Minimal Concentrations of Deoxynivalenol Reduce Cytokine Production in Individual Lymphocyte Populations in Pigs
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
LD15055
Ministerstvo Školství, Mládeže a Tělovýchovy - International
LO1218
Ministerstvo Školství, Mládeže a Tělovýchovy - International
CZ.1.05/2.1.00/19.0385
Ministerstvo Školství, Mládeže a Tělovýchovy - International
RO0518
Ministerstvo Zemědělství - International
PubMed
32197345
PubMed Central
PMC7150743
DOI
10.3390/toxins12030190
PII: toxins12030190
Knihovny.cz E-zdroje
- Klíčová slova
- PBMC, animal health, cytokines, deoxynivalenol, immunotoxicity, lymphocytes, pig, subclinical dose,
- MeSH
- cytokiny biosyntéza genetika MeSH
- exprese genu účinky léků MeSH
- kultivované buňky MeSH
- leukocyty mononukleární účinky léků imunologie MeSH
- podskupiny lymfocytů účinky léků imunologie MeSH
- prasata MeSH
- proliferace buněk účinky léků MeSH
- trichotheceny toxicita MeSH
- viabilita buněk účinky léků MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- cytokiny MeSH
- deoxynivalenol MeSH Prohlížeč
- trichotheceny MeSH
Deoxynivalenol (DON) is a mycotoxin frequently found in cereals, and pigs are one of the most sensitive farm species to DON. The aim of this study was to determine the effects of DON in very low doses on peripheral blood mononuclear cells (PBMC) and on particular lymphocyte subpopulations. The cells were exposed to 1, 10 and 100 ng/mL of DON and lymphocyte viability, proliferation, and cytokine (Interleukin (IL)-1β, IL-2, IL-8, IL-17, Interferon (IFN) γ and tumor necrosis factor (TNF) α production were studied. Cells exposed to DON for 5 days in concentrations of 1 and 10 ng/mL showed higher viability compared to control cells. After 18 h of DON (100 ng/mL) exposure, a significantly lower proliferation after mitogen stimulation was observed. In contrast, an increase of spontaneous proliferation induced by DON (100 ng/mL) was detected. After DON exposure, the expression of cytokine genes decreased, with the exception of IL-1β and IL-8, which increased after 18 h exposure to 100 ng/mL of DON. Among lymphocyte subpopulations, helper T-cells and γδ T-cells exhibiting lower production of IL-17, IFNγ and TNFα were most affected by DON exposure (10 ng/mL). These findings show that subclinical doses of DON lead to changes in immune response.
Zobrazit více v PubMed
Rotter B.A. Invited Review: Toxicology of Deoxynivalenol (Vomitoxin) J. Toxicol. Environ. Health. 1996;48:1–34. doi: 10.1080/009841096161447. PubMed DOI
BIOMIN World Mycotoxin Survey the Global Threat 2018 Q1. BIOMIN; Inzersdorf-Getzersdorf, Austria: 2018. pp. 1–5.
Prelusky D.B., Gerdes R.G., Underhill K.L., Rotter B.A., Jui P.Y., Trenholm H.L. Effects of low-level dietary deoxynivalenol on haematological and clinical parameters of the pig. Nat. Toxins. 1994;2:97–104. doi: 10.1002/nt.2620020302. PubMed DOI
Rotter B.A., Prelusky D.B., Pestka J.J. Toxicology of deoxynivalenol (vomitoxin) J. Toxicol. Environ. Health. 1996;48:1–2. doi: 10.1080/009841096161447. PubMed DOI
Trenholm H.L., Hamilton R.M., Friend D.W., Thompson B.K., Hartin K.E. Feeding trials with vomitoxin (deoxynivalenol)-contaminated wheat: Effects on swine, poultry, and dairy cattle. J. Am. Vet. Med. Assoc. 1984;185:527–531. PubMed
King R.R., McQueen R.E., Levesque D., Greenhalgh R. Transformation of deoxynivalenol (vomitoxin) by rumen microorganisms. J. Agric. Food Chem. 1984;32:1181–1183. doi: 10.1021/jf00125a061. DOI
Maresca M. From the gut to the brain: Journey and pathophysiological effects of the food-associated trichothecene mycotoxin deoxynivalenol. Toxins. 2013;5:784–820. doi: 10.3390/toxins5040784. PubMed DOI PMC
Young L.G., McGirr L., Valli V.E., Lumsden J.H., Lun A. Vomitoxin in corn fed to young pigs. J. Anim. Sci. 1983;57:655–664. doi: 10.2527/jas1983.573655x. PubMed DOI
Bergsjø B., Langseth W., Nafstad I., Jansen J.H., Larsen H.J.S. The effects of naturally deoxynivalenol-contaminated oats on the clinical condition, blood parameters, performance and carcass composition of growing pigs. Vet. Res. Commun. 1993;17:283–294. doi: 10.1007/BF01839219. PubMed DOI
Pestka J.J. Deoxynivalenol: Toxicity, mechanisms and animal health risks. Anim. Feed Sci. Technol. 2007;137:283–298. doi: 10.1016/j.anifeedsci.2007.06.006. DOI
Pestka J.J. Deoxynivalenol-induced proinflammatory gene expression: Mechanisms and pathological sequelae. Toxins. 2010;2:1300–1317. doi: 10.3390/toxins2061300. PubMed DOI PMC
Pestka J.J., Smolinski A.T. Deoxynivalenol: Toxicology and Potential Effects on Humans. J. Toxicol. Environ. Health Part B. 2005;8:39–69. doi: 10.1080/10937400590889458. PubMed DOI
Meky F.A., Hardie L.J., Evans S.W., Wild C.P. Deoxynivalenol-induced immunomodulation of human lymphocyte proliferation and cytokine production. Food Chem. Toxicol. 2001;39:827–836. doi: 10.1016/S0278-6915(01)00029-1. PubMed DOI
Dąbrowski M., Jakimiuk E., Baranowski M., Gajȩcka M., Zielonka Ł., Gajȩcki M.T. The effect of deoxynivalenol on selected populations of immunocompetent cells in porcine blood-a preliminary study. Molecules. 2017;22:691. doi: 10.3390/molecules22050691. PubMed DOI PMC
Zhou H.-R., Islam Z., Pestka J.J. Rapid, sequential activation of mitogen-activated protein kinases and transcription factors precedes proinflammatory cytokine mRNA expression in spleens of mice exposed to the trichothecene vomitoxin. Toxicol. Sci. 2003;72:130–142. doi: 10.1093/toxsci/kfg006. PubMed DOI
Ouyang Y.L., Azcona-Olivera J.I., Murtha J., Pestka J.J. Vomitoxin-mediated IL-2, IL-4, and IL-5 superinduction in murine CD4+T cells stimulated with phorbol ester and calcium ionophore: Relation to kinetics of proliferation. Toxicol. Appl. Pharmacol. 1996;138:324–334. doi: 10.1006/taap.1996.0131. PubMed DOI
Severino L., Luongo D., Bergamo P., Lucisano A., Rossi M. Mycotoxins nivalenol and deoxynivalenol differentially modulate cytokine mRNA expression in Jurkat T cells. Cytokine. 2006;36:75–82. doi: 10.1016/j.cyto.2006.11.006. PubMed DOI
Pestka J., Uzarski R., Islam Z. Induction of apoptosis and cytokine production in the Jurkat human T cells by deoxynivalenol: Role of mitogen-activated protein kinases and comparison to other 8-ketotrichothecenes. Toxicology. 2005;206:207–219. doi: 10.1016/j.tox.2004.08.020. PubMed DOI
Azcona-Olivera J.I., Ouyang Y.-L., Warner R.L., Linz J.E., Pestka J.J. Effects of vomitoxin (Deoxynivalenol) and cycloheximide on IL-2, 4, 5 and 6 secretion and mRNA levels in murine CD4+ cells. Food Chem. Toxicol. 1995;33:433–441. doi: 10.1016/0278-6915(95)00012-Q. PubMed DOI
European Commission COMMISSION RECOMMENDATION 2006/576/EC of 17 August 2006 on the presence of deoxynivalenol, zearalenone, ochratoxin A, T-2 and HT-2 and fumonisins in products intended for animal feeding. Off. J. Eur. Union. 2006;229:7–9.
Dänicke S., Beyer M., Breves G., Valenta H., Humpf H.-U. Effects of oral exposure of pigs to deoxynivalenol (DON) sulfonate (DONS) as the non-toxic derivative of DON on tissue residues of DON and de-epoxy-DON and on DONS blood levels. Food Addit. Contam. Part A. 2010;27:1558–1565. doi: 10.1080/19440049.2010.501036. PubMed DOI
Van Limbergen T., Devreese M., Croubels S., Broekaert N., Michiels A., De Saeger S., Maes D. Role of mycotoxins in herds with and without problems with tail necrosis in neonatal pigs. Vet. Rec. 2017;181:1–10. doi: 10.1136/vr.104385. PubMed DOI
Kullik K., Brosig B., Kersten S., Valenta H., Diesing A.-K., Panther P., Reinhardt N., Kluess J., Rothkötter H.-J., Breves G., et al. Interactions between the Fusarium toxin deoxynivalenol and lipopolysaccharides on the in vivo protein synthesis of acute phase proteins, cytokines and metabolic activity of peripheral blood mononuclear cells in pigs. Food Chem. Toxicol. 2013;57:11–20. doi: 10.1016/j.fct.2013.02.050. PubMed DOI
Goyarts T., Dänicke S., Brüssow K.-P., Valenta H., Ueberschär K.-H., Tiemann U. On the transfer of the Fusarium toxins deoxynivalenol (DON) and zearalenone (ZON) from sows to their fetuses during days 35–70 of gestation. Toxicol. Lett. 2007;171:38–49. doi: 10.1016/j.toxlet.2007.04.003. PubMed DOI
Stastny K., Stepanova H., Hlavova K., Faldyna M. Identification and determination of deoxynivalenol (DON) and deepoxy-deoxynivalenol (DOM-1) in pig colostrum and serum using liquid chromatography in combination with high resolution mass spectrometry (LC-MS/MS (HR)) J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2019;1126–1127:121735. doi: 10.1016/j.jchromb.2019.121735. PubMed DOI
Rohweder D., Kersten S., Valenta H., Sondermann S., Schollenberger M., Drochner W., Dänicke S. Bioavailability of the Fusarium toxin deoxynivalenol (DON) from wheat straw and chaff in pigs. Arch. Anim. Nutr. 2013;67:37–47. doi: 10.1080/1745039X.2012.755328. PubMed DOI
Dänicke S., Valenta H., Döll S. On the toxicokinetics and the metabolism of deoxynivalenol (DON) in the pig. Arch. Anim. Nutr. 2004;58:169–180. doi: 10.1080/00039420410001667548. PubMed DOI
Goyarts T., Dänicke S. Bioavailability of the Fusarium toxin deoxynivalenol (DON) from naturally contaminated wheat for the pig. Toxicol. Lett. 2006;163:171–182. doi: 10.1016/j.toxlet.2005.10.007. PubMed DOI
Marin D.E., Taranu I., Manda G., Nagoe I., Oswald I.P. In vitro effect of deoxynivalenol on porcine lymphocyte immune functions. Arch. Zootech. 2006;9:10–18.
Gerez J.R., Pinton P., Callu P., Grosjean F., Oswald I.P., Bracarense A.P.F.L., Ois Grosjean F., Oswald I.P., Paula A., Bracarense F.L. Deoxynivalenol alone or in combination with nivalenol and zearalenone induce systemic histological changes in pigs. Exp. Toxicol. Pathol. 2015;67:89–98. doi: 10.1016/j.etp.2014.10.001. PubMed DOI
Atkinson H.A.C.A., Miller K. Inhibitory effect of deoxynivalenol, 3-acetyldeoxynivalenol and zearalenone on induction of rat and human lymphocyte proliferation. Toxicol. Lett. 1984;23:215–221. doi: 10.1016/0378-4274(84)90129-2. PubMed DOI
Pinton P., Accensi F., Beauchamp E., Cossalter A.-M.M., Callu P., Grosjean F., Oswald I.P. Ingestion of deoxynivalenol (DON) contaminated feed alters the pig vaccinal immune responses. Toxicol. Lett. 2008;177:215–222. doi: 10.1016/j.toxlet.2008.01.015. PubMed DOI
Luongo D., De Luna R., Russo R., Severino L. Effects of four Fusarium toxins (fumonisin B1, α-zearalenol, nivalenol and deoxynivalenol) on porcine whole-blood cellular proliferation. Toxicon. 2008;52:156–162. doi: 10.1016/j.toxicon.2008.04.162. PubMed DOI
Janossy G., Greaves M.F. Lymphocyte activation. II. Discriminating stimulation of lymphocyte subpopulations by phytomitogens and heterologous antilymphocyte sera. Clin. Exp. Immunol. 1972;10:525–536. PubMed PMC
Goyarts T., Dänicke S., Tiemann U., Rothkötter H.J. Effect of the Fusarium toxin deoxynivalenol (DON) on IgA, IgM and IgG concentrations and proliferation of porcine blood lymphocytes. Toxicol. In Vitro. 2006;20:858–867. doi: 10.1016/j.tiv.2005.12.006. PubMed DOI
Taranu I., Marin D.E., Burlacu R., Pinton P., Damian V., Oswald I.P. Comparative aspects of in vitro proliferation of human and porcine lymphocytes exposed to mycotoxins. Arch. Anim. Nutr. 2010;64:383–393. doi: 10.1080/1745039X.2010.492140. PubMed DOI
Pan X., Whitten D.A., Wu M., Chan C., Wilkerson C.G., Pestka J.J. Global protein phosphorylation dynamics during deoxynivalenol-induced ribotoxic stress response in the macrophage. Toxicol. Appl. Pharmacol. 2013;268:201–211. doi: 10.1016/j.taap.2013.01.007. PubMed DOI PMC
Geppert T. Encyclopedia of Immunology. Elsevier; Amsterdam, The Netherlands: 1998. Phytohemagglutinin (PHA) pp. 1952–1953.
Palacios R. Concanavalin A triggers T lymphocytes by directly interacting with their receptors for activation. J. Immunol. 1982;128:337–342. PubMed
Pestka J.J., Zhou H.-R., Moon Y., Chung Y.J. Cellular and molecular mechanisms for immune modulation by deoxynivalenol and other trichothecenes: Unraveling a paradox. Toxicol. Lett. 2004;153:61–73. doi: 10.1016/j.toxlet.2004.04.023. PubMed DOI
Kopecký O., Krejsek J. KlinickáImunologie. 1st ed. Nucleus HK; Hradec Králové, Czech Republic: 2004.
Ghareeb K., Awad W.A., Soodoi C., Sasgary S., Strasser A., Böhm J., Arditi M., Mengheri E., Oswald I. Effects of Feed Contaminant Deoxynivalenol on Plasma Cytokines and mRNA Expression of Immune Genes in the Intestine of Broiler Chickens. PLoS ONE. 2013;8:e71492. doi: 10.1371/journal.pone.0071492. PubMed DOI PMC
Becker C., Reiter M., Pfaffl M.W., Meyer H.H.D., Bauer J., Meyer K.H.D. Expression of immune relevant genes in pigs under the influence of low doses of deoxynivalenol (DON) Mycotoxin Res. 2011;27:287–293. doi: 10.1007/s12550-011-0106-7. PubMed DOI
Baggiolini M., Clark-Lewis I. Interleukin-8, a chemotactic and inflammatory cytokine. FEBS Lett. 1992;307:97–101. doi: 10.1016/0014-5793(92)80909-Z. PubMed DOI
Dinarello C.A. Immunological and Inflammatory Functions of the Interleukin-1 Family. Annu. Rev. Immunol. 2009;27:519–550. doi: 10.1146/annurev.immunol.021908.132612. PubMed DOI
Cano P.M., Seeboth J., Meurens F., Cognie J., Abrami R., Oswald I.P., Guzylack-Piriou L. Deoxynivalenol as a New Factor in the Persistence of Intestinal Inflammatory Diseases: An Emerging Hypothesis through Possible Modulation of Th17-Mediated Response. PLoS ONE. 2013;8:e53647. doi: 10.1371/journal.pone.0053647. PubMed DOI PMC
Vandenbroucke V., Pasmans F., Martel A., Verbrugghe E., Goossens J., Van Deun K., Boyen F., De Backer P., Haesebrouck F., Croubels S. Combined Effects of Deoxynivalenol and Salmonella Typhimurium on Intestinal Inflammation in the Pig. Ghent University; Ghent, Belgium: 2011. p. 22. Mycotoxin Workshop.
Grenier B., Loureiro-Bracarense A.-P., Lucioli J., Pacheco G.D., Cossalter A.-M., Moll W.-D., Schatzmayr G., Oswald I.P. Individual and combined effects of subclinical doses of deoxynivalenol and fumonisins in piglets. Mol. Nutr. Food Res. 2011;55:761–771. doi: 10.1002/mnfr.201000402. PubMed DOI
Schoenborn J.R., Wilson C.B. Regulation of Interferon-γ during innate and adaptive immune responses. Adv. Immunol. 2007;96:41–101. PubMed
Liao W., Lin J.-X., Leonard W.J. IL-2 family cytokines: New insights into the complex roles of IL-2 as a broad regulator of T helper cell differentiation. Curr. Opin. Immunol. 2011;23:598–604. doi: 10.1016/j.coi.2011.08.003. PubMed DOI PMC
Stepanova H., Mensikova M., Chlebova K., Faldyna M. CD4+ and γδTCR+ T lymphocytes are sources of interleukin-17 in swine. Cytokine. 2012;58:152–157. doi: 10.1016/j.cyto.2012.01.004. PubMed DOI
Mehta A.K., Gracias D.T., Croft M. TNF activity and T cells. Cytokine. 2018;101:14–18. doi: 10.1016/j.cyto.2016.08.003. PubMed DOI PMC
Gerner W., Käser T., Saalmüller A. Porcine T lymphocytes and NK cells--an update. Dev. Comp. Immunol. 2009;33:310–320. doi: 10.1016/j.dci.2008.06.003. PubMed DOI
Swamy H.V.L.N., Smith T.K., MacDonald E.J., Karrow N.A., Woodward B., Boermans H.J. Effects of feeding a blend of grains naturally contaminated with Fusarium mycotoxins on growth and immunological measurements of starter pigs, and the efficacy of a polymeric glucomannan mycotoxin adsorbent1. J. Anim. Sci. 2003;81:2792–2803. doi: 10.2527/2003.81112792x. PubMed DOI
Ferrari L., Cantoni A.M., Borghetti P., De Angelis E., Corradi A. Cellular immune response and immunotoxicity induced by DON (deoxynivalenol) in piglets. Vet. Res. Commun. 2009;33:133–135. doi: 10.1007/s11259-009-9265-9. PubMed DOI
Lin Y., Slight S.R., Khader S.A. Th17 cytokines and vaccine-induced immunity. Semin. Immunopathol. 2010;32:79–90. doi: 10.1007/s00281-009-0191-2. PubMed DOI PMC
Vandenbroeck K., Nauwynck H., Vanderpooten A., Van Reeth K., Goddeeris B., Billiau A. Recombinant porcine IFN-γ potentiates the secondary IgG and IgA responses to an inactivated suid Herpesvirus-1 vaccine and reduces postchallenge weight loss and fever in pigs. J. Interferon Cytokine Res. 2009;18:739–744. doi: 10.1089/jir.1998.18.739. PubMed DOI
Chin K.L., Anis F.Z., Sarmiento M.E., Norazmi M.N., Acosta A. Role of Interferons in the Development of Diagnostics, Vaccines, and Therapy for Tuberculosis. J. Immunol. Res. 2017;2017:1–10. doi: 10.1155/2017/5212910. PubMed DOI PMC
Aringer M. Vaccination under TNF blockade—Less effective, but worthwhile. Arthritis Res. Ther. 2012;14:117. doi: 10.1186/ar3808. PubMed DOI PMC
Priebe G.P., Walsh R.L., Cederroth T.A., Kamei A., Coutinho-Sledge Y.S., Goldberg J.B., Pier G.B. IL-17 Is a Critical Component of Vaccine-induced Protection against Lung Infection by LPS-heterologous Strains of Pseudomonas aeruginosa. J. Immunol. 2008;181:4965. doi: 10.4049/jimmunol.181.7.4965. PubMed DOI PMC
Nygard A.-B., Jørgensen C.B., Cirera S., Fredholm M. Selection of reference genes for gene expression studies in pig tissues using SYBR green qPCR. BMC Mol. Biol. 2007;8:67. doi: 10.1186/1471-2199-8-67. PubMed DOI PMC
Pavlova B., Volf J., Ondrackova P., Matiasovic J., Stepanova H., Crhanova M., Karasova D., Faldyna M., Rychlik I. SPI-1-encoded type III secretion system of Salmonella enterica is required for the suppression of porcine alveolar macrophage cytokine expression. Vet. Res. 2011;42:16. doi: 10.1186/1297-9716-42-16. PubMed DOI PMC
Volf J., Boyen F., Faldyna M., Pavlova B., Navratilova J., Rychlik I. Cytokine response of porcine cell lines to Salmonella enterica serovar Typhimurium and its hilA and ssrA mutants. Zoonoses Public Health. 2007;54:286–293. doi: 10.1111/j.1863-2378.2007.01064.x. PubMed DOI
Zelnickova P., Matiasovic J., Pavlova B., Kudlackova H., Kovaru F., Faldyna M. Quantitative nitric oxide production by rat, bovine and porcine macrophages. Nitric Oxide. 2008;19:36–41. doi: 10.1016/j.niox.2008.04.001. PubMed DOI