Review of Fundamental Active Current Extraction Techniques for SAPF
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
CZ.02.1.01/0.0/0.0/17_049/0008425
European Regional Development Fund in Research Platform focused on Industry 4.0 and Robotics in the Ostrava project
SP2022/34
Ministry of Education of the Czech Republic
SP2022/88
Ministry of Education of the Czech Republic
PubMed
36298336
PubMed Central
PMC9609040
DOI
10.3390/s22207985
PII: s22207985
Knihovny.cz E-zdroje
- Klíčová slova
- active filtration, harmonic extraction, shunt active power filter, synchronization, total harmonic distortion,
- MeSH
- algoritmy * MeSH
- počítačové zpracování signálu MeSH
- strojové učení MeSH
- umělá inteligence * MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The field of advanced digital signal processing methods is one of the fastest developing scientific and technical disciplines, and is important in the field of Shunt Active Power Filter control methods. Shunt active power filters are highly desirable to minimize losses due to the increase in the number of nonlinear loads (deformed power). Currently, there is rapid development in new adaptive, non-adaptive, and especially hybrid methods of digital signal processing. Nowadays, modern methods of digital signal processing maintain a key role in research and industrial applications. Many of the best practices that have been used to control shunt active power in industrial practice for decades are now being surpassed in favor of new progressive approaches. This systematic research review classifies the importance of using advanced signal processing methods in the field of shunt active power filter control methods and summarizes the extant harmonic extraction methods, from the conventional approach to new progressive methods using genetic algorithms, artificial intelligence, and machine learning. Synchronization techniques are described and compared as well.
Zobrazit více v PubMed
Thakur P. Load Distribution and VFD Topology Selection for Harmonic Mitigation in an Optimal Way. IEEE Trans. Ind. Appl. 2020;56:48–56. doi: 10.1109/TIA.2019.2946111. DOI
Xu Y., Xiao X., Liu H., Wang H. Parallel Operation of Hybrid Active Power Filter with Passive Power Filter or Capacitors; Proceedings of the 2005 IEEE/PES Transmission & Distribution Conference & Exposition: Asia and Pacific; Dalian, China. 18 August 2005; pp. 1–6. DOI
Arritt R.F., Dugan R.C. Distributed Generation Interconnection Transformer and Grounding Selection; Proceedings of the 2008 IEEE Power and Energy Society General Meeting—Conversion and Delivery of Electrical Energy in the 21st Century; Pittsburgh, PA, USA. 20–24 July 2008; pp. 1–7. DOI
Baghzouz Y., Gong X. Analysis of Three-Phase Transformer No-Load Characteristics. IEEE Trans. Power Syst. 1995;10:18–26. doi: 10.1109/59.373923. DOI
Sanjay J.S., Misra B. Power Quality Improvement for Non Linear Load Applications Using Passive Filters; Proceedings of the 2019 3rd International Conference on Recent Developments in Control, Automation & Power Engineering (RDCAPE); Noida, India. 10–11 October 2019; pp. 585–589. DOI
Phannil N., Jettanasen C., Ngaopitakkul A. Harmonics and Reduction of Energy Consumption in Lighting Systems by Using LED Lamps. Energies. 2018;11:3169. doi: 10.3390/en11113169. DOI
Goschler C., editor. Compensation in Practice: The Foundation ‘Remembrance, Responsibility and Future’ and the Legacy of Forced Labour during the Third Reich. 1st ed. Berghahn Books; New York, NY, USA: 2017. DOI
Hansen S., Nielsen P., Blaabjerg F. Harmonic Cancellation by Mixing Nonlinear Single-Phase and Three-Phase Loads. IEEE Trans. Ind. Appl. 2000;36:152–159. doi: 10.1109/28.821810. DOI
Rastogi M., Mohan N., Edris A.A. Hybrid-Active Filtering of Harmonic Currents in Power Systems. IEEE Trans. Power Deliv. 1995;10:1994–2000. doi: 10.1109/61.473352. DOI
Akagi H. Active Harmonic Filters. Proc. IEEE. 2005;93:2128–2141. doi: 10.1109/JPROC.2005.859603. DOI
Duda T. Ph.D. Thesis. Vysoká Škola Báňská-Technická Univerzita Ostrava; Ostrava, Czech Republic: 2015. Robust Algorithms for Control of Dynamic Systems.
Chamrád P. Ph.D. Thesis. Vysoká Škola Báňská-Technická Univerzita Ostrava; Ostrava, Czech Republic: 2019. Optimalization of Parameters of MRAS Observer for Sensorless Control of Asynchronal Motor.
Massoud A., Finney S., Williams B. Review of Harmonic Current Extraction Techniques for an Active Power Filter; Proceedings of the 2004 11th International Conference on Harmonics and Quality of Power (IEEE Cat. No.04EX951); Lake Placid, NY, USA. 12–15 September 2004; pp. 154–159. DOI
Abu Hasim A.S., Talib M.H.N., Ibrahim Z. Comparative Study of Different PWM Control Scheme for Three-Phase Three-Wire Shunt Active Power Filter; Proceedings of the 2012 IEEE International Power Engineering and Optimization Conference; Melaka, Malaysia. 6–7 June 2012; pp. 119–123. DOI
Kim H., Blaabjerg F., Bak-Jensen B., Choi J. Instantaneous Power Compensation in Three-Phase Systems by Using p-q-r Theory; Proceedings of the 2001 IEEE 32nd Annual Power Electronics Specialists Conference (IEEE Cat. No. 01CH37230); Vancouver, BC, Canada. 17–21 June 2001; pp. 478–485. DOI
Montero M.I.M., Cadaval E.R., Gonzalez F.B. Comparison of Control Strategies for Shunt Active Power Filters in Three-Phase Four-Wire Systems. IEEE Trans. Power Electron. 2007;22:229–236. doi: 10.1109/TPEL.2006.886616. DOI
Herrera R.S., Salmerón P., Kim H. Instantaneous Reactive Power Theory Applied to Active Power Filter Compensation: Different Approaches, Assessment, and Experimental Results. IEEE Trans. Ind. Electron. 2008;55:184–196. doi: 10.1109/TIE.2007.905959. DOI
Benhabib M., Saadate S. New Control Approach for Four-Wire Active Power Filter Based on the Use of Synchronous Reference Frame. Electr. Power Syst. Res. 2005;73:353–362. doi: 10.1016/j.epsr.2004.08.012. DOI
Revuelta P.S., Herrera R.S. Application of the Instantaneous Power Theories in Load Compensation with Active Power Filters; Proceedings of the 10th European Conference on Power Electronics and Applications; Toulouse, France. 2–4 September 2003; pp. 2–4.
Salam Z., Tan P.C., Jusoh A. Harmonics Mitigation Using Active Power Filter: A Technological Review. Elektr. J. Electr. Eng. 2006;8:17–26.
Dolen M., Lorenz R. An Industrially Useful Means for Decomposition and Differentiation of Harmonic Components of Periodic Waveforms; Proceedings of the Conference Record of the 2000 IEEE Industry Applications Conference. Thirty-Fifth IAS Annual Meeting and World Conference on Industrial Applications of Electrical Energy (Cat. No.00CH37129); Rome, Italy. 8–12 October 2000; pp. 1016–1023. DOI
Mortezaei A., Lute C., Simoes M.G., Marafao F.P., Boglia A. PQ, DQ and CPT Control Methods for Shunt Active Compensators—A Comparative Study; Proceedings of the 2014 IEEE Energy Conversion Congress and Exposition (ECCE); Pittsburgh, PA, USA. 14–18 September 2014; pp. 2994–3001. DOI
Qasim M., Khadkikar V. Application of Artificial Neural Networks for Shunt Active Power Filter Control. IEEE Trans. Ind. Inform. 2014;10:1765–1774. doi: 10.1109/TII.2014.2322580. DOI
Routhu B., Arun N. PI, FUZZY and ANFIS Control of 3-Phase Shunt Active Power Filter. Int. J. Eng. Technol. (IJET) 2013
Tamboli D.A., Chile R.H. Reference Signal Generation for Shunt Active Power Filter Using Adaptive Filtering Approach; Proceedings of the 2015 International Conference on Industrial Instrumentation and Control (ICIC); Pune, India. 28–30 May 2015; pp. 766–770. DOI
Abdeslam D.O., Wira P., Merckle J., Flieller D., Chapuis Y.A. A Unified Artificial Neural Network Architecture for Active Power Filters. IEEE Trans. Ind. Electron. 2007;54:61–76. doi: 10.1109/TIE.2006.888758. DOI
Abdusalam M., Poure P., Karimi S., Saadate S. New Digital Reference Current Generation for Shunt Active Power Filter under Distorted Voltage Conditions. Electr. Power Syst. Res. 2009;79:759–765. doi: 10.1016/j.epsr.2008.10.009. DOI
Bacon V.D., de Souza V., Padim E.T., da Silva S.A.O. Influence of the PLL Phase-Angle Quality on the Static and Dynamic Performance of Grid-Connected Systems; Proceedings of the 2017 Brazilian Power Electronics Conference (COBEP); Juiz de Fora, Brazil. 19–22 November 2017; pp. 1–6.
Bhattacharya A., Chakraborty C. A Shunt Active Power Filter With Enhanced Performance Using ANN-Based Predictive and Adaptive Controllers. IEEE Trans. Ind. Electron. 2011;58:421–428. doi: 10.1109/TIE.2010.2070770. DOI
Blaabjerg F., Teodorescu R., Liserre M., Timbus A. Overview of Control and Grid Synchronization for Distributed Power Generation Systems. IEEE Trans. Ind. Electron. 2006;53:1398–1409. doi: 10.1109/TIE.2006.881997. DOI
Da Silva S.A.O., Bacon V.D., Campanhol L.B.G., Angélico B.A. An Adaptive Phase-Locked Loop Algorithm for Single-Phase Utility Connected System; Proceedings of the 2013 15th European Conference on Power Electronics and Applications (EPE); Lille, France. 2–6 September 2013; pp. 1–10.
Djazia K., Krim F., Chaoui A., Sarra M. Active Power Filtering Using the ZDPC Method under Unbalanced and Distorted Grid Voltage Conditions. Energies. 2015;8:1584–1605. doi: 10.3390/en8031584. DOI
Elangovan S., Thanushkodi K., Neelakantan P.N. A Two Level Shunt Active Power Filter without Pll for Industrial Loads. Aust. J. Basic Appl. Sci. 2014;8:71–77.
Golestan S., Monfared M., Freijedo F.D. Design-Oriented Study of Advanced Synchronous Reference Frame Phase-Locked Loops. IEEE Trans. Power Electron. 2013;28:765–778. doi: 10.1109/TPEL.2012.2204276. DOI
Han Y., Xu L., Khan M.M., Yao G., Zhou L.D., Chen C. A Novel Synchronization Scheme for Grid-Connected Converters by Using Adaptive Linear Optimal Filter Based PLL (ALOF–PLL) Simul. Model. Pract. Theory. 2009;17:1299–1345. doi: 10.1016/j.simpat.2009.05.004. DOI
Hoon Y., Radzi M.A.M., Hassan M.K., Mailah N.F. Operation of Three-Level Inverter-Based Shunt Active Power Filter Under Nonideal Grid Voltage Conditions With Dual Fundamental Component Extraction. IEEE Trans. Power Electron. 2018;33:7558–7570. doi: 10.1109/TPEL.2017.2766268. DOI
Jaalam N., Rahim N., Bakar A., Tan C., Haidar A.M. A Comprehensive Review of Synchronization Methods for Grid-Connected Converters of Renewable Energy Source. Renew. Sustain. Energy Rev. 2016;59:1471–1481. doi: 10.1016/j.rser.2016.01.066. DOI
McGrath B., Holmes D., Galloway Galloway J. Power Converter Line Synchronization Using a Discrete Fourier Transform (DFT) Based on a Variable Sample Rate. IEEE Trans. Power Electron. 2005;20:877–884. doi: 10.1109/TPEL.2005.850944. DOI
Mohd Zainuri M., Mohd Radzi M., Che Soh A., Mariun N., Abd Rahim N., Hajighorbani S. Fundamental Active Current Adaptive Linear Neural Networks for Photovoltaic Shunt Active Power Filters. Energies. 2016;9:397. doi: 10.3390/en9060397. DOI
Oliveira da Silva S.A., Garcia Campanhol L.B., Goedtel A. Application of Shunt Active Power Filter for Harmonic Reduction and Reactive Power Compensation in Three-Phase Four-Wire Systems. IET Power Electron. 2014;7:2825–2836. doi: 10.1049/iet-pel.2014.0027. DOI
Özerdem Ö.C., Khadem S.K., Biricik S., Basu M., Redif S. Real-Time Control of Shunt Active Power Filter under Distorted Grid Voltage and Unbalanced Load Condition Using Self-Tuning Filter. IET Power Electron. 2014;7:1895–1905. doi: 10.1049/iet-pel.2013.0924. DOI
Radzi M., Rahim N. Neural Network and Bandless Hysteresis Approach to Control Switched Capacitor Active Power Filter for Reduction of Harmonics. IEEE Trans. Ind. Electron. 2009;56:1477–1484. doi: 10.1109/TIE.2009.2013750. DOI
Rahman N.F.A., Radzi M.A.M., Soh A.C., Mariun N., Rahim N.A. Dual Function of Unified Adaptive Linear Neurons Based Fundamental Component Extraction Algorithm for Shunt Active Power Filter Operation. Int. Rev. Electr. Eng. 2015;10:544–552.
Rodriguez P., Pou J., Bergas J., Candela J.I., Burgos R.P., Boroyevich D. Decoupled Double Synchronous Reference Frame PLL for Power Converters Control. IEEE Trans. Power Electron. 2007;22:584–592. doi: 10.1109/TPEL.2006.890000. DOI
Shah M.C., Chauhan S.K., Tekwani P.N., Tiwari R.R. Analysis, Design and Digital Implementation of a Shunt Active Power Filter with Different Schemes of Reference Current Generation. IET Power Electron. 2014;7:627–639. doi: 10.1049/iet-pel.2013.0113. DOI
Shinnaka S. A New Characteristics-Variable Two-Input/Output Filter in D-Module-Designs, Realizations, and Equivalence. IEEE Trans. Ind. Appl. 2002;38:1290–1296. doi: 10.1109/TIA.2002.802896. DOI
Timbus A., Liserre M., Teodorescu R., Blaabjerg F. Synchronization Methods for Three Phase Distributed Power Generation Systems. An Overview and Evaluation; Proceedings of the IEEE 36th Conference on Power Electronics Specialists; Aachen, Germany. 16 June 2005; pp. 2474–2481. DOI
Vainio O., Ovaska S., Polla M. Adaptive Filtering Using Multiplicative General Parameters for Zero-Crossing Detection. IEEE Trans. Ind. Electron. 2003;50:1340–1342. doi: 10.1109/TIE.2003.819565. DOI
Hoon Y., Mohd Radzi M.A., Hassan M.K., Mailah N.F. A Self-Tuning Filter-Based Adaptive Linear Neuron Approach for Operation of Three-Level Inverter-Based Shunt Active Power Filters under Non-Ideal Source Voltage Conditions. Energies. 2017;10:667. doi: 10.3390/en10050667. DOI
Zainuri M., Radzi M.M., Soh A.C., Mariun N., Rahim N.A. Simplified Adaptive Linear Neuron Harmonics Extraction Algorithm for Dynamic Performance of Shunt Active Power Filter. Int. Rev. Model. Simul. 2016;9:144–154.
Girgis A., Chang W., Makram E. A Digital Recursive Measurement Scheme for Online Tracking of Power System Harmonics. IEEE Trans. Power Deliv. 1991;6:1153–1160. doi: 10.1109/61.85861. DOI
Ribeiro R.L.A., Rocha T.O.A., de Sousa R.M., dos Santos E.C., Lima A.M.N. A Robust DC-Link Voltage Control Strategy to Enhance the Performance of Shunt Active Power Filters Without Harmonic Detection Schemes. IEEE Trans. Ind. Electron. 2015;62:803–813. doi: 10.1109/TIE.2014.2345329. DOI
Kumar S.J., Sangeetha P., Charan C.R. Shunt Active Power Filter Control by Instantaneous Reactive Power Compensation; Proceedings of the 2016 International Conference on Signal Processing, Communication, Power and Embedded System (SCOPES); Paralakhemundi, India. 3–5 October 2016; pp. 2012–2016. DOI
Geetha K., Sangeetha B. Performance Evaluation of Conventional and Intelligent Controller Based Shunt Active Filter; Proceedings of the Third International Conference on Computational Intelligence and Information Technology (CIIT 2013); Mumbai, India. 18–19 October 2013; pp. 564–569. DOI
Patjoshi R.K., Mahapatra K.K. Performance Comparison of Direct and Indirect Current Control Techniques Applied to a Sliding Mode Based Shunt Active Power Filter; Proceedings of the 2013 Annual IEEE India Conference (INDICON); Mumbai, India. 13–15 December 2013; pp. 1–5. DOI
Rahman N.A., Nasir N.M., Baharom R. Comparative Study of Direct and Indirect Current Control Algorithms for Shunt Active Power Filter; Proceedings of the 2019 International Conference on Electrical Engineering and Informatics (ICEEI); Bandung, Indonesia. 18 July 2019; pp. 324–329. DOI
Imad A., Hani S.E., Mediouni H., Echchaachouai A. Comparative Analysis on Current Control Methods of Shunt Active Power Filter for the Improvement of Grid Energy Quality; Proceedings of the 2017 International Conference on Electrical and Information Technologies (ICEIT); Rabat, Morocco. 15–18 November 2017; pp. 1–6. DOI
Akagi H., Kanazawa Y., Nabae A. Instantaneous Reactive Power Compensators Comprising Switching Devices without Energy Storage Components. IEEE Trans. Ind. Appl. 1984;IA-20:625–630. doi: 10.1109/TIA.1984.4504460. DOI
Peng F.Z., Lai J.S. Generalized Instantaneous Reactive Power Theory for Three-Phase Power Systems. IEEE Trans. Instrum. Meas. 1996;45:293–297. doi: 10.1109/19.481350. DOI
Nabae A., Tanaka T. A New Definition of Instantaneous Active-Reactive Current and Power Based on Instantaneous Space Vectors on Polar Coordinates in Three-Phase Circuits. IEEE Trans. Power Deliv. 1996;11:1238–1243. doi: 10.1109/61.517477. DOI
Fujita H., Akagi H. The Unified Power Quality Conditioner: The Integration of Series-and Shunt-Active Filters. IEEE Trans. Power Electron. 1998;13:315–322. doi: 10.1109/63.662847. DOI
Peng F.Z., Ott G.W., Adams D.J. Harmonic and Reactive Power Compensation Based on the Generalized Instantaneous Reactive Power Theory for Three-Phase Four-Wire Systems. IEEE Trans. Power Electron. 1998;13:1174–1181. doi: 10.1109/63.728344. DOI
Ghosh A., Joshi A. A New Approach to Load Balancing and Power Factor Correction in Power Distribution System. IEEE Trans. Power Deliv. 2000;15:417–422. doi: 10.1109/61.847283. DOI
Boussaid A., Nemmour A.L., Louze L., Khezzar A. A Novel Strategy for Shunt Active Filter Control. Electr. Power Syst. Res. 2015;123:154–163. doi: 10.1016/j.epsr.2015.02.008. DOI
Büyük M., İnci M., Tan A., Tümay M. Improved Instantaneous Power Theory Based Current Harmonic Extraction for Unbalanced Electrical Grid Conditions. Electr. Power Syst. Res. 2019;177:106014. doi: 10.1016/j.epsr.2019.106014. DOI
Kim H., Akagi H. The Instantaneous Power Theory on the Rotating P-q-r Reference Frames; Proceedings of the IEEE 1999 International Conference on Power Electronics and Drive Systems. PEDS’99 (Cat. No. 99TH8475); Hong Kong, China. 27–29 July 1999; pp. 422–427. DOI
Chebabhi A., Fellah M.K., Benkhoris M.F. Application of PQR Theory for Control of a 3-Phase 4-Wire 4-Legs Shunt Active Power Filter in the αβo-Axes Using 3d-SVM Technique. Leonardo J. Sci. 2015;14:17–28.
Rafiei S.R., Toliyat H., Ghazi R., Gopalarathnam T. An Optimal and Flexible Control Strategy for Active Filtering and Power Factor Correction under Non-Sinusoidal Line Voltages. IEEE Trans. Power Deliv. 2001;16:297–305. doi: 10.1109/61.915499. DOI
Zhao H.J., Pang Y.F., Qiu Z.M., Chen M. Study on UPF Harmonic Current Detection Method Based on DSP. J. Phys. Conf. Ser. 2006;48:1327. doi: 10.1088/1742-6596/48/1/247. DOI
Eid A., Abdel-Salam M., El-Kishky H., El-Mohandes T. Active Power Filters for Harmonic Cancellation in Conventional and Advanced Aircraft Electric Power Systems. Electr. Power Syst. Res. 2009;79:80–88. doi: 10.1016/j.epsr.2008.05.005. DOI
Bhattacharya S., Frank T.M., Divan D.M., Banerjee B. Active Filter System Implementation. IEEE Ind. Appl. Mag. 1998;4:47–63. doi: 10.1109/2943.715508. DOI
Bhattacharya S., Divan D. Synchronous Frame Based Controller Implementation for a Hybrid Series Active Filter System; Proceedings of the In IAS’95. Conference Record of the 1995 IEEE Industry Applications Conference Thirtieth IAS Annual Meeting; Orlando, FL, USA. 8–12 October 1995; pp. 2531–2540. DOI
Da Silva C.H., Pereira R.R., da Silva L.E.B., Lambert-Torres G., Bose B.K., Ahn S.U. A Digital PLL Scheme for Three-Phase System Using Modified Synchronous Reference Frame. IEEE Trans. Ind. Electron. 2010;57:3814–3821. doi: 10.1109/TIE.2010.2040554. DOI
Hoon Y., Radzi M.A.M., Hassan M.K., Mailah N.F. Three-Phase Three-Level Shunt Active Power Filter with Simplified Synchronous Reference Frame; Proceedings of the 2016 IEEE Industrial Electronics and Applications Conference (IEACon); Kota Kinabalu, Malaysia. 20–22 November 2016; pp. 1–6.
Hoon Y., Radzi M.A.M., Hassan M.K., Mailah N.F., Wahab N.I.A. A Simplified Synchronous Reference Frame for Indirect Current Controlled Three-Level Inverter-Based Shunt Active Power Filters. J. Power Electron. 2016;16:1964–1980. doi: 10.6113/JPE.2016.16.5.1964. DOI
Kumar R., Bansal H.O. Real-Time Implementation of Adaptive PV-Integrated SAPF to Enhance Power Quality. Int. Trans. Electr. Energy Syst. 2019;29:e12004. doi: 10.1002/2050-7038.12004. DOI
Msigwa C.J., Kundy B.J., Mwinyiwiwa B.M. Control Algorithm for Shunt Active Power Filter Using Synchronous Reference Frame Theory. World Acad. Sci. Eng. Technol. 2009;58:1828–1834.
Musa S., Radzi M.A.M., Hizam H., Wahab N.I.A., Hoon Y., Zainuri M.A.A.M. Modified Synchronous Reference Frame Based Shunt Active Power Filter with Fuzzy Logic Control Pulse Width Modulation Inverter. Energies. 2017;10:758. doi: 10.3390/en10060758. DOI
Pigazo A., Moreno V.M., Estebanez E.J. A Recursive Park Transformation to Improve the Performance of Synchronous Reference Frame Controllers in Shunt Active Power Filters. IEEE Trans. Power Electron. 2009;24:2065–2075. doi: 10.1109/TPEL.2009.2025335. DOI
Sun B., Dai N.Y., Chio U.F., Wong M.C., Wong C.K., Sin S.W., Seng-Pan U., Martins R.P. FPGA-Based Decoupled Double Synchronous Reference Frame PLL for Active Power Filters; Proceedings of the 2011 6th IEEE Conference on Industrial Electronics and Applications; Beijing, China. 21–23 June 2011; pp. 2145–2150.
Sundaram E., Venugopal M. On Design and Implementation of Three Phase Three Level Shunt Active Power Filter for Harmonic Reduction Using Synchronous Reference Frame Theory. Int. J. Electr. Power Energy Syst. 2016;81:40–47. doi: 10.1016/j.ijepes.2016.02.008. DOI
Mattavelli P. Synchronous-Frame Harmonic Control for High-Performance AC Power Supplies. IEEE Trans. Ind. Appl. 2001;37:864–872. doi: 10.1109/28.924769. DOI
Escobar G., Stankovic A.M., Mattavelli P. An Adaptive Controller in Stationary Reference Frame for D-Statcom in Unbalanced Operation. IEEE Trans. Ind. Electron. 2004;51:401–409. doi: 10.1109/TIE.2004.825270. DOI
Marmouh S., Boutoubat M., Mokrani L. Performance and Power Quality Improvement Based on DC-Bus Voltage Regulation of a Stand-Alone Hybrid Energy System. Electr. Power Syst. Res. 2018;163:73–84. doi: 10.1016/j.epsr.2018.06.004. DOI
De Lacerda de Oliveira L., da Silva L., da Silva V., Torres G., Pinto J. Improving the Dynamic Response of Active Power Filters Based on the Synchronous Reference Frame Method; Proceedings of the APEC, Seventeenth Annual IEEE Applied Power Electronics Conference and Exposition (Cat. No. 02CH37335); Dallas, TX, USA. 10–14 March 2002; pp. 742–748. DOI
Kabir M.A., Mahbub U. Synchronous Detection and Digital Control of Shunt Active Power Filter in Power Quality Improvement; Proceedings of the 2011 IEEE Power and Energy Conference at Illinois; Urbana, IL, USA. 25–26 February 2011; pp. 1–5. DOI
Bajaj M., Rautela S., Sharma A. A Comparative Analysis of Control Techniques of SAPF under Source Side Disturbance; Proceedings of the In 2016 International Conference on Circuit, Power and Computing Technologies (ICCPCT); Nagercoil, India. 18–19 March 2016; pp. 1–7. DOI
Narongrit T., Santiprapan P., Janpong S. A Synchronous Detection with Fourier Analysis for Single-Phase Shunt Active Power Filters; Proceedings of the 2018 5th International Conference on Electric Power and Energy Conversion Systems (EPECS); Kitakyushu, Japan. 23–25 April 2018; pp. 1–6. DOI
Tali M., Essadki A., Nasser T. Harmonic Detection Methods of Shunt Active Power Filter under Unbalanced Loads; Proceedings of the 2016 International Renewable and Sustainable Energy Conference (IRSEC); Marrakech, Morocco. 14–17 November 2016; pp. 1017–1023. DOI
Sujatha C.H., Kusam S., Shekar K.C. Shunt Active Filter Algorithms for a Three Phase System Fed to Adjustable Speed Drive. Int. J. Eng. Sci. Technol. 2011;3:7577–7586.
Tanaka T., Okamoto M., Hiraki E. Control Strategies of Active Power Line Conditioners in Single-Phase Circuits; Proceedings of the 8th International Conference on Power Electronics—ECCE Asia; Jeju, Korea. 30 May–3 June 2011; pp. 1813–1820. DOI
Dongre G.A., Choudhari V.V., Diwan S.P. A Comparison and Analysis of Control Algorithms for Shunt Active Power Filter; Proceedings of the 2015 International Conference on Computation of Power, Energy, Information and Communication (ICCPEIC); Melmaruvathur, Chennai, India. 22–23 April 2015; pp. 129–133. DOI
Jou H.L. New Single-Phase Active Power Filter. IEE Proc.-Electr. Power Appl. 1994;141:129. doi: 10.1049/ip-epa:19949938. DOI
Hsu C., Wu H. A New Single-Phase Active Power Filter with Reduced Energy-Storage Capacity. IEE Proc.-Electr. Power Appl. 1996;143:25. doi: 10.1049/ip-epa:19960205. DOI
Bains B.K., Dhingra A. A Review of Current Control Techniques for Active Power Filter Applications. J. Eng. Econ. Dev. 2018;4:18–22.
Tenti P., Mattavelli P., Morales Paredes H.K. Conservative Power Theory, Sequence Components and Accountability in Smart Grids; Proceedings of the 2010 International School on Nonsinusoidal Currents and Compensation; Lagow, Poland. 15–18 June 2010; pp. 37–45. DOI
Rosa R.B., Vahedi H., Godoy R.B., Pinto J.O.P., Al-Haddad K. Conservative Power Theory Used in NPC-Based Shunt Active Power Filter to Eliminate Electric Metro System Harmonics; Proceedings of the 2015 IEEE Vehicle Power and Propulsion Conference (VPPC); Montreal, QC, Canada. 19–22 October 2015; pp. 1–6. DOI
Haugan T.S., Tedeschi E. Reactive and Harmonic Compensation Using the Conservative Power Theory; Proceedings of the 2015 Tenth International Conference on Ecological Vehicles and Renewable Energies (EVER); Monte Carlo, Monaco. 31 March–2 April 2015; pp. 1–8. DOI
Taher S.A., Alaee M.H., Dehghani Arani Z. Model Predictive Control of PV-Based Shunt Active Power Filter in Single Phase Low Voltage Grid Using Conservative Power Theory; Proceedings of the 2017 8th Power Electronics, Drive Systems & Technologies Conference (PEDSTC); Mashhad, Iran. 14–16 February 2017; pp. 253–258. DOI
Bitoleanu A., Popescu M. Shunt Active Power Filter Overview on the Reference Current Methods Calculation and Their Implementation; Proceedings of the 2013 4th International Symposium on Electrical and Electronics Engineering (ISEEE); Galati, Romania. 11–13 October 2013; pp. 1–12. DOI
Paredes H.K.M., Brandao D.I., Terrazas T.M., Marafao F.P. Shunt Active Compensation Based on the Conservative Power Theory Current’s Decomposition; Proceedings of the XI Brazilian Power Electronics Conference; Natal, Brazil. 11–15 September 2011; pp. 788–794. DOI
Suru C.V., Patrascu A., Linca M. Conservative Power Theory Implementation in Shunt Active Power Filtering; Proceedings of the International School on Nonsinusoidal Currents and Compensation 2013 (ISNCC 2013); Zielona Góra, Poland. 20–21 June 2013; pp. 1–6. DOI
Karbasforooshan M.S., Monfared M. An Adaptive Recursive Discrete Fourier Transform Technique for the Reference Current Generation of Single-Phase Shunt Active Power Filters; Proceedings of the 2016 7th Power Electronics and Drive Systems Technologies Conference (PEDSTC); Tehran, Iran. 16–18 February 2016; pp. 253–259. DOI
Borisov K., Ginn H., Chen G. A Computationally Efficient RDFT-Based Reference Signal Generator for Active Compensators. IEEE Trans. Power Deliv. 2009;24:2396–2404. doi: 10.1109/TPWRD.2009.2016825. DOI
Reza M.S., Ciobotaru M., Agelidis V.G. A Recursive DFT Based Technique for Accurate Estimation of Grid Voltage Frequency; Proceedings of the IECON 2013—39th Annual Conference of the IEEE Industrial Electronics Society; Vienna, Austria. 10–13 November 2013; pp. 6420–6425. DOI
Asiminoael L., Blaabjerg F., Hansen S. Detection Is Key—Harmonic Detection Methods for Active Power Filter Applications. IEEE Ind. Appl. Mag. 2007;13:22–33. doi: 10.1109/MIA.2007.4283506. DOI
Ginn H.L., Chen G. Digital Control Method for Grid-Connected Converters Supplied With Nonideal Voltage. IEEE Trans. Ind. Inform. 2014;10:127–136. doi: 10.1109/TII.2013.2245905. DOI
Kumar R., Bansal H.O. Hardware in the Loop Implementation of Wavelet Based Strategy in Shunt Active Power Filter to Mitigate Power Quality Issues. Electr. Power Syst. Res. 2019;169:92–104. doi: 10.1016/j.epsr.2019.01.001. DOI
Firouzjah K.G., Sheikholeslami A., Karami-Mollaei M.R., Khaleghi M. A New Harmonic Detection Method for Shunt Active Filter Based on Wavelet Transform. J. Appl. Sci. Res. 2008;4:1561–1568.
Driesen J., Belmans R. Active Power Filter Control Algorithms Using Wavelet-Based Power Definitions; Proceedings of the 10th International Conference on Harmonics and Quality of Power. Proceedings (Cat. No. 02EX630); Rio de Janeiro, Brazil. 6–9 October 2002; pp. 466–471. DOI
Aghazadeh A., Niazazari I., Khodabakhshi N., Hosseinian S.H., Abyaneh H.A. A New Method of Single-Phase Active Power Filter for AC Electric Railway System Based on Hilbert Transform; Proceedings of the 2013 IEEE International Conference on Smart Energy Grid Engineering (SEGE); Oshawa, ON, Canada. 28–30 August 2013; pp. 1–7. DOI
Swarnkar N.K., Mahela O.P., Lalwani M. Evaluation of Power Quality in Distribution System with High Penetration of Wind Power Generation; Proceedings of the 2021 Innovations in Power and Advanced Computing Technologies (i-PACT); Kuala Lumpur, Malaysia. 27–29 November 2021; pp. 1–6. DOI
Panigrahi R., Subudhi B. Performance Enhancement of Shunt Active Power Filter Using a Kalman Filter-Based H∞ Control Strategy. IEEE Trans. Power Electron. 2017;32:2622–2630. doi: 10.1109/TPEL.2016.2572142. DOI
Panigrahi R., Panda P.C., Subudhi B.D. New Strategy for Generation of Reference Current in Active Power Filters with Distortion in Line Voltage; Proceedings of the 2012 IEEE 7th International Conference on Industrial and Information Systems (ICIIS); Chennai, India. 6–9 August 2012; pp. 1–5. DOI
Hasim A.S.B.A., Dardin S.M.F.B.S.M., Ibrahim Z.B. Kalman Filters for Reference Current Generation in Shunt Active Power Filter (APF) In: Serra G.L., editor. Kalman Filters—Theory for Advanced Applications. InTech; London, UK: 2018. DOI
Prince S.K., Panda K.P., Kumar V.N., Panda G. Power Quality Enhancement in a Distribution Network Using PSO Assisted Kalman Filter—Based Shunt Active Power Filter; Proceedings of the 2018 IEEMA Engineer Infinite Conference (eTechNxT); New Delhi, India. 13–14 March 2018; pp. 1–6. DOI
Hoffmann N., Fuchs F.W. Minimal Invasive Equivalent Grid Impedance Estimation in Inductive—Resistive Power Networks Using Extended Kalman Filter. IEEE Trans. Power Electron. 2014;29:631–641. doi: 10.1109/TPEL.2013.2259507. DOI
Panigrahi R., Subudhi B., Panda P.C. Model Predictive-based Shunt Active Power Filter with a New Reference Current Estimation Strategy. IET Power Electron. 2015;8:221–233. doi: 10.1049/iet-pel.2014.0276. DOI
Panigrahi R., Patjoshi R.K. Robust Extended Complex Kalman Filter Based LQR Control Strategy of Shunt Active Power Filter. Int. J. Electr. Eng. Inform. 2020;12:278–295. doi: 10.15676/ijeei.2020.12.2.7. DOI
Prince S.K., Panda K.P., Patowary M., Panda G. FPA Tuned Extended Kalman Filter for Power Quality Enhancement in PV Integrated Shunt Active Power Filter; Proceedings of the 2019 International Conference on Computing, Power and Communication Technologies (GUCON); New Delhi, India. 27–28 September 2019; pp. 257–262.
Regulski P., Terzija V. Estimation of Frequency and Fundamental Power Components Using an Unscented Kalman Filter. IEEE Trans. Instrum. Meas. 2012;61:952–962. doi: 10.1109/TIM.2011.2179342. DOI
Anderson J.A., Rosenfeld E. Talking Nets: An Oral History of Neural Networks. MiT Press; Cambridge, MA, USA: 2000.
Dash P., Swain D., Liew A., Rahman S. An Adaptive Linear Combiner for On-Line Tracking of Power System Harmonics. IEEE Trans. Power Syst. 1996;11:1730–1735. doi: 10.1109/59.544635. DOI
Hammer M., Janda O., Ertl J. Selected Soft-Computing Methods in Power Oil Transformer Diagnostics—Part 1. J. Elektrorevue. 2012:1–13.
Martinek R., Žídek J. Refining the Diagnostic Quality of the Abdominal Fetal Electrocardiogram Using the Techniques of Artificial Intelligence. Prz. Elektrotech. 2012;88:155–160.
Shukla A., Tiwari R., Kala R. Towards Hybrid and Adaptive Computing. Volume 307. Springer; Berlin/Heidelberg, Germany: 2010. Studies in Computational Intelligence. DOI
Karthikeyan V.V., Kalpana M. Power Quality Enhancement Using Shunt Active Filter with ANFIS Controller. Int. J. Adv. Inf. Sci. Technol. 2013;2 doi: 10.15693/ijaist/2013.v2i5.21-28. DOI
Martinek R., Manas J., Zidek J., Bilik P. Power Quality Improvement by Shunt Active Performance Filters Emulated by Artificial Intelligence Techniques; Proceedings of the 2nd International Conference on Advances in Computer Science and Engineering; Los Angeles, CA, USA. 1–2 July 2013; Amsterdam, The Netherlands: Atlantis Press; 2013. DOI
Terriche Y., Guerrero J.M., Vasquez J.C. Performance Improvement of Shunt Active Power Filter Based on Non-Linear Least-Square Approach. Electr. Power Syst. Res. 2018;160:44–55. doi: 10.1016/j.epsr.2018.02.004. DOI
Martinek R., Zidek J., Bilik P., Manas J., Koziorek J., Teng Z., Wen H. The Use of LMS and RLS Adaptive Algorithms for an Adaptive Control Method of Active Power Filter. Energy Power Eng. 2013;5:1126–1133. doi: 10.4236/epe.2013.54B215. DOI
Clarkson P.M. Optimal and Adaptive Signal Processing. Routledge; London, UK: 2017.
Martinek R., Rzidky J., Jaros R., Bilik P., Ladrova M. Least Mean Squares and Recursive Least Squares Algorithms for Total Harmonic Distortion Reduction Using Shunt Active Power Filter Control. Energies. 2019;12:1545. doi: 10.3390/en12081545. DOI
Douglas S. A Family of Normalized LMS Algorithms. IEEE Signal Process. Lett. 1994;1:49–51. doi: 10.1109/97.295321. DOI
Trilochan P., Mrutyunjaya M., Kumar P.A., Kumar S.S. Sparse LMS Control Algorithm for Fuel Cell Based SAPF; Proceedings of the 2016 IEEE Uttar Pradesh Section International Conference on Electrical, Computer and Electronics Engineering (UPCON); Varanasi, India. 9–11 December 2016; pp. 72–77. DOI
Martinek R., Bilik P., Baros J., Brablik J., Kahankova R., Jaros R., Danys L., Rzidky J., Wen H. Design of a Measuring System for Electricity Quality Monitoring within the SMART Street Lighting Test Polygon: Pilot Study on Adaptive Current Control Strategy for Three-Phase Shunt Active Power Filters. Sensors. 2020;20:1718. doi: 10.3390/s20061718. PubMed DOI PMC
Pereira R.R., da Silva C.H., da Silva L.E.B., Lambert-Torres G., Pinto J.O.P. Improving the Convergence Time of Adaptive Notch Filters to Harmonic Detection; Proceedings of the IECON 2010—36th Annual Conference on IEEE Industrial Electronics Society; Glendale, AZ, USA. 7–10 November 2010; pp. 521–525. DOI
Brenna M., Lazaroiu G., Superti-Furga G., Tironi E. Bidirectional Front End Converter for DG With Disturbance Insensitivity and Islanding-Detection Capability. IEEE Trans. Power Deliv. 2008;23:907–914. doi: 10.1109/TPWRD.2007.915997. DOI
Choi J.W., Kim Y.K., Kim H.G. Digital PLL Control for Single-Phase Photovoltaic System. IEE Proc.-Electr. Power Appl. 2006;153:40. doi: 10.1049/ip-epa:20045225. DOI
Svensson J. Synchronisation Methods for Grid-Connected Voltage Source Converters. IEE Proc.-Gener. Transm. Distrib. 2001;148:229. doi: 10.1049/ip-gtd:20010101. DOI
Chen L.R. PLL-Based Battery Charge Circuit Topology. IEEE Trans. Ind. Electron. 2004;51:1344–1346. doi: 10.1109/TIE.2004.837891. DOI
Karimi-Ghartemani M., Iravani M. A Nonlinear Adaptive Filter for Online Signal Analysis in Power Systems: Applications. IEEE Trans. Power Deliv. 2002;17:617–622. doi: 10.1109/61.997949. DOI
Karimi-Ghartemani M., Iravani M. A Signal Processing Module for Power System Applications. IEEE Trans. Power Deliv. 2003;18:1118–1126. doi: 10.1109/TPWRD.2003.817514. DOI
Karimi-Ghartemani M., Iravani M. A Method for Synchronization of Power Electronic Converters in Polluted and Variable-Frequency Environments. IEEE Trans. Power Syst. 2004;19:1263–1270. doi: 10.1109/TPWRS.2004.831280. DOI
Bojoi R., Griva G., Bostan V., Guerriero M., Farina F., Profumo F. Current Control Strategy for Power Conditioners Using Sinusoidal Signal Integrators in Synchronous Reference Frame. IEEE Trans. Power Electron. 2005;20:1402–1412. doi: 10.1109/TPEL.2005.857558. DOI
Yuan X., Allmeling J., Merk W., Stemmler H. Stationary Frame Generalized Integrators for Current Control of Active Power Filters with Zero Steady State Error for Current Harmonics of Concern under Unbalanced and Distorted Operation Conditions; Proceedings of the Conference Record of the 2000 IEEE Industry Applications Conference, Thirty-Fifth IAS Annual Meeting and World Conference on Industrial Applications of Electrical Energy (Cat. No. 00CH37129); Rome, Italy. 8–12 October 2000; pp. 2143–2150. DOI
Baros J., Martinek R., Jaros R., Danys L., Soustek L. Development of Application for Control of SMART Parking Lot. IFAC-PapersOnLine. 2019;52:19–26. doi: 10.1016/j.ifacol.2019.12.726. DOI
Kuncicky R., Kolarik J., Soustek L., Kuncicky L., Martinek R. IoT Approach to Street Lighting Control Using MQTT Protocol. In: Zelinka I., Brandstetter P., Trong Dao T., Hoang Duy V., Kim S.B., editors. AETA 2018—Recent Advances in Electrical Engineering and Related Sciences: Theory and Application. Volume 554. Springer International Publishing; Cham, Switzerland: 2020. pp. 429–438. DOI
Baros J., Danys L., Jaros R., Martinek R. Wireless Power Quality Analyser Based on Virtual Instrumentation. IFAC-PapersOnLine. 2019;52:465–472. doi: 10.1016/j.ifacol.2019.12.707. DOI
Danys L., Martinek R., Jaros R., Baros J., Bilik P. Visible Light Communication System Based on Virtual Instrumentation. IFAC-PapersOnLine. 2019;52:311–316. doi: 10.1016/j.ifacol.2019.12.679. DOI
Martinek R., Danys L., Jaros R. Adaptive Software Defined Equalization Techniques for Indoor Visible Light Communication. Sensors. 2020;20:1618. doi: 10.3390/s20061618. PubMed DOI PMC
Martinek R., Danys L., Jaros R., Mozny D., Siska P., Latal J. VLC Channel Equalization Simulator Based on LMS Algorithm and Virtual Instrumentation; Proceedings of the 2019 International Symposium on Advanced Electrical and Communication Technologies (ISAECT); Rome, Italy. 27–29 November 2019; pp. 1–6. DOI
Danys L., Martinek R., Jaros R., Baros J., Bilik P. OFDM VLC System Based on Virtual Instrumentation and SDR. IFAC-PapersOnLine. 2019;52:453–458. doi: 10.1016/j.ifacol.2019.12.705. DOI
Soustek L., Martinek R., Kuncicky R., Danys L., Baros J. Possibilities of Intelligent Camera System Based on Virtual Instrumentation: Technology of Broadband LIGHT for “Smart City” Concept. IFAC-PapersOnLine. 2019;52:170–174. doi: 10.1016/j.ifacol.2019.12.751. DOI
Instrumentation for Verification of Shunt Active Power Filter Algorithms