Cardiac effects of repeated focal seizures in rats induced by intrahippocampal tetanus toxin: Bradyarrhythmias, tachycardias, and prolonged interictal QT interval
Language English Country United States Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
Grant support
James Lewis Foundation P1402
Epilepsy Research UK - International
Ivan Osorio, Kansas University - International
PubMed
32201948
DOI
10.1111/epi.16479
Knihovny.cz E-resources
- Keywords
- QT correction, QT prolongation, cardiac dysfunction, epilepsy,
- MeSH
- Bradycardia etiology MeSH
- Electrocardiography MeSH
- Electrocorticography MeSH
- Rats MeSH
- Sudden Unexpected Death in Epilepsy etiology MeSH
- Neurotoxins toxicity MeSH
- Rats, Wistar MeSH
- Tachycardia etiology MeSH
- Tetanus Toxin toxicity MeSH
- Seizures chemically induced complications physiopathology MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Male MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Neurotoxins MeSH
- Tetanus Toxin MeSH
OBJECTIVE: To determine electrical changes in the heart in a chronic, nonstatus model of epilepsy. METHODS: Electrocorticography (ECoG) and electrocardiography (ECG) of nine animals (five made epileptic by intrahippocampal injection of tetanus neurotoxin (TeNT) and four controls), are monitored continuously by radiotelemetry for up to 7 weeks. RESULTS: Epileptic animals develop a median of 168 seizures, with postictal tachycardias reaching a mean of 487 beats/min and lasting a mean of 661 seconds. Ictal changes in heart rate include tachycardia and in the case of convulsive seizures, bradyarrhythmias resembling Mobitz type 1 second-degree atrioventricular block; notably the P-R interval increased before block. Postictally, the amplitude of T wave increases. Interictally, QT dependence on RR is modest and conventional QT corrections prove ineffective. Interictal QT intervals, measured at a heart rate of 400 bpm, increased from 65 to 75 ms, an increase dependent on seizure incidence over the preceding 10-14 days. SIGNIFICANCE: Repeated seizures induce a sustained tachycardia and increase in QT interval of the ECG and evoke arrhythmias including periods of atrioventricular block during Racine type 4 and 5 seizures. These changes in cardiac function may predispose to development in fatal arrhythmias and sudden death in humans with epilepsy.
Department of Pharmacology Oxford University Oxford UK
Department of Physiology 2nd Medical School Motol Charles University Prague Czech Republic
School of Biomedical Engineering Purdue University West Lafayette Indiana
School of Clinical and Experimental Medicine The University of Birmingham Birmingham UK
School of Physiology Pharmacology and Neuroscience The University of Bristol Bristol UK
See more in PubMed
Ryvlin P, Nashef L, Lhatoo SD, Bateman LM, Bird J, Bleasel A, et al. Incidence and mechanisms of cardiorespiratory arrests in epilepsy monitoring units (MORTEMUS): a retrospective study. Lancet Neurol. 2013;12:966-77.
Surges R, Scott CA, Walker MC. Enhanced QT shortening and persistent tachycardia after generalized seizures. Neurology. 2010;74:421-6.
Brotherstone R, Blackhall B, McLellan A. Lengthening of corrected QT during epileptic seizures. Epilepsia. 2010;51:221-32.
Lamberts RJ, Blom MT, Novy J, Belluzzo M, Seldenrijk A, Penninx BW, et al. Increased prevalence of ECG markers for sudden cardiac arrest in refractory epilepsy. J Neurol Neurosurg Psychiatry. 2015;86:309-13.
Neufeld G, Lazar JM, Chari G, Kamran H, Akajagbor E, Salciccioli L, et al. Cardiac repolarization indices in epilepsy patients. Cardiology. 2009;114:255-60.
Stewart M. An explanation for sudden death in epilepsy (SUDEP). J Physiol Sci. 2018;68:307-20.
Powell KL, Jones NC, Kennard JT, Ng C, Urmaliya V, Lau S, et al. HCN channelopathy and cardiac electrophysiologic dysfunction in genetic and acquired rat epilepsy models. Epilepsia. 2014;55:609-20.
Brewster AL, Marzec K, Hairston A, Ho M, Anderson AE, Lai YC. Early cardiac electrographic and molecular remodeling in a model of status epilepticus and acquired epilepsy. Epilepsia. 2016;57:1907-15.
Bealer SL, Little JG. Seizures following hippocampal kindling induce QT interval prolongation and increased susceptibility to arrhythmias in rats. Epilepsy Res. 2013;105:216-9.
Surges R, Adjei P, Kallis C, Erhuero J, Scott CA, Bell GS, et al. Pathologic cardiac repolarization in pharmacoresistant epilepsy and its potential role in sudden unexpected death in epilepsy: A case-control study. Epilepsia. 2010;51:233-42.
Manolis TA, Manolis AA, Melita H, Manolis AS. Sudden unexpected death in epilepsy: the neuro-cardio-respiratory connection. Seizure. 2019;64:65-73.
Rugg-Gunn FJ, Simister RJ, Squirrell M, Holdright DR, Duncan JS. Cardiac arrhythmias in focal epilepsy: a prospective long-term study. Lancet. 2004;364:2212-9.
Lidster K, Jefferys JG, Blümcke I, Crunelli V, Flecknell P, Frenguelli BG, et al. Opportunities for improving animal welfare in rodent models of epilepsy and seizures. J Neurosci Methods. 2016;260:2-25.
Auzmendi J, Buchholz B, Salguero J, Cañellas C, Kelly J, Men P, et al. Pilocarpine-induced status epilepticus is associated with P-glycoprotein induction in cardiomyocytes, electrocardiographic changes, and sudden death. Pharmaceuticals (Basel). 2018;11(1):21.
Lai YC, Li N, Lawrence W, Wang S, Levine A, Burchhardt DM, et al. Myocardial remodeling and susceptibility to ventricular tachycardia in a model of chronic epilepsy. Epilepsia Open. 2018;3:213-23.
Little JG, Bealer SL. Beta adrenergic blockade prevents cardiac dysfunction following status epilepticus in rats. Epilepsy Res. 2012;99:233-9.
Jefferys JGR, Arafat MA, Irazoqui PP, Lovick TA. Brainstem activity, apnea, and death during seizures induced by intrahippocampal kainic acid in anaesthetized rats. Epilepsia. 2019;60(12):2346-58.
Ferecskó AS, Jiruska P, Foss L, Powell AD, Chang WC, Sik A, et al. Structural and functional substrates of tetanus toxin in an animal model of temporal lobe epilepsy. Brain Struct Funct. 2015;220:1013-29.
Walker MC, Jefferys JGR, Wykes RC. Tetanus toxin. In Pitkanen A, Buckmaster PS, Galanopoulou AS, et al. (Eds) Models of Seizures and Epilepsy, 2nd Edn, 2017; p. 589-98.
Kmecova J, Klimas J. Heart rate correction of the QT duration in rats. Eur J Pharmacol. 2010;641:187-92.
Botelho AFM, Joviano-Santos JV, Santos-Miranda A, Menezes-Filho JER, Soto-Blanco B, Cruz JS, et al. Non-invasive ECG recording and QT interval correction assessment in anesthetized rats and mice. Pesqui Vet Bras. 2019;39:409-15.
Paxinos G, Watson C. The Rat Brain in Stereotaxic Coordinates. London, UK: Academic Press, 1998.
Pan J, Tompkins WJ. A Real-Time QRS Detection Algorithm. IEEE Trans Biomed Eng. 1985;32:230-6.
Malik M, Garnett C, Hnatkova K, Johannesen L, Vicente J, Stockbridge N. Importance of QT/RR hysteresis correction in studies of drug-induced QTc interval changes. J Pharmacokinet Pharmacodyn. 2018;45:491-503.
Molnar J, Zhang F, Weiss J, Ehlert FA, Rosenthal JE. Diurnal pattern of QTc interval: How long is prolonged? Possible relation to circadian triggers of cardiovascular events. J Am Coll Cardiol. 1996;27:76-83.
Smetana P, Batchvarov V, Hnatkova K, Camm AJ, Malik M. Circadian rhythm of the corrected QT interval: impact of different heart rate correction models. Pacing Clin Electrophysiol. 2003;26:383-6.
Seyal M, Bateman LM, Li CS. Impact of periictal interventions on respiratory dysfunction, postictal EEG suppression, and postictal immobility. Epilepsia. 2013;54:377-82.
Langendorf R, Pick A. Atrioventricular block, type II (Mobitz)-its nature and clinical significance. Circulation. 1968;38:819-21.
Funck-Brentano C, Jaillon P. Rate-corrected QT interval: techniques and limitations. Am J Cardiol. 1993;72:17b-22b.
Roussel J, Champeroux P, Roy J, Richard S, Fauconnier J, Le Guennec J-Y, et al. The complex QT/RR relationship in mice. Sci Rep. 2016;6:25388.
Hayes E, Pugsley MK, Penz WP, Adaikan G, Walker MJA. Relationship between QaT and RR intervals in rats, guinea pigs, rabbits, and primates. J Pharmacol Toxicol Methods. 1994;32:201-7.
Ravindran K, Powell KL, Todaro M, O'Brien TJ. The pathophysiology of cardiac dysfunction in epilepsy. Epilepsy Res. 2016;127:19-29.
Scattolini M, Scorza CA, Cavalheiro EA, de Almeida AC, Scorza FA. Tachycardia and SUDEP: reassuring news about beta blockers. Epilepsy Behav. 2013;27:510-2.
Sakamoto K, Saito T, Orman R, Koizumi K, Lazar J, Salciccioli L, et al. Autonomic consequences of kainic acid-induced limbic cortical seizures in rats: peripheral autonomic nerve activity, acute cardiovascular changes, and death. Epilepsia. 2008;49:982-96.
Barot N, Nei M. Autonomic aspects of sudden unexpected death in epilepsy (SUDEP). Clin Auton Res. 2019;29:151-60.
Page T, Rugg-Gunn FJ. Bitemporal seizure spread and its effect on autonomic dysfunction. Epilepsy Behav. 2018;84:166-72.
Hotta H, Koizumi K, Stewart M. Cardiac sympathetic nerve activity during kainic acid-induced limbic cortical seizures in rats. Epilepsia. 2009;50:923-7.
Schiereck P, Sanna N, Mosterd WL. AV blocking due to asynchronous vagal stimulation in rats. Am J Physiol Heart Circ Physiol. 2000;278:H67-73.
Nakase K, Kollmar R, Lazar J, Arjomandi H, Sundaram K, Silverman J, et al. Laryngospasm, central and obstructive apnea during seizures: Defining pathophysiology for sudden death in a rat model. Epilepsy Res. 2016;128:126-39.
Toyoda I, Bower MR, Leyva F, Buckmaster PS. Early activation of ventral hippocampus and subiculum during spontaneous seizures in a rat model of temporal lobe epilepsy. J Neurosci. 2013;33:11100-15.
Schwaber J, Kapp B, Higgins G, Rapp P. Amygdaloid and basal forebrain direct connections with the nucleus of the solitary tract and the dorsal motor nucleus. J Neurosci. 1982;2:1424-38.
Cassell MD, Gray TS. The amygdala directly innervates adrenergic (C1) neurons in the ventrolateral medulla in the rat. Neurosci Lett. 1989;97:163-8.
Allen LA, Harper RM, Kumar R, Guye M, Ogren JA, Lhatoo SD, et al. Dysfunctional brain networking among autonomic regulatory structures in temporal lobe epilepsy patients at high risk of sudden unexpected death in epilepsy. Front Neurol. 2017;8:544.