEE Photonics Technol. Lett. 2009;21:1063–1065. doi: 10.1109/LPT.2009.2022413. DOI

Obeed M., Salhab A.M., Alouini M.S., Zummo S.A. On Optimizing VLC Networks for Downlink Multi-User Transmission: A Survey. IEEE Commun. Surv. Tutor. 2019;21:2947–2976. doi: 10.1109/COMST.2019.2906225. DOI

Song W., Dong S., Jia Z. The design and realization of APD receiving circuit used in M-ary VLC; Proceedings of the 2015 IEEE 4th Global Conference on Consumer Electronics (GCCE); Osaka, Japan. 27–30 October 2015; pp. 543–544. DOI

Li Y., Safari M., Henderson R., Haas H. Optical OFDM With Single-Photon Avalanche Diode. IEEE Photonics Technol. Lett. 2015;27:943–946. doi: 10.1109/LPT.2015.2402151. DOI

Fuada S., Putra A.P., Adiono T. Analysis of received power characteristics of commercial photodiodes in indoor LoS channel visible light communication. Int. J. Adv. Comput. Sci. Appl. 2017;8:164–172. doi: 10.14569/IJACSA.2017.080722. DOI

Ong Z., Chung W.Y. Long Range VLC Temperature Monitoring System Using CMOS of Mobile Device Camera. IEEE Sens. J. 2016;16:1508–1509. doi: 10.1109/JSEN.2015.2506907. DOI

Liang K., Chow C.W., Liu Y., Yeh C.H. Thresholding schemes for visible light communications with CMOS camera using entropy-based algorithms. Opt. Express. 2016;24:25641. doi: 10.1364/OE.24.025641. PubMed DOI

Goto Y., Takai I., Yamazato T., Okada H., Fujii T., Kawahito S., Arai S., Yendo T., Kamakura K. A New Automotive VLC System Using Optical Communication Image Sensor. IEEE Photonics J. 2016;8:1–17. doi: 10.1109/JPHOT.2016.2555582. DOI

Chow C.W., Chen C.Y., Chen S.H. Enhancement of Signal Performance in LED Visible Light Communications Using Mobile Phone Camera. IEEE Photonics J. 2015;7:1–7. doi: 10.1109/JPHOT.2015.2476757. DOI

Hsu K.L., Wu Y.C., Chuang Y.C., Chow C.W., Liu Y., Liao X.L., Lin K.H., Chen Y.Y. CMOS camera based visible light communication (VLC) using grayscale value distribution and machine learning algorithm. Opt. Express. 2020;28:2427. doi: 10.1364/OE.28.002427. PubMed DOI

Malik B., Zhang X. Solar panel receiver system implementation for visible light communication; Proceedings of the 2015 IEEE International Conference on Electronics, Circuits, and Systems (ICECS); Cairo, Egypt. 6–9 December 2015; pp. 502–503. DOI

Sarwar R., Sun B., Kong M., Ali T., Yu C., Cong B., Xu J. Visible light communication using a solar-panel receiver; Proceedings of the 2017 16th International Conference on Optical Communications and Networks (ICOCN); Wuzhen, China. 7–10 August 2017; pp. 1–3. DOI

Chen H.Y., Liang K., Chen C.Y., Chen S.H., Chow C.W., Yeh C.H. Passive optical receiver for visible light communication (VLC); Proceedings of the TENCON 2015—2015 IEEE Region 10 Conference; Macao, China. 1–4 November 2015; pp. 1–2. DOI

Prakash P., Sharma R., Sindhu S., Shankar T. Visible Light Communication using Solar Panel; Proceedings of the 2017 2nd International Conference on Emerging Computation and Information Technologies (ICECIT); Tumakuru, India. 15–16 December 2017; pp. 1–5. DOI

Hsu C.W., Wu J.T., Wang H.Y., Chow C.W., Lee C.H., Chu M.T., Yeh C.H. Visible Light Positioning and Lighting Based on Identity Positioning and RF Carrier Allocation Technique Using a Solar Cell Receiver. IEEE Photonics J. 2016;8:1–7. doi: 10.1109/JPHOT.2016.2590945. DOI

Tran N.-A., Mai V.V., Thang T.C., Pham A.T. Impact of reflections and ISI on the throughput of TCP over VLC networks with ARQ-SR protocol; Proceedings of the 2013 IEEE 4th International Conference on Photonics (ICP); Melaka, Malaysia. 28–30 October 2013; pp. 172–174. DOI

Wang H., Kim S. Decoding of Polar Codes for Intersymbol Interference in Visible-Light Communication. IEEE Photonics Technol. Lett. 2018;30:1111–1114. doi: 10.1109/LPT.2018.2831783. DOI

Cao P., Chen J., You X. An initialization scheme for blind equalization in VLC systems; Proceedings of the 2017 16th International Conference on Optical Communications and Networks (ICOCN); Wuzhen, China. 7–10 August 2017; pp. 1–3. DOI

Li G., Hu F., Zhao Y., Chi N. Enhanced Performance of a Phosphorescent White LED CAP 64QAM VLC system utilizing Deep Neural Network (DNN) Post Equalization; Proceedings of the 2019 IEEE/CIC International Conference on Communications in China (ICCC); Changchun, China. 11–13 August 2019; pp. 173–176. DOI

Costa W.S., Samatelo J.L., Rocha H.R., Segatto M.E., Silva J.A. Direct Equalization with Convolutional Neural Networks in OFDM based VLC Systems; Proceedings of the 2019 IEEE Latin-American Conference on Communications (LATINCOM); Salvador, Brazil. 11–13 November 2019; pp. 1–6. DOI

Stratil T., Koudelka P., Martinek R., Novak T. Active Pre-Equalizer for Broadband over Visible Light. Adv. Electr. Electron. Eng. 2017;15:553–560. doi: 10.15598/aeee.v15i3.2210. DOI

Wang Y., Teng Z., He W., Li J., Martinek R. A State Evaluation Adaptive Differential Evolution Algorithm for FIR Filter Design. Adv. Electr. Electron. Eng. 2018;15:770–779. doi: 10.15598/aeee.v15i5.2496. DOI

IP-50C Universal Microwave Radio | Ceragon. [(accessed on 9 March 2020)]; Available online: https://www.ceragon.com/products/ip-50c.

Wang Y., Huang X., Tao L., Shi J., Chi N. 45-Gb/s RGB-LED based WDM visible light communication system employing CAP modulation and RLS based adaptive equalization. Opt. Express. 2015;23:13626. doi: 10.1364/OE.23.013626. PubMed DOI

Wang Y., Huang X., Zhang J., Wang Y., Chi N. Enhanced performance of visible light communication employing 512-QAM N-SC-FDE and DD-LMS. Optics Express. 2014;22:15328. doi: 10.1364/OE.22.015328. PubMed DOI

Sirvi S., Tharani L. Wavelet based OFDM system over flat fading channel using NLMS equalization; Proceedings of the 2016 International Conference on Computing, Communication and Automation (ICCCA); Greater Noida, India. 29–30 April 2016; pp. 1460–1463. DOI

Akande K.O., Haigh P.A., Popoola W.O. Joint equalization and synchronization for carrierless amplitude and phase modulation in visible light communication; Proceedings of the 2017 13th International Wireless Communications and Mobile Computing Conference (IWCMC); Valencia, Spain. 26–30 June 2017; pp. 876–881. DOI

Zhang M., Wang Y., Wang Z., Zhao J., Chi N. A novel scalar MCMMA blind equalization utilized in 8-PAM LED based visible light communication system; Proceedings of the 2016 IEEE International Conference on Communications Workshops (ICC); Kuala Lumpur, Malaysia. 23–27 May 2016; pp. 321–325. DOI

Mitra R., Bhatia V. Precoded Chebyshev-NLMS-Based Pre-Distorter for Nonlinear LED Compensation in NOMA-VLC. IEEE Trans. Commun. 2017;65:4845–4856. doi: 10.1109/TCOMM.2017.2736548. DOI

Wang Y., Zhou Y., Gui T., Zhong K., Zhou X., Wang L., Lau A.P.T., Lu C., Chi N. SEFDM Based Spectrum Compressed VLC System Using RLS Time-domain Channel Estimation and ID-FSD Hybrid Decoder; Proceedings of the ECOC 2016 42th European Conference on Optical Communication Proceedings; Dusseldorf, Germany. 18–22 September 2016; OCLC: 959984645.

Martinek R., Danys L., Jaros R. Visible Light Communication System Based on Software Defined Radio: Performance Study of Intelligent Transportation and Indoor Applications. Electronics. 2019;8:433. doi: 10.3390/electronics8040433. DOI

Baros J., Martinek R., Jaros R., Danys L., Soustek L. Development of application for control of SMART parking lot. IFAC-PapersOnLine. 2019;52:19–26. doi: 10.1016/j.ifacol.2019.12.726. DOI

Rademacher M., Jonas K., Kretschmer M. Quantifying the spectrum occupancy in an outdoor 5 GHz WiFi network with directional antennas; Proceedings of the 2018 IEEE Wireless Communications and Networking Conference (WCNC); Barcelona, Spain. 15–18 April 2018; pp. 1–6. DOI

Konings D., Faulkner N., Alam F., Lai E.M.K., Demidenko S. FieldLight: Device-Free Indoor Human Localization Using Passive Visible Light Positioning and Artificial Potential Fields. IEEE Sens. J. 2020;20:1054–1066. doi: 10.1109/JSEN.2019.2944178. DOI

Sun E., Li J., Li Z., Gao D., Chen Y., Wang M. Virtual Training and Ergonomics Evaluation System for Industrial Production Safety Based on Visible Light Communication; Proceedings of the 2019 IEEE 19th International Conference on Communication Technology (ICCT); Xi’an, China. 16–19 October 2019; pp. 695–700. DOI

Zhao H., Wang J., Liu R. High Accuracy Indoor Visible Light Positioning Considering the Shapes of Illuminators; Proceedings of the 2019 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB); Jeju, Korea. 5–7 June 2019; pp. 1–4. DOI

Poola J., Agrawal S., Prasad K., Sundaram S. Visible Light Communications Personal Area Network Controller and Access Point Systems and Methods. WO2014085128A1. Patent. 2014 Jun 5;

Haas H., Yin L., Wang Y., Chen C. What is LiFi? J. Lightwave Technol. 2016;34:1533–1544. doi: 10.1109/JLT.2015.2510021. DOI

Pure LiFi Demos 1Gbps over Visible Light at Mobile World Congress. [(accessed on 9 March 2020)]; Available online: https://www.trustedreviews.com/news/pure-lifi-gigabit-3668418.

Jeon E., Lee W.B., Ahn M., Kim S., Kim J. Adaptive Feedback of the Channel Information for Beamforming in IEEE 802.11ax WLANs; Proceedings of the 2019 IEEE 90th Vehicular Technology Conference (VTC2019-Fall); Honolulu, HI, USA. 22–25 September 2019; pp. 1–6. DOI

Haas H., Cogalan T. LiFi Opportunities and Challenges; Proceedings of the 2019 16th International Symposium on Wireless Communication Systems (ISWCS); Oulu, Finland. 27–30 August 2019; pp. 361–366. DOI

Do T.H., Yoo M. An in-Depth Survey of Visible Light Communication Based Positioning Systems. Sensors. 2016;16:678. doi: 10.3390/s16050678. PubMed DOI PMC

Wagh P., Patil S. Transmission of biomedical signal using VLC based system in hospitals; Proceedings of the 2019 3rd International Conference on Trends in Electronics and Informatics (ICOEI); Tirunelveli, India. 23–25 April 2019; pp. 110–112. DOI

Yatari Putri N.A., Hambali A., Pamukti B. VLC System Performance Evaluation with Addition of Optical Concentrator on Photodetector; Proceedings of the 2019 IEEE International Conference on Signals and Systems (ICSigSys); Bandung, Indonesia. 16–18 July 2019; pp. 167–172. DOI

Mulyawan R., Chun H., Gomez A., Rajbhandari S., Faulkner G., Manousiadis P.P., Vithanage D.A., Turnbull G.A., Samuel I.D.W., Collins S., et al. MIMO Visible Light Communications Using a Wide Field-of-View Fluorescent Concentrator. IEEE Photonics Technol. Lett. 2017;29:306–309. doi: 10.1109/LPT.2016.2647717. DOI

Yun G., Kavehrad M. Spot-diffusing and fly-eye receivers for indoor infrared wireless communications; Proceedings of the 1992 IEEE International Conference on Selected Topics in Wireless Communications; Vancouver, BC, Canada. 25–26 June 1992; pp. 262–265. DOI

Zeng Z., Soltani M.D., Safari M., Haas H. Angle Diversity Receiver in LiFi Cellular Networks; Proceedings of the ICC 2019—2019 IEEE International Conference on Communications (ICC); Shanghai, China. 20–24 May 2019; pp. 1–6. DOI

Alsulami O.Z., Alresheedi M.T., Elmirghani J.M.H. Transmitter Diversity with Beam Steering; Proceedings of the 2019 21st International Conference on Transparent Optical Networks (ICTON); Angers, France. 9–13 July 2019; pp. 1–5. DOI

Zhang L., Chitnis D., Chun H., Rajbhandari S., Faulkner G., O’Brien D., Collins S. A comparison of APD-and SPAD-based receivers for visible light communications. J. Lightwave Technol. 2018;36:2435–2442. doi: 10.1109/JLT.2018.2811180. DOI

Cen N., Dave N., Demirors E., Guan Z., Melodia T. LiBeam: Throughput-Optimal Cooperative Beamforming for Indoor Visible Light Networks; Proceedings of the IEEE INFOCOM 2019—IEEE Conference on Computer Communications; Paris, France. 29 April–2 May 2019; pp. 1972–1980. DOI

Serafino G., Porzi C., Falconi F., Pinna S., Puleri M., D’Errico A., Bogoni A., Ghelfi P. Photonics-Assisted Beamforming for 5G Communications. IEEE Photonics Technol. Lett. 2018;30:1826–1829. doi: 10.1109/LPT.2018.2874468. DOI

Shi L., Li W., Zhang X., Zhang Y., Chen G., Vladimirescu A. Experimental 5G New Radio integration with VLC; Proceedings of the 2018 25th IEEE International Conference on Electronics, Circuits and Systems (ICECS); Bordeaux, France. 9–12 December 2018; pp. 61–64. DOI

Lichtenegger F., Leiner C., Sommer C., Weiss A.P., Wenzl F.P. Ray-tracing based channel modeling for the simulation of the performance of visible light communication in an indoor environment; Proceedings of the 2019 Second Balkan Junior Conference on Lighting (Balkan Light Junior); Plovdiv, Bulgaria. 19–21 September 2019; pp. 1–6. DOI

Bandara K., Chung Y.H. Reduced training sequence using RLS adaptive algorithm with decision feedback equalizer in indoor Visible Light Wireless Communication channel; Proceedings of the 2012 International Conference on ICT Convergence (ICTC); Jeju, Korea. 15–17 October 2012; pp. 149–154. DOI

Martinek R., Koudelka P., Latal J., Vitasek J., Vanus J., Wen H., Nazeran H. Modelling of wireless fading channels with RF impairments using virtual instruments; Proceedings of the 2016 IEEE 17th Annual Wireless and Microwave Technology Conference (WAMICON); Clearwater, FL, USA. 11–13 April 2016; pp. 1–6. DOI

Martinek R., Konecny J., Koudelka P., Zidek J., Nazeran H. Adaptive Optimization of Control Parameters for Feed-Forward Software Defined Equalization. Wirel. Pers. Commun. 2017;95:4001–4011. doi: 10.1007/s11277-017-4036-3. DOI

Tokgoz S.C., Anous N., Yarkan S., Khalil D., Qaraqe K.A. Performance Improvement of White LED-Based VLC Systems Using Blue and Flattening Filters; Proceedings of the 2019 International Conference on Advanced Communication Technologies and Networking (CommNet); Rabat, Morocco. 12–14 April 2019; pp. 1–6. DOI

Avătămăniței S.A., Căilean A.M., Done A., Dimian M., Prelipceanu M. Noise Resilient Outdoor Traffic Light Visible Light Communications System Based on Logarithmic Transimpedance Circuit: Experimental Demonstration of a 50 m Reliable Link in Direct Sun Exposure. Sensors. 2020;20:909. doi: 10.3390/s20030909. PubMed DOI PMC

Vitasek J., Latal J., Stratil T., Hejduk S., Vanderka A., Hajek L., Kolar J. Purposeful Suppression and Reconstruction of White Light from LED for Improvement of Communication Properties. Adv. Electr. Electron. Eng. 2019;17:74–80. doi: 10.15598/aeee.v17i1.2671. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Review of Fundamental Active Current Extraction Techniques for SAPF

. 2022 Oct 19 ; 22 (20) : . [epub] 20221019

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...