Instrumentation for Verification of Shunt Active Power Filter Algorithms
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
SP2023/042
Ministry of Education of the Czechia
SP2023/090
Ministry of Education of the Czechia
PubMed
37896587
PubMed Central
PMC10610626
DOI
10.3390/s23208494
PII: s23208494
Knihovny.cz E-zdroje
- Klíčová slova
- LabVIEW, Notch–LMS, Notch–RLS, SAPF, virtual instrumentation,
- Publikační typ
- časopisecké články MeSH
This article presents a comprehensive system for testing and verifying shunt active power filter control methods. The aim of this experimental platform is to provide tools to a user to objectively compare the individual control methods. The functionality of the system was verified on a hardware platform using least mean squares and recursive least squares algorithms. In the experiments, an average relative suppression of the total harmonic distortion of 22% was achieved. This article describes the principle of the shunt active power filter, the used experimental platform of the controlled current injection source, its control system based on virtual instrumentation and control software and ends with experimental verification. The discussion of the paper outlines the extension of the experimental platform with the cRIO RTOS control system to reduce the latency of reference current generation and further planned research including motivation.
Zobrazit více v PubMed
Rudnick H., Dixon J., Moran L. Delivering Clean and Pure Power. IEEE Power Energy Mag. 2003;1:32–40. doi: 10.1109/MPAE.2003.1231689. DOI
Mansoor A., Grady W., Staats P., Thallam R., Doyle M., Samotyj M. Predicting the Net Harmonic Currents Produced by Large Numbers of Distributed Single-Phase Computer Loads. IEEE Trans. Power Deliv. 1995;10:2001–2006. doi: 10.1109/61.473351. DOI
Thakur P. Load Distribution and VFD Topology Selection for Harmonic Mitigation in an Optimal Way. IEEE Trans. Ind. Appl. 2020;56:48–56. doi: 10.1109/TIA.2019.2946111. DOI
Xu Y., Xiao X., Liu H., Wang H. Parallel Operation of Hybrid Active Power Filter with Passive Power Filter or Capacitors; Proceedings of the 2005 IEEE/PES Transmission & Distribution Conference&Exposition: Asia and Pacific; Dalian, China. 18 August 2005; pp. 1–6. DOI
Akagi H. Control Strategy and Site Selection of a Shunt Active Filter for Damping of Harmonic Propagation in Power Distribution Systems. IEEE Trans. Power Deliv. 1997;12:354–363. doi: 10.1109/61.568259. DOI
Das J. Passive Filters—Potentialities and Limitations. IEEE Trans. Ind. Appl. 2004;40:232–241. doi: 10.1109/TIA.2003.821666. DOI
Peng F., Su G.-J., Farquharson G. A Series LC Filter for Harmonic Compensation of AC Drives; Proceedings of the 30th Annual IEEE Power Electronics Specialists Conference, Record. (Cat. No. 99CH36321); Charleston, SC, USA. 1 July 1999; pp. 213–218. DOI
Akagi H. Active Harmonic Filters. Proc. IEEE. 2005;93:2128–2141. doi: 10.1109/JPROC.2005.859603. DOI
Tischer H., Pfeifer T. Hybrid Filter for Dynamic Harmonics Filtering and reduction in Commutation Notches—A Case Study; Proceedings of the 2016 17th International Conference on Harmonics and Quality of Power (ICHQP); Belo Horizonte, Brazil. 16–19 October 2016; pp. 261–265. DOI
Rahmani S., Hamadi A., Al-Haddad K., Dessaint L.A. A Combination of Shunt Hybrid Power Filter and Thyristor-Controlled Reactor for Power Quality. IEEE Trans. Ind. Electron. 2014;61:2152–2164. doi: 10.1109/TIE.2013.2272271. DOI
Rastogi M., Mohan N., Edris A.A. Hybrid-Active Filtering of Harmonic Currents in Power Systems. IEEE Trans. Power Deliv. 1995;10:1994–2000. doi: 10.1109/61.473352. DOI
Singh B., Al-Haddad K., Chandra A. A Review of Active Filters for Power Quality Improvement. IEEE Trans. Ind. Electron. 1999;46:960–971. doi: 10.1109/41.793345. DOI
Baros J., Sotola V., Bilik P., Martinek R., Jaros R., Danys L., Simonik P. Review of Fundamental Active Current Extraction Techniques for SAPF. Sensors. 2022;22:7985. doi: 10.3390/s22207985. PubMed DOI PMC
Hoon Y., Mohd Radzi M., Hassan M., Mailah N. Control Algorithms of Shunt Active Power Filter for Harmonics Mitigation: A Review. Energies. 2017;10:2038. doi: 10.3390/en10122038. DOI
Benhabib M., Saadate S. New Control Approach for Four-Wire Active Power Filter Based on the Use of Synchronous Reference Frame. Electr. Power Syst. Res. 2005;73:353–362. doi: 10.1016/j.epsr.2004.08.012. DOI
Hasim A.S.B.A., Dardin S.M.F.B.S.M., Ibrahim Z.B. Kalman Filters for Reference Current Generation in Shunt Active Power Filter (APF) In: Serra G.L.d.O., editor. Kalman Filters—Theory for Advanced Applications. InTech; London, UK: 2018. DOI
Herrera R.S., SalmerÓn P., Kim H. Instantaneous Reactive Power Theory Applied to Active Power Filter Compensation: Different Approaches, Assessment, and Experimental Results. IEEE Trans. Ind. Electron. 2008;55:184–196. doi: 10.1109/TIE.2007.905959. DOI
Kim H., Akagi H. The Instantaneous Power Theory on the Rotating P-q-r Reference Frames; Proceedings of the IEEE 1999 International Conference on Power Electronics and Drive Systems, PEDS’99 (Cat. No. 99TH8475); Hong Kong, China. 27–29 July 1999; pp. 422–427. DOI
Kim H., Blaabjerg F., Bak-Jensen B., Choi J. Instantaneous Power Compensation in Three-Phase Systems by Using p-q-r Theory; Proceedings of the 2001 IEEE 32nd Annual Power Electronics Specialists Conference (IEEE Cat. No. 01CH37230); Vancouver, BC, Canada. 17–21 June 2001; pp. 478–485. DOI
Massoud A., Finney S., Williams B. Review of Harmonic Current Extraction Techniques for an Active Power Filter; Proceedings of the 2004 11th International Conference on Harmonics and Quality of Power (IEEE Cat. No.04EX951); Lake Placid, NY, USA. 12–15 September 2004; pp. 154–159. DOI
Montero M.I.M., Cadaval E.R., Gonzalez F.B. Comparison of Control Strategies for Shunt Active Power Filters in Three-Phase Four-Wire Systems. IEEE Trans. Power Electron. 2007;22:229–236. doi: 10.1109/TPEL.2006.886616. DOI
Revuelta P.S., Herrera R.S. Application of the Instantaneous Power Theories in Load Compensation with Active Power Filters; Proceedings of the 10th European Conference on Power Electronics and Applications; Toulouse, France. 2–4 September 2003; pp. 2–4.
Salam Z., Tan P.C., Jusoh A. Harmonics Mitigation Using Active Power Filter: A Technological Review. Elektr. J. Electr. Eng. 2006;8:17–26.
Sadigh A.K., Barakati S.M. Active Power Filter with New Compensation Principle Based on Synchronous Reference Frame; Proceedings of the 41st North American Power Symposium; Starkville, MS, USA. 4–6 October 2009; pp. 1–6. DOI
Dolen M., Lorenz R. An Industrially Useful Means for Decomposition and Differentiation of Harmonic Components of Periodic Waveforms; Proceedings of the Conference Record of the 2000 IEEE Industry Applications Conference, Thirty-Fifth IAS Annual Meeting and World Conference on Industrial Applications of Electrical Energy (Cat. No. 00CH37129); Rome, Italy. 8–12 October 2000; pp. 1016–1023. DOI
Girgis A., Chang W., Makram E. A Digital Recursive Measurement Scheme for Online Tracking of Power System Harmonics. IEEE Trans. Power Deliv. 1991;6:1153–1160. doi: 10.1109/61.85861. DOI
Martinek R., Bilik P., Baros J., Brablik J., Kahankova R., Jaros R., Danys L., Rzidky J., Wen H. Design of a Measuring System for Electricity Quality Monitoring within the SMART Street Lighting Test Polygon: Pilot Study on Adaptive Current Control Strategy for Three-Phase Shunt Active Power Filters. Sensors. 2020;20:1718. doi: 10.3390/s20061718. PubMed DOI PMC
Martinek R., Rzidky J., Jaros R., Bilik P., Ladrova M. Least Mean Squares and Recursive Least Squares Algorithms for Total Harmonic Distortion Reduction Using Shunt Active Power Filter Control. Energies. 2019;12:1545. doi: 10.3390/en12081545. DOI
Dash P., Swain D., Liew A., Rahman S. An Adaptive Linear Combiner for On-Line Tracking of Power System Harmonics. IEEE Trans. Power Syst. 1996;11:1730–1735. doi: 10.1109/59.544635. DOI
Wang R., Huang W., Hu B., Du Q., Guo X. Harmonic Detection for Active Power Filter Based on Two-Step Improved EEMD. IEEE Trans. Instrum. Meas. 2022;71:1–10. doi: 10.1109/TIM.2022.3146913. DOI
Chandra A., Singh B., Singh B., Al-Haddad K. An Improved Control Algorithm of Shunt Active Filter for Voltage Regulation, Harmonic Elimination, Power-Factor Correction, and Balancing of Nonlinear Loads. IEEE Trans. Power Electron. 2000;15:495–507. doi: 10.1109/63.844510. DOI
Mortezaei A., Lute C., Simoes M.G., Marafao F.P., Boglia A. PQ, DQ and CPT Control Methods for Shunt Active Compensators—A Comparative Study; Proceedings of the 2014 IEEE Energy Conversion Congress and Exposition (ECCE); Pittsburgh, PA, USA. 14–18 September 2014; pp. 2994–3001. DOI
Gupta N., Singh S.P., Dubey S.P. Fuzzy Logic Controlled Shunt Active Power Filter for Reactive Power Compensation and Harmonic Elimination; Proceedings of the 2011 2nd International Conference on Computer and Communication Technology (ICCCT-2011); Allahabad, India. 15–17 September 2011; pp. 82–87. DOI
Garcia Campanhol L.B., Oliveira da Silva S.A., Goedtel A. Application of Shunt Active Power Filter for Harmonic Reduction and Reactive Power Compensation in Three-phase Four-wire Systems. IET Power Electron. 2014;7:2825–2836. doi: 10.1049/iet-pel.2014.0027. DOI
Kabir M.A., Mahbub U. Synchronous Detection and Digital Control of Shunt Active Power Filter in Power Quality Improvement; Proceedings of the 2011 IEEE Power and Energy Conference at Illinois; Urbana, IL, USA. 25–26 February 2011; pp. 1–5. DOI
Dongre G.A., Choudhari V.V., Diwan S.P. A Comparison and Analysis of Control Algorithms for Shunt Active Power Filter; Proceedings of the 2015 International Conference on Computation of Power, Energy, Information and Communication (ICCPEIC), Melmaruvathur; Chennai, India. 22–23 April 2015; pp. 0129–0133. DOI
Jou H.L. New Single-Phase Active Power Filter. IEE Proc.-Electr. Power Appl. 1994;141:129. doi: 10.1049/ip-epa:19949938. DOI
Tiwari V.K., Umarikar A.C., Jain T. Measurement of Instantaneous Power Quality Parameters Using UWPT and Hilbert Transform and Its FPGA Implementation. IEEE Trans. Instrum. Meas. 2021;70:1–13. doi: 10.1109/TIM.2020.3021769. PubMed DOI
Russo D., Ricci S. FPGA Implementation of a Synchronization Circuit for Arbitrary Trigger Sequences. IEEE Trans. Instrum. Meas. 2020;69:5251–5259. doi: 10.1109/TIM.2019.2952478. DOI
Baros J., Danys L., Jaros R., Martinek R. Wireless Power Quality Analyser Based on Virtual Instrumentation. IFAC-PapersOnLine. 2019;52:465–472. doi: 10.1016/j.ifacol.2019.12.707. DOI
Baros J., Martinek R., Jaros R., Danys L., Soustek L. Development of Application for Control of SMART Parking Lot. IFAC-PapersOnLine. 2019;52:19–26. doi: 10.1016/j.ifacol.2019.12.726. DOI
Sahoo A., Mahmud K., Ravishankar J. An Enhanced Frequency-Adaptive Single-Phase Grid Synchronization Technique. IEEE Trans. Instrum. Meas. 2021;70:1–11. doi: 10.1109/TIM.2021.3070882. PubMed DOI
Tamboli D.A., Chile R.H. Reference Signal Generation for Shunt Active Power Filter Using Adaptive Filtering Approach; Proceedings of the 2015 International Conference on Industrial Instrumentation and Control (ICIC); Pune, India. 28–30 May 2015; pp. 766–770. DOI