Histological aspects of skeletal muscle fibers splitting of C57BL/6NCrl mice

. 2020 Apr 30 ; 69 (2) : 291-296. [epub] 20200323

Jazyk angličtina Země Česko Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32199012

The objective of the current study is to present data on the splitting of skeletal muscle fibers in C57BL/6NCrl mice. Skeletal muscles (m. rectus femoris (m. quadriceps femoris)) from 500 (250 female and 250 male) C57BL/6NCrl mice in the 16th week of life were sampled during autopsy and afterwards standardly histologically processed. Results show spontaneous skeletal muscle fiber splitting which is followed by skeletal muscle fiber regeneration. One solitary skeletal muscle fiber is split, or is in contact with few localized splitting skeletal muscle fibers. Part of the split skeletal muscular fiber is phagocytosed, but the remaining skeletal muscular fiber splits are merged into one regenerating skeletal muscle fiber. Nuclei move from the periphery to the regenerating skeletal muscle fiber center during this process. No differences were observed between female and male mice and the morphometry results document < 1 % skeletal muscle fiber splitting. If skeletal muscular fibers splitting occurs 5 % > of all skeletal muscular fibers, it is suggested to describe and calculate this in the final histopathological report.

Zobrazit více v PubMed

ANTONIO J, GONYEA WJ. Muscle fiber splitting in stretch-enlarged avian muscle. Med Sci Sports Exerc. 1994;26:973–977. doi: 10.1249/00005768-199408000-00007. PubMed DOI

BAGHDADI MB, TAJBAKHSH S. Regulation and phylogeny of skeletal muscle regeneration. Dev Biol. 2018;433:200–209. doi: 10.1016/j.ydbio.2017.07.026. PubMed DOI

CABRAL AJV, MACHADO V, FARINDA R, CABRITA A. Skeletal muscle regeneration: a brief review. Exp Pathol Health Sci. 2008;2:9–17.

BROWN LE. Skeletal muscle fiber hyperplasia: Why it can or cannot occur in humans. Strength Cond J. 2000;22:28–29. doi: 10.1519/00126548-200004000-00008. DOI

ERIKSSON A, LINDSTROM M, CARLSSON L, THORNELL LE. Hypertrophic muscle fibers with fissures in power-lifters; fibers splitting or defect regeneration? Histochem Cell Biol. 2006;126:409–417. doi: 10.1007/s00418-006-0176-3. PubMed DOI

FABER RM, HALL JK, CHAMBERLAIN JS, BANKS GB. Myofiber branching rather than myofiber hyperplasia contributes to muscle hypertrophy in mdx mice. Skeletal Muscle. 2014;23:10. doi: 10.1186/2044-5040-4-10. PubMed DOI PMC

FAZARINC G, CANDEK-POTOKAR M, URSIC M, VRECL M, POGACNIK A. Giant muscle fibres in pigs with different Ryr1 genotype. Anat Histol Embryol. 2002;31:367–371. doi: 10.1046/j.1439-0264.2002.00420.x. PubMed DOI

FILIP S, MOKRY J, FOROSTYAK O, DAYANITHI G. Analysis of Ca(2+) signaling mechanisms – our experience on the intercellular communication in muscle remodeling. Physiol Res. 2019;68:325–328. doi: 10.33549/physiolres.934082. PubMed DOI

FORCINA L, MIANO C, PELOSI L, MUSARO A. An overview about the biology of skeletal muscle Satellite cells. Curr Genomics. 2019;20:24–37. doi: 10.2174/1389202920666190116094736. PubMed DOI PMC

CHARGE SB, RUDNICKI MA. Cellular and molecular regulation of muscle regeneration. Physiol Rev. 2004;84:209–238. doi: 10.1152/physrev.00019.2003. PubMed DOI

CHEN F, ZHOU J, LI Y, ZHAO Y, CAO Y, WANG L, ZHANG Z, ZHANG B, WANG CC, CHEUNG TH, WU Z, WONG CC, SUN H, WANG H. YY1 regulates skeletal muscle regeneration through controlling metabolic reprogramming of Satellite cells. EMBO J. 2019;38:99727. doi: 10.15252/embj.201899727. PubMed DOI PMC

HOLECEK M, MICUDA S. Amino acid concentrations and protein metabolism of two types of rat skeletal muscle in postprandial state and after brief starvation. Physiol Res. 2017;66:959–967. doi: 10.33549/physiolres.933638. PubMed DOI

KINTER J, SINNREICH M. Molecular targets to treat muscular dystrophies. Swiss Med Wkly. 2014;144:13916. doi: 10.4414/smw.2014.13916. PubMed DOI

KIRIAEV L, KUEH S, MORLEY JW, NORTH KN, HOUWELING PJ, HEAD SI. Branched fibers from old fast-twitch dystrophic muscles are the sites of terminal damage in muscular dystrophy. Am J Physiol Cell Physiol. 2018;314:C662–C664. doi: 10.1152/ajpcell.00161.2017. PubMed DOI

LI XY, FU LL, CHENG HJ, ZHAO SH. Advances on microRNA in regulating mammalian skeletal muscle development. Yi Chuan. 2017;39:1046–1053. doi: 10.16288/j.yczz.17-112. PubMed DOI

LIU J, SAUL D, BOKER KO, ERNST J, LEHMAN W, SCHILLING AF. Current methods for skeletal muscle tissue repair and regeneration. BioMed Res Int. 2018;1:1984897. doi: 10.1155/2018/1984879. PubMed DOI PMC

LIU X, ZENG Z, ZHAO L, CHEN P, XIAO W. Impaired skeletal muscle regeneration induced by macrophage depletion could be partly ameliorated by MGF injection. Front Physiol. 2019;10:601. doi: 10.3389/fphys.2019.00601. PubMed DOI PMC

MAKOVICKY P. Histological study of giant fibres in skeletal muscles of pigs. Fleischwirt Int. 2010;25:966–968.

MAKOVICKY P, MAKOVICKY P, LIPPAI R, SZIKSZ E, SAMASCA G. A harántcsíkolt izomrostok fejlődése és növekedése. (In Hungarian) Magy Allatorvosok. 2015;137:559–567.

MAXIE G. Jubb, Kenedy, and Palmers Pathology of domestic animals. St. Louis: Elsevier; 2010. p. 798.

MEEHAN TF, CONTE N, WEST DB, JACOBSEN JO, MASON J, WARREN J, CHEN CK, TUDOSE I, RELAC M, MATTHEWS P, et al. Disease model discovery from 3,328 gene knockouts by The International Mouse Phenotyping Consortium. Nat Genet. 2017;8:1231–1238. doi: 10.1038/ng.3901. PubMed DOI PMC

MORIMOTO Y, KONDO Y, KATAOKA H, HONDA Y, KOZU R, SAKAMOTO J, NAKANO J, ORIGUCHI T, YOSHIMURA T, OKITA M. Heat treatment inhibits skeletal muscle atrophy of glucocorticoid-induced myopathy in rats. Physiol Res. 2015;64:897–905. PubMed

MURACH KA, DUNGAN CM, PETERSON CA, McCARTHY JJ. Muscle fiber splitting is a physiological response to extreme loading in animals. Exerc Sport Sci Rev. 2019;47:108–115. doi: 10.1249/JES.0000000000000181. PubMed DOI PMC

OHNO Y, EGAWA T, YOKOYAMA S, FUJAYA H, SUGIURA T, OHIRA Y, YOSHIOKA T, GOTO K. MENS-associated increase of muscular protein content via modulation of caveolin-3 and TRIM72. Physiol Res. 2019;68:265–273. doi: 10.33549/physiolres.933992. PubMed DOI

SILES L, NINFALI C, CORTES M, DARLING DS, POSTIGO A. ZEB1 protects skeletal muscle from damage and is required for its regeneration. Nat Commun. 2019;10:1364. doi: 10.1038/s41467-019-08983-8. PubMed DOI PMC

WENS I, DALGAS U, VERBOVEN K, KOSTEN L, STEVENS A, HENS N, EIJNDE BO. Impact of high intensity exercise on muscle morphology in EAE rats. Physiol Res. 2015;64:907–923. PubMed

WOSCZYNA MN, KONISHI CT, PEREZ CARBAJAL EE, WANG TT, WALSH RA, GAN Q, WAGNER MW, RANDO TA. Mesenchymal stromal cells are required for regeneration and homeostatic maintenance of skeletal muscles. Cell Rep. 2019;27:2029–2035. doi: 10.1016/j.celrep.2019.04.074. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...