Dramatic changes in the electrochemical and spectroscopic behavior of DNA fragments induced by the loss of a single nucleotide
Language English Country Netherlands Media print-electronic
Document type Journal Article
PubMed
32200262
DOI
10.1016/j.bioelechem.2020.107515
PII: S1567-5394(20)30010-4
Knihovny.cz E-resources
- Keywords
- CD spectra, Duplex, GA mismatches, Hairpin, Oligodeoxynucleotide structure, Voltammetry,
- MeSH
- Circular Dichroism MeSH
- DNA chemistry genetics metabolism MeSH
- Electrochemistry MeSH
- Guanine analogs & derivatives metabolism MeSH
- Polymorphism, Single Nucleotide * MeSH
- Molecular Conformation MeSH
- Models, Molecular MeSH
- Base Sequence MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- 7,8-dihydro-8-oxoguanine MeSH Browser
- DNA MeSH
- Guanine MeSH
In this paper, the d(GCGAAGC) heptamer and the closely related d(GCGAGC) hexamer are examined via electrochemical (cyclic voltammetry) and spectroscopic (circular dichroism) methods. Dramatic changes in the CD spectroscopic and CV electrochemical properties, induced by the loss of only one single nucleotide (A), are detected. The CD spectra and native polyacrylamide gel electrophoresis (PAGE) confirmed structural changes taking place in the relevant chain-like oligodeoxynucleotide assemblies. Dedicated studies suggest that the heptamer (Hp) possesses a hairpin structure, whereas the hexamer (Hx) appears to be rather a duplex. Both of the structures exhibited completely different adsorption behavior at the hanging mercury drop electrode, and this factor was readily confirmed by means of elimination voltammetry with linear scan (EVLS). We established that the Hp hairpin (~-1300 mV), compared to the Hx duplex (~-1360 mV), is the thermodynamically favored electron acceptor. The adsorption isotherms were constructed based on the voltammetric peak height values, reflecting the reduction of the adenine (A) and cytosine (C) moieties as well as the oxidation of the 7,8-dihydroguanine (7,8-DHG) moieties. Finally, as revealed by the spectroscopic and electrochemical results, Hx forms a bimolecular antiparallel homo-duplex carrying both Watson-Crick base pairs (CG or GC) and mismatched edge-to-edge base pairs (GA or AG).
References provided by Crossref.org