The Piezoresistive Highly Elastic Sensor Based on Carbon Nanotubes for the Detection of Breath
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
NPU I LO1504
Ministerstvo Školství, Mládeže a Tělovýchovy
CZ.1.05/2.1.00/19.0409
European Regional Development Fund
PubMed
32210067
PubMed Central
PMC7183263
DOI
10.3390/polym12030713
PII: polym12030713
Knihovny.cz E-zdroje
- Klíčová slova
- CNTs, carbon nanotubes, elastic sensor, monitoring of breathing, polymer composite, strain sensor, wearable electronics,
- Publikační typ
- časopisecké články MeSH
Wearable electronic sensor was prepared on a light and flexible substrate. The breathing sensor has a broad assumption and great potential for portable devices in wearable technology. In the present work, the application of a flexible thermoplastic polyurethane/multiwalled carbon nanotubes (TPU/MWCNTs) strain sensor was demonstrated. This composite was prepared by a novel technique using a thermoplastic filtering membrane based on electrospinning technology. Aqueous dispersion of MWCNTs was filtered through membrane, dried and then welded directly on a T-shirt and encapsulated by a thin silicone layer. The sensing layer was also equipped by electrodes. A polymer composite sensor is capable of detecting a deformation by changing its electrical resistance. A T-shirt was capable of analyzing a type, frequency and intensity of human breathing. The sensitivity to the applied strain of the sensor was improved by the oxidation of MWCNTs by potassium permanganate (KMnO4) and also by subsequent application of the prestrain.
Zobrazit více v PubMed
Wu J.X., Li L. An Introduction to Wearable Technology and Smart Textiles and Apparel: Terminology, Statistics, Evolution, and Challenges. [(accessed on 4 February 2020)];2019 Available online: https://www.intechopen.com/books/smart-and-functional-soft-materials/an-introduction-to-wearable-technology-and-smart-textiles-and-apparel-terminology-statistics-evoluti.
Yu L., Yeo J.C., Soon R.H., Yeo T., Lee H.H., Lim C.T. Highly Stretchable, Weavable, and Washable Piezoresistive Microfiber Sensors. ACS Appl. Mater. Interfaces. 2018;10:12773–12780. doi: 10.1021/acsami.7b19823. PubMed DOI
[(accessed on 28 February 2018)]; Available online: https://www.walmark.cz/magazin/dychani-je-zivot.
Grancarić A.M., Jerković I., Koncar V., Cochrane C., Kelly F.M., Soulat D., Legrand X. Conductive polymers for smart textile applications. J. Permis. Sagepub. 2017;48:612–642. doi: 10.1177/1528083717699368. DOI
Zhang X., Tao X. Smart textiles: Passive smart. Text Asia. 2001;32:45–49.
Oliveri A., Maselli M., Lodi M., Storace M., Cianchetti M. Model-based compensation of rate-dependent hysteresis in a piezoresistive strain sensor. IEEE Trans. Ind. Electron. 2018;66:8205–8213. doi: 10.1109/TIE.2018.2884204. DOI
Benlikaya R., Slobodian P., Riha P. Enhanced strain-dependent electrical resistance of polyurethane composites with embedded oxidized multiwalled carbon nanotube networks. J. Nanomater. 2013;2013:327597. doi: 10.1155/2013/327597. DOI
Tadakaluru S., Thongsuwan W., Singjai P. Stretchable and Flexible High-Strain Sensors Made Using Carbon Nanotubes and Graphite Films on Natural Rubber. Sensors. 2014;14:868–876. doi: 10.3390/s140100868. PubMed DOI PMC
Slobodian P., Riha P., Saha P. A highly-deformable composite composed of an entangled network of electrically-conductive carbon-nanotubes embedded in elastic polyurethane. Carbon. 2012;50:3446–3453. doi: 10.1016/j.carbon.2012.03.008. DOI
Walters D.A., Casavant M.J., Quin X.C., Huffman C.B., Boul P.J., Ericson L.M., Haroz E.H., O’Connel M.J., Smith K., Colbert D.T., et al. In-plane-aligned membranes of carbon nanotubes. Chem. Phys. Lett. 2001;338:14–20. doi: 10.1016/S0009-2614(01)00072-0. DOI
Allaoui A., Hoa S.V., Evesque P., Bai J. Electronic transport in carbon nanotube tangles under compression: The role of contact resistance. Scripta Materialia. 2009;6:628–631. doi: 10.1016/j.scriptamat.2009.05.045. DOI
Kimmer D., Slobodian P., Petras D., Zatloukal M., Olejnik R., Saha P. Polyurethane/MWCNT nanowebs prepared by electrospinning process. J. Appl. Polym. Sci. 2009;111:2711–2714. doi: 10.1002/app.29238. DOI
Slobodian P., Daňová R., Olejník R., Matyáš J., Münster L. Multifunctional flexible and stretchable polyurethane/carbon nanotube strain sensor for human breath monitoring. Polym. Adv. Technol. 2019;30:1891–1898. doi: 10.1002/pat.4621. DOI
Slobodian P., Riha P., Lengalova A., Saha P. Compressive stress-electrical conductivity characteristics of multiwall carbon nanotube networks. J. Mater. Sci. 2011;46:3186–3190. doi: 10.1007/s10853-010-5202-0. DOI
Yamada T., Hayamizu Y., Yamamoto Y., Yomogida Y., Izadi-Najafabadi A., Futaba D., Hata K. A stretchable carbon nanotube strain sensor for human-motion detection. Nat. Nanotechnol. 2011;6:296–301. doi: 10.1038/nnano.2011.36. PubMed DOI
Cvelbar U. Interaction of non-equilibrium oxygen plasma with sintered graphite. Appl. Surf. Sci. 2013;269:33–36. doi: 10.1016/j.apsusc.2012.10.090. DOI
Cvelbar U., Markoli B., Poberaj I., Zalar A., Kosec L., Spaić S. Formation of functional groups on graphite during oxygen plasma treatment. Appl. Surf. Sci. 2006;253:1861–1865. doi: 10.1016/j.apsusc.2006.03.028. DOI
Slobodian P., Riha P., Lengálová A., Svoboda P., Sáha P. Multi-wall carbon nanotube networks as potential resistive gas sensors for organic vapor detection. Carbon. 2011;49:2499–2507. doi: 10.1016/j.carbon.2011.02.020. DOI
Slobodian P., Riha P., Olejnik R., Cvelbar U., Sáha P. Enhancing effect of KMnO4 oxidation of carbon nanotubes network embedded in elastic polyurethane on overall electro-mechanical properties of composite. Compos. Sci. Technol. 2013;81:54–60. doi: 10.1016/j.compscitech.2013.03.023. DOI
Flexible Piezoresistive Polystyrene Composite Sensors Filled with Hollow 3D Graphitic Shells