Minimal Concentrations of Deoxynivalenol Reduce Cytokine Production in Individual Lymphocyte Populations in Pigs

. 2020 Mar 18 ; 12 (3) : . [epub] 20200318

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid32197345

Grantová podpora
LD15055 Ministerstvo Školství, Mládeže a Tělovýchovy - International
LO1218 Ministerstvo Školství, Mládeže a Tělovýchovy - International
CZ.1.05/2.1.00/19.0385 Ministerstvo Školství, Mládeže a Tělovýchovy - International
RO0518 Ministerstvo Zemědělství - International

Deoxynivalenol (DON) is a mycotoxin frequently found in cereals, and pigs are one of the most sensitive farm species to DON. The aim of this study was to determine the effects of DON in very low doses on peripheral blood mononuclear cells (PBMC) and on particular lymphocyte subpopulations. The cells were exposed to 1, 10 and 100 ng/mL of DON and lymphocyte viability, proliferation, and cytokine (Interleukin (IL)-1β, IL-2, IL-8, IL-17, Interferon (IFN) γ and tumor necrosis factor (TNF) α production were studied. Cells exposed to DON for 5 days in concentrations of 1 and 10 ng/mL showed higher viability compared to control cells. After 18 h of DON (100 ng/mL) exposure, a significantly lower proliferation after mitogen stimulation was observed. In contrast, an increase of spontaneous proliferation induced by DON (100 ng/mL) was detected. After DON exposure, the expression of cytokine genes decreased, with the exception of IL-1β and IL-8, which increased after 18 h exposure to 100 ng/mL of DON. Among lymphocyte subpopulations, helper T-cells and γδ T-cells exhibiting lower production of IL-17, IFNγ and TNFα were most affected by DON exposure (10 ng/mL). These findings show that subclinical doses of DON lead to changes in immune response.

Zobrazit více v PubMed

Rotter B.A. Invited Review: Toxicology of Deoxynivalenol (Vomitoxin) J. Toxicol. Environ. Health. 1996;48:1–34. doi: 10.1080/009841096161447. PubMed DOI

BIOMIN World Mycotoxin Survey the Global Threat 2018 Q1. BIOMIN; Inzersdorf-Getzersdorf, Austria: 2018. pp. 1–5.

Prelusky D.B., Gerdes R.G., Underhill K.L., Rotter B.A., Jui P.Y., Trenholm H.L. Effects of low-level dietary deoxynivalenol on haematological and clinical parameters of the pig. Nat. Toxins. 1994;2:97–104. doi: 10.1002/nt.2620020302. PubMed DOI

Rotter B.A., Prelusky D.B., Pestka J.J. Toxicology of deoxynivalenol (vomitoxin) J. Toxicol. Environ. Health. 1996;48:1–2. doi: 10.1080/009841096161447. PubMed DOI

Trenholm H.L., Hamilton R.M., Friend D.W., Thompson B.K., Hartin K.E. Feeding trials with vomitoxin (deoxynivalenol)-contaminated wheat: Effects on swine, poultry, and dairy cattle. J. Am. Vet. Med. Assoc. 1984;185:527–531. PubMed

King R.R., McQueen R.E., Levesque D., Greenhalgh R. Transformation of deoxynivalenol (vomitoxin) by rumen microorganisms. J. Agric. Food Chem. 1984;32:1181–1183. doi: 10.1021/jf00125a061. DOI

Maresca M. From the gut to the brain: Journey and pathophysiological effects of the food-associated trichothecene mycotoxin deoxynivalenol. Toxins. 2013;5:784–820. doi: 10.3390/toxins5040784. PubMed DOI PMC

Young L.G., McGirr L., Valli V.E., Lumsden J.H., Lun A. Vomitoxin in corn fed to young pigs. J. Anim. Sci. 1983;57:655–664. doi: 10.2527/jas1983.573655x. PubMed DOI

Bergsjø B., Langseth W., Nafstad I., Jansen J.H., Larsen H.J.S. The effects of naturally deoxynivalenol-contaminated oats on the clinical condition, blood parameters, performance and carcass composition of growing pigs. Vet. Res. Commun. 1993;17:283–294. doi: 10.1007/BF01839219. PubMed DOI

Pestka J.J. Deoxynivalenol: Toxicity, mechanisms and animal health risks. Anim. Feed Sci. Technol. 2007;137:283–298. doi: 10.1016/j.anifeedsci.2007.06.006. DOI

Pestka J.J. Deoxynivalenol-induced proinflammatory gene expression: Mechanisms and pathological sequelae. Toxins. 2010;2:1300–1317. doi: 10.3390/toxins2061300. PubMed DOI PMC

Pestka J.J., Smolinski A.T. Deoxynivalenol: Toxicology and Potential Effects on Humans. J. Toxicol. Environ. Health Part B. 2005;8:39–69. doi: 10.1080/10937400590889458. PubMed DOI

Meky F.A., Hardie L.J., Evans S.W., Wild C.P. Deoxynivalenol-induced immunomodulation of human lymphocyte proliferation and cytokine production. Food Chem. Toxicol. 2001;39:827–836. doi: 10.1016/S0278-6915(01)00029-1. PubMed DOI

Dąbrowski M., Jakimiuk E., Baranowski M., Gajȩcka M., Zielonka Ł., Gajȩcki M.T. The effect of deoxynivalenol on selected populations of immunocompetent cells in porcine blood-a preliminary study. Molecules. 2017;22:691. doi: 10.3390/molecules22050691. PubMed DOI PMC

Zhou H.-R., Islam Z., Pestka J.J. Rapid, sequential activation of mitogen-activated protein kinases and transcription factors precedes proinflammatory cytokine mRNA expression in spleens of mice exposed to the trichothecene vomitoxin. Toxicol. Sci. 2003;72:130–142. doi: 10.1093/toxsci/kfg006. PubMed DOI

Ouyang Y.L., Azcona-Olivera J.I., Murtha J., Pestka J.J. Vomitoxin-mediated IL-2, IL-4, and IL-5 superinduction in murine CD4+T cells stimulated with phorbol ester and calcium ionophore: Relation to kinetics of proliferation. Toxicol. Appl. Pharmacol. 1996;138:324–334. doi: 10.1006/taap.1996.0131. PubMed DOI

Severino L., Luongo D., Bergamo P., Lucisano A., Rossi M. Mycotoxins nivalenol and deoxynivalenol differentially modulate cytokine mRNA expression in Jurkat T cells. Cytokine. 2006;36:75–82. doi: 10.1016/j.cyto.2006.11.006. PubMed DOI

Pestka J., Uzarski R., Islam Z. Induction of apoptosis and cytokine production in the Jurkat human T cells by deoxynivalenol: Role of mitogen-activated protein kinases and comparison to other 8-ketotrichothecenes. Toxicology. 2005;206:207–219. doi: 10.1016/j.tox.2004.08.020. PubMed DOI

Azcona-Olivera J.I., Ouyang Y.-L., Warner R.L., Linz J.E., Pestka J.J. Effects of vomitoxin (Deoxynivalenol) and cycloheximide on IL-2, 4, 5 and 6 secretion and mRNA levels in murine CD4+ cells. Food Chem. Toxicol. 1995;33:433–441. doi: 10.1016/0278-6915(95)00012-Q. PubMed DOI

European Commission COMMISSION RECOMMENDATION 2006/576/EC of 17 August 2006 on the presence of deoxynivalenol, zearalenone, ochratoxin A, T-2 and HT-2 and fumonisins in products intended for animal feeding. Off. J. Eur. Union. 2006;229:7–9.

Dänicke S., Beyer M., Breves G., Valenta H., Humpf H.-U. Effects of oral exposure of pigs to deoxynivalenol (DON) sulfonate (DONS) as the non-toxic derivative of DON on tissue residues of DON and de-epoxy-DON and on DONS blood levels. Food Addit. Contam. Part A. 2010;27:1558–1565. doi: 10.1080/19440049.2010.501036. PubMed DOI

Van Limbergen T., Devreese M., Croubels S., Broekaert N., Michiels A., De Saeger S., Maes D. Role of mycotoxins in herds with and without problems with tail necrosis in neonatal pigs. Vet. Rec. 2017;181:1–10. doi: 10.1136/vr.104385. PubMed DOI

Kullik K., Brosig B., Kersten S., Valenta H., Diesing A.-K., Panther P., Reinhardt N., Kluess J., Rothkötter H.-J., Breves G., et al. Interactions between the Fusarium toxin deoxynivalenol and lipopolysaccharides on the in vivo protein synthesis of acute phase proteins, cytokines and metabolic activity of peripheral blood mononuclear cells in pigs. Food Chem. Toxicol. 2013;57:11–20. doi: 10.1016/j.fct.2013.02.050. PubMed DOI

Goyarts T., Dänicke S., Brüssow K.-P., Valenta H., Ueberschär K.-H., Tiemann U. On the transfer of the Fusarium toxins deoxynivalenol (DON) and zearalenone (ZON) from sows to their fetuses during days 35–70 of gestation. Toxicol. Lett. 2007;171:38–49. doi: 10.1016/j.toxlet.2007.04.003. PubMed DOI

Stastny K., Stepanova H., Hlavova K., Faldyna M. Identification and determination of deoxynivalenol (DON) and deepoxy-deoxynivalenol (DOM-1) in pig colostrum and serum using liquid chromatography in combination with high resolution mass spectrometry (LC-MS/MS (HR)) J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2019;1126–1127:121735. doi: 10.1016/j.jchromb.2019.121735. PubMed DOI

Rohweder D., Kersten S., Valenta H., Sondermann S., Schollenberger M., Drochner W., Dänicke S. Bioavailability of the Fusarium toxin deoxynivalenol (DON) from wheat straw and chaff in pigs. Arch. Anim. Nutr. 2013;67:37–47. doi: 10.1080/1745039X.2012.755328. PubMed DOI

Dänicke S., Valenta H., Döll S. On the toxicokinetics and the metabolism of deoxynivalenol (DON) in the pig. Arch. Anim. Nutr. 2004;58:169–180. doi: 10.1080/00039420410001667548. PubMed DOI

Goyarts T., Dänicke S. Bioavailability of the Fusarium toxin deoxynivalenol (DON) from naturally contaminated wheat for the pig. Toxicol. Lett. 2006;163:171–182. doi: 10.1016/j.toxlet.2005.10.007. PubMed DOI

Marin D.E., Taranu I., Manda G., Nagoe I., Oswald I.P. In vitro effect of deoxynivalenol on porcine lymphocyte immune functions. Arch. Zootech. 2006;9:10–18.

Gerez J.R., Pinton P., Callu P., Grosjean F., Oswald I.P., Bracarense A.P.F.L., Ois Grosjean F., Oswald I.P., Paula A., Bracarense F.L. Deoxynivalenol alone or in combination with nivalenol and zearalenone induce systemic histological changes in pigs. Exp. Toxicol. Pathol. 2015;67:89–98. doi: 10.1016/j.etp.2014.10.001. PubMed DOI

Atkinson H.A.C.A., Miller K. Inhibitory effect of deoxynivalenol, 3-acetyldeoxynivalenol and zearalenone on induction of rat and human lymphocyte proliferation. Toxicol. Lett. 1984;23:215–221. doi: 10.1016/0378-4274(84)90129-2. PubMed DOI

Pinton P., Accensi F., Beauchamp E., Cossalter A.-M.M., Callu P., Grosjean F., Oswald I.P. Ingestion of deoxynivalenol (DON) contaminated feed alters the pig vaccinal immune responses. Toxicol. Lett. 2008;177:215–222. doi: 10.1016/j.toxlet.2008.01.015. PubMed DOI

Luongo D., De Luna R., Russo R., Severino L. Effects of four Fusarium toxins (fumonisin B1, α-zearalenol, nivalenol and deoxynivalenol) on porcine whole-blood cellular proliferation. Toxicon. 2008;52:156–162. doi: 10.1016/j.toxicon.2008.04.162. PubMed DOI

Janossy G., Greaves M.F. Lymphocyte activation. II. Discriminating stimulation of lymphocyte subpopulations by phytomitogens and heterologous antilymphocyte sera. Clin. Exp. Immunol. 1972;10:525–536. PubMed PMC

Goyarts T., Dänicke S., Tiemann U., Rothkötter H.J. Effect of the Fusarium toxin deoxynivalenol (DON) on IgA, IgM and IgG concentrations and proliferation of porcine blood lymphocytes. Toxicol. In Vitro. 2006;20:858–867. doi: 10.1016/j.tiv.2005.12.006. PubMed DOI

Taranu I., Marin D.E., Burlacu R., Pinton P., Damian V., Oswald I.P. Comparative aspects of in vitro proliferation of human and porcine lymphocytes exposed to mycotoxins. Arch. Anim. Nutr. 2010;64:383–393. doi: 10.1080/1745039X.2010.492140. PubMed DOI

Pan X., Whitten D.A., Wu M., Chan C., Wilkerson C.G., Pestka J.J. Global protein phosphorylation dynamics during deoxynivalenol-induced ribotoxic stress response in the macrophage. Toxicol. Appl. Pharmacol. 2013;268:201–211. doi: 10.1016/j.taap.2013.01.007. PubMed DOI PMC

Geppert T. Encyclopedia of Immunology. Elsevier; Amsterdam, The Netherlands: 1998. Phytohemagglutinin (PHA) pp. 1952–1953.

Palacios R. Concanavalin A triggers T lymphocytes by directly interacting with their receptors for activation. J. Immunol. 1982;128:337–342. PubMed

Pestka J.J., Zhou H.-R., Moon Y., Chung Y.J. Cellular and molecular mechanisms for immune modulation by deoxynivalenol and other trichothecenes: Unraveling a paradox. Toxicol. Lett. 2004;153:61–73. doi: 10.1016/j.toxlet.2004.04.023. PubMed DOI

Kopecký O., Krejsek J. KlinickáImunologie. 1st ed. Nucleus HK; Hradec Králové, Czech Republic: 2004.

Ghareeb K., Awad W.A., Soodoi C., Sasgary S., Strasser A., Böhm J., Arditi M., Mengheri E., Oswald I. Effects of Feed Contaminant Deoxynivalenol on Plasma Cytokines and mRNA Expression of Immune Genes in the Intestine of Broiler Chickens. PLoS ONE. 2013;8:e71492. doi: 10.1371/journal.pone.0071492. PubMed DOI PMC

Becker C., Reiter M., Pfaffl M.W., Meyer H.H.D., Bauer J., Meyer K.H.D. Expression of immune relevant genes in pigs under the influence of low doses of deoxynivalenol (DON) Mycotoxin Res. 2011;27:287–293. doi: 10.1007/s12550-011-0106-7. PubMed DOI

Baggiolini M., Clark-Lewis I. Interleukin-8, a chemotactic and inflammatory cytokine. FEBS Lett. 1992;307:97–101. doi: 10.1016/0014-5793(92)80909-Z. PubMed DOI

Dinarello C.A. Immunological and Inflammatory Functions of the Interleukin-1 Family. Annu. Rev. Immunol. 2009;27:519–550. doi: 10.1146/annurev.immunol.021908.132612. PubMed DOI

Cano P.M., Seeboth J., Meurens F., Cognie J., Abrami R., Oswald I.P., Guzylack-Piriou L. Deoxynivalenol as a New Factor in the Persistence of Intestinal Inflammatory Diseases: An Emerging Hypothesis through Possible Modulation of Th17-Mediated Response. PLoS ONE. 2013;8:e53647. doi: 10.1371/journal.pone.0053647. PubMed DOI PMC

Vandenbroucke V., Pasmans F., Martel A., Verbrugghe E., Goossens J., Van Deun K., Boyen F., De Backer P., Haesebrouck F., Croubels S. Combined Effects of Deoxynivalenol and Salmonella Typhimurium on Intestinal Inflammation in the Pig. Ghent University; Ghent, Belgium: 2011. p. 22. Mycotoxin Workshop.

Grenier B., Loureiro-Bracarense A.-P., Lucioli J., Pacheco G.D., Cossalter A.-M., Moll W.-D., Schatzmayr G., Oswald I.P. Individual and combined effects of subclinical doses of deoxynivalenol and fumonisins in piglets. Mol. Nutr. Food Res. 2011;55:761–771. doi: 10.1002/mnfr.201000402. PubMed DOI

Schoenborn J.R., Wilson C.B. Regulation of Interferon-γ during innate and adaptive immune responses. Adv. Immunol. 2007;96:41–101. PubMed

Liao W., Lin J.-X., Leonard W.J. IL-2 family cytokines: New insights into the complex roles of IL-2 as a broad regulator of T helper cell differentiation. Curr. Opin. Immunol. 2011;23:598–604. doi: 10.1016/j.coi.2011.08.003. PubMed DOI PMC

Stepanova H., Mensikova M., Chlebova K., Faldyna M. CD4+ and γδTCR+ T lymphocytes are sources of interleukin-17 in swine. Cytokine. 2012;58:152–157. doi: 10.1016/j.cyto.2012.01.004. PubMed DOI

Mehta A.K., Gracias D.T., Croft M. TNF activity and T cells. Cytokine. 2018;101:14–18. doi: 10.1016/j.cyto.2016.08.003. PubMed DOI PMC

Gerner W., Käser T., Saalmüller A. Porcine T lymphocytes and NK cells--an update. Dev. Comp. Immunol. 2009;33:310–320. doi: 10.1016/j.dci.2008.06.003. PubMed DOI

Swamy H.V.L.N., Smith T.K., MacDonald E.J., Karrow N.A., Woodward B., Boermans H.J. Effects of feeding a blend of grains naturally contaminated with Fusarium mycotoxins on growth and immunological measurements of starter pigs, and the efficacy of a polymeric glucomannan mycotoxin adsorbent1. J. Anim. Sci. 2003;81:2792–2803. doi: 10.2527/2003.81112792x. PubMed DOI

Ferrari L., Cantoni A.M., Borghetti P., De Angelis E., Corradi A. Cellular immune response and immunotoxicity induced by DON (deoxynivalenol) in piglets. Vet. Res. Commun. 2009;33:133–135. doi: 10.1007/s11259-009-9265-9. PubMed DOI

Lin Y., Slight S.R., Khader S.A. Th17 cytokines and vaccine-induced immunity. Semin. Immunopathol. 2010;32:79–90. doi: 10.1007/s00281-009-0191-2. PubMed DOI PMC

Vandenbroeck K., Nauwynck H., Vanderpooten A., Van Reeth K., Goddeeris B., Billiau A. Recombinant porcine IFN-γ potentiates the secondary IgG and IgA responses to an inactivated suid Herpesvirus-1 vaccine and reduces postchallenge weight loss and fever in pigs. J. Interferon Cytokine Res. 2009;18:739–744. doi: 10.1089/jir.1998.18.739. PubMed DOI

Chin K.L., Anis F.Z., Sarmiento M.E., Norazmi M.N., Acosta A. Role of Interferons in the Development of Diagnostics, Vaccines, and Therapy for Tuberculosis. J. Immunol. Res. 2017;2017:1–10. doi: 10.1155/2017/5212910. PubMed DOI PMC

Aringer M. Vaccination under TNF blockade—Less effective, but worthwhile. Arthritis Res. Ther. 2012;14:117. doi: 10.1186/ar3808. PubMed DOI PMC

Priebe G.P., Walsh R.L., Cederroth T.A., Kamei A., Coutinho-Sledge Y.S., Goldberg J.B., Pier G.B. IL-17 Is a Critical Component of Vaccine-induced Protection against Lung Infection by LPS-heterologous Strains of Pseudomonas aeruginosa. J. Immunol. 2008;181:4965. doi: 10.4049/jimmunol.181.7.4965. PubMed DOI PMC

Nygard A.-B., Jørgensen C.B., Cirera S., Fredholm M. Selection of reference genes for gene expression studies in pig tissues using SYBR green qPCR. BMC Mol. Biol. 2007;8:67. doi: 10.1186/1471-2199-8-67. PubMed DOI PMC

Pavlova B., Volf J., Ondrackova P., Matiasovic J., Stepanova H., Crhanova M., Karasova D., Faldyna M., Rychlik I. SPI-1-encoded type III secretion system of Salmonella enterica is required for the suppression of porcine alveolar macrophage cytokine expression. Vet. Res. 2011;42:16. doi: 10.1186/1297-9716-42-16. PubMed DOI PMC

Volf J., Boyen F., Faldyna M., Pavlova B., Navratilova J., Rychlik I. Cytokine response of porcine cell lines to Salmonella enterica serovar Typhimurium and its hilA and ssrA mutants. Zoonoses Public Health. 2007;54:286–293. doi: 10.1111/j.1863-2378.2007.01064.x. PubMed DOI

Zelnickova P., Matiasovic J., Pavlova B., Kudlackova H., Kovaru F., Faldyna M. Quantitative nitric oxide production by rat, bovine and porcine macrophages. Nitric Oxide. 2008;19:36–41. doi: 10.1016/j.niox.2008.04.001. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...