The effect of metallic substrates on the optical properties of monolayer MoSe2
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
PubMed
32188877
PubMed Central
PMC7080835
DOI
10.1038/s41598-020-61673-0
PII: 10.1038/s41598-020-61673-0
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Atomically thin materials, like semiconducting transition metal dichalcogenides (S-TMDs), are highly sensitive to the environment. This opens up an opportunity to externally control their properties by changing their surroundings. Photoluminescence and reflectance contrast techniques are employed to investigate the effect of metallic substrates on optical properties of MoSe2 monolayer (ML). The optical spectra of MoSe2 MLs deposited on Pt, Au, Mo and Zr have distinctive metal-related lineshapes. In particular, a substantial variation in the intensity ratio and the energy separation between a negative trion and a neutral exciton is observed. It is shown that using metals as substrates affects the doping of S-TMD MLs. The explanation of the effect involves the Schottky barrier formation at the interface between the MoSe2 ML and the metallic substrates. The alignment of energy levels at the metal/semiconductor junction allows for the transfer of charge carriers between them. We argue that a proper selection of metallic substrates can be a way to inject appropriate types of carriers into the respective bands of S-TMDs.
Zobrazit více v PubMed
Mak KF, Lee C, Hone J, Shan J, Heinz TF. Atomically thin MoS2 : a new direct-gap semiconductor. Physical Review Letters. 2010;105:136805. doi: 10.1103/PhysRevLett.105.136805. PubMed DOI
Ramasubramaniam A. Large excitonic effects in monolayers of molybdenum and tungsten dichalcogenides. Physical Review B. 2012;86:115409. doi: 10.1103/PhysRevB.86.115409. DOI
Raja A, et al. Coulomb engineering of the bandgap and excitons in two-dimensional materials. Nature Communications. 2017;8:15251. doi: 10.1038/ncomms15251. PubMed DOI PMC
Borghardt S, et al. Engineering of optical and electronic band gaps in transition metal dichalcogenide monolayers through external dielectric screening. Physical Review Materials. 2017;1:054001. doi: 10.1103/PhysRevMaterials.1.054001. DOI
Gupta G, Kallatt S, Majumdar K. Direct observation of giant binding energy modulation of exciton complexes in monolayer MoSe2. Phys. Rev. B. 2017;96:081403. doi: 10.1103/PhysRevB.96.081403. DOI
Steinke, C. et al. Noninvasive control of excitons in two-dimensional materials. Phys. Rev. B96, 045431 (2017).
Rosner M, et al. Two-dimensional heterojunctions from nonlocal manipulations of the interactions. Nano Letters. 2016;16:2322–2327. doi: 10.1021/acs.nanolett.5b05009. PubMed DOI
Kang, J. Sarkar, D. Liu, W. Jena, D. & Banerjee, K. A computational study of metal-contacts to beyond-graphene 2D semiconductor materials. In Electron Devices Meeting (IEDM), 2012 IEEE International, 17–4 (IEEE, 2012).
Cakir D, Peeters F. Dependence of the electronic and transport properties of metal-MoSe2 interfaces on contact structures. Physical Review B. 2014;89:245403. doi: 10.1103/PhysRevB.89.245403. DOI
Duan X, Wang C, Pan A, Yu R, Duan X. Two-dimensional transition metal dichalcogenides as atomically thin semiconductors: opportunities and challenges. Chemical Society Reviews. 2015;44:8859–8876. doi: 10.1039/C5CS00507H. PubMed DOI
Radisavljevic B, Radenovic A, Brivio J, Giacometti iV, Kis A. Single-layer MoS2 transistors. Nature Nanotechnology. 2011;6:147–150. doi: 10.1038/nnano.2010.279. PubMed DOI
Perkins FK, et al. Chemical vapor sensing with monolayer MoS2. Nano Letters. 2013;13:668–673. doi: 10.1021/nl3043079. PubMed DOI
Yuan H, et al. Zeeman-type spin splitting controlled by an electric field. Nature Physics. 2013;9:563–569. doi: 10.1038/nphys2691. DOI
Song, Z. et al. Tunable valley polarization and valley orbital magnetic moment hall effect in honeycomb systems with broken inversion symmetry. Scientific Reports5 (2015). PubMed PMC
Kormányos A, et al. k⋅p theory for two-dimensional transition metal dichalcogenide semiconductors. 2D Materials. 2015;2:022001. doi: 10.1088/2053-1583/2/2/022001. DOI
Arora A, Nogajewski K, Molas M, Koperski M, Potemski M. Exciton band structure in layered MoSe2 : from a monolayer to the bulk limit. Nanoscale. 2015;7:20769–20775. doi: 10.1039/C5NR06782K. PubMed DOI
Koperski M, et al. Optical properties of atomically thin transition metal dichalcogenides: observations and puzzles. Nanophotonics. 2017;6:1289–1308. doi: 10.1515/nanoph-2016-0165. DOI
Franken P, Ponec V. Ethylene adsorption on thin films of Ni, Pd, Pt, Cu, Au and Al; work function measurements. Surface Science. 1975;53:341–350. doi: 10.1016/0039-6028(75)90134-X. DOI
Eastman D. Photoelectric work functions of transition, rare-earth, and noble metals. Physical Review B. 1970;2:1. doi: 10.1103/PhysRevB.2.1. DOI
Tonndorf P, et al. Photoluminescence emission and raman response of monolayer MoS2, MoSe2, and WSe2. Optics Express. 2013;21:4908–4916. doi: 10.1364/OE.21.004908. PubMed DOI
Liu T, et al. Crested two-dimensional transistors. Nature nanotechnology. 2019;14:223. doi: 10.1038/s41565-019-0361-x. PubMed DOI
Mignuzzi S, et al. Effect of disorder on raman scattering of single-layer MoS2. Physical Review B. 2015;91:195411. doi: 10.1103/PhysRevB.91.195411. DOI
Gołasa K, et al. The disorder-induced raman scattering in Au/MoS2 heterostructures. Aip Advances. 2015;5:077120. doi: 10.1063/1.4926670. DOI
Gołasa, K. et al. Optical properties of molybdenum disulfide (MoS2). Acta Physica Polonica, A.124, 849 (2013).
Molas M, et al. Brightening of dark excitons in monolayers of semiconducting transition metal dichalcogenides. 2D Materials. 2017;4:021003. doi: 10.1088/2053-1583/aa5521. DOI
Vishwanath S, et al. Comprehensive structural and optical characterization of mbe grown MoSe2 on graphite, CaF2 and graphene. 2D Materials. 2015;2:024007. doi: 10.1088/2053-1583/2/2/024007. DOI
Kang Y, Han S. An origin of unintentional doping in transition metal dichalcogenides: the role of hydrogen impurities. Nanoscale. 2017;9:4265–4271. doi: 10.1039/C6NR08555E. PubMed DOI
Singh A, et al. Coherent electronic coupling in atomically thin MoSe2. Physical Review Letters. 2014;112:216804. doi: 10.1103/PhysRevLett.112.216804. DOI
Ross JS, et al. Electrical control of neutral and charged excitons in a monolayer semiconductor. Nature Communications. 2013;4:1474. doi: 10.1038/ncomms2498. PubMed DOI
Mak KF, He K, Shan J, Heinz TF. Control of valley polarization in monolayer MoS2 by optical helicity. Nature Nanotechnology. 2012;7:494. doi: 10.1038/nnano.2012.96. PubMed DOI
Koperski, M. et al. Orbital, spin and valley contributions to zeeman splitting of excitonic resonances in MoSe2, WSe2 and WS2 monolayers. 2D Materials6, 015001, 10.1088%2F2053-1583%2Faae14b (2018).
Wasey AA, Chakrabarty S, Das G. Substrate induced modulation of electronic, magnetic and chemical properties of MoSe2 monolayer. AIP Advances. 2014;4:047107. doi: 10.1063/1.4871080. DOI
Huang T-X, et al. Probing the edge-related properties of atomically thin MoS2 at nanoscale. Nature Communications. 2019;10:5544. doi: 10.1038/s41467-019-13486-7. PubMed DOI PMC
Wang G, et al. Exciton states in monolayer MoSe2 : impact on interband transitions. 2D Materials. 2015;2:045005. doi: 10.1088/2053-1583/2/4/045005. DOI
Lu J, et al. Identifying and visualizing the edge terminations of single-layer MoSe2 island epitaxially grown on au (111) ACS nano. 2017;11:1689–1695. doi: 10.1021/acsnano.6b07512. PubMed DOI
Ugeda MM, et al. Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor. Nature materials. 2014;13:1091–1095. doi: 10.1038/nmat4061. PubMed DOI
Zhang Q, et al. Bandgap renormalization and work function tuning in MoSe2 /hBN/Ru (0001) heterostructures. Nature communications. 2016;7:1–7. PubMed PMC
Liu Y, Stradins P, Wei S-H. Van der waals metal-semiconductor junction: Weak fermi level pinning enables effective tuning of schottky barrier. Science Advances. 2016;2:e1600069. doi: 10.1126/sciadv.1600069. PubMed DOI PMC
Pan Y, et al. Interfacial properties of monolayer MoSe2 -metal contacts. The Journal of Physical Chemistry C. 2016;120:13063–13070. doi: 10.1021/acs.jpcc.6b02696. DOI
Rosner M, et al. Two-dimensional heterojunctions from nonlocal manipulations of the interactions. Nano Letters. 2016;16:2322–2327. doi: 10.1021/acs.nanolett.5b05009. PubMed DOI
Kioseoglou G, Hanbicki AT, Currie M, Friedman AL, Jonker BT. Optical polarization and intervalley scattering in single layers of MoS2 and MoSe2. Scientific reports. 2016;6:25041. doi: 10.1038/srep25041. PubMed DOI PMC
Huard V, Cox R, Saminadayar K, Arnoult A, Tatarenko S. Bound states in optical absorption of semiconductor quantum wells containing a two-dimensional electron gas. Physical Review Letters. 2000;84:187. doi: 10.1103/PhysRevLett.84.187. PubMed DOI
Mak KF, et al. Tightly bound trions in monolayer MoS2. Nature materials. 2013;12:207. doi: 10.1038/nmat3505. PubMed DOI
Raja, A. et al. Coulomb engineering of the bandgap and excitons in two-dimensional materials. Nature Communications 8 (2017). PubMed PMC
Molas MR, et al. Energy spectrum of two-dimensional excitons in a nonuniform dielectric medium. Phys. Rev. Lett. 2019;123:136801. doi: 10.1103/PhysRevLett.123.136801. PubMed DOI
Hichri A, Jaziri S, Goerbig MO. Charged excitons in two-dimensional transition metal dichalcogenides: Semiclassical calculation of berry curvature effects. Phys. Rev. B. 2019;100:115426. doi: 10.1103/PhysRevB.100.115426. DOI
Xu S, et al. Universal low-temperature ohmic contacts for quantum transport in transition metal dichalcogenides. 2D Materials. 2016;3:021007. doi: 10.1088/2053-1583/3/2/021007. DOI
Das S, Chen H-Y, Penumatcha AV, Appenzeller J. High performance multilayer MoS2 transistors with scandium contacts. Nano letters. 2012;13:100–105. doi: 10.1021/nl303583v. PubMed DOI
Bampoulis P, et al. Defect dominated charge transport and fermi level pinning in MoS2 /metal contacts. ACS applied materials & interfaces. 2017;9:19278–19286. doi: 10.1021/acsami.7b02739. PubMed DOI PMC
Liu Y, Stradins P, Wei S-H. Van der Waals metal-semiconductor junction: Weak fermi level pinning enables effective tuning of Schottky barrier. Science Advances. 2016;2:e1600069. doi: 10.1126/sciadv.1600069. PubMed DOI PMC
Ouyang B, Xiong S, Jing Y. Tunable phase stability and contact resistance of monolayer transition metal dichalcogenides contacts with metal. npj 2D Materials and Applications. 2018;2:13. doi: 10.1038/s41699-018-0059-1. DOI
Castellanos-Gomez A, et al. Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping. 2D Materials. 2014;1:011002. doi: 10.1088/2053-1583/1/1/011002. DOI