Flexible Piezoresistive Polystyrene Composite Sensors Filled with Hollow 3D Graphitic Shells
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
38139926
PubMed Central
PMC10747410
DOI
10.3390/polym15244674
PII: polym15244674
Knihovny.cz E-zdroje
- Klíčová slova
- 3D graphitic shells, conductive polymer composite, multi-walled carbon nanotubes, piezoresistive sensors,
- Publikační typ
- časopisecké články MeSH
The objective of this research was to develop highly effective conductive polymer composite (CPC) materials for flexible piezoresistive sensors, utilizing hollow three-dimensional graphitic shells as a highly conductive particulate component. Polystyrene (PS), a cost-effective and robust polymer widely used in various applications such as household appliances, electronics, automotive parts, packaging, and thermal insulation materials, was chosen as the polymer matrix. The hollow spherical three-dimensional graphitic shells (GS) were synthesized through chemical vapor deposition (CVD) with magnesium oxide (MgO) nanoparticles serving as a support, which was removed post-synthesis and employed as the conductive filler. Commercial multi-walled carbon nanotubes (CNTs) were used as a reference one-dimensional graphene material. The main focus of this study was to investigate the impact of the GS on the piezoresistive response of carbon/polymer composite thin films. The distribution and arrangement of GS and CNTs in the polymer matrix were analyzed using techniques such as X-ray diffraction and scanning electron microscopy, while the electrical, thermal, and mechanical properties of the composites were also evaluated. The results revealed that the PS composite films filled with GS exhibited a more pronounced piezoresistive response as compared to the CNT-based composites, despite their lower mechanical and thermal performance.
Zobrazit více v PubMed
Ferreira A., Silva J.P., Rodrigues R., Martin N., Lanceros-Méndez S., Vaz F. High performance piezoresistive response of nanostructured ZnO/Ag thin films for pressure sensing applications. Thin Solid Films. 2019;691:137587. doi: 10.1016/j.tsf.2019.137587. DOI
Ferreira A., Correia V., Mendes E., Lopes C., Vaz J.F.V., Lanceros-Mendez S. Piezoresistive Polymer-Based Materials for Real-Time Assessment of the Stump/Socket Interface Pressure in Lower Limb Amputees. IEEE Sens. J. 2017;17:2182–2190. doi: 10.1109/JSEN.2017.2667717. DOI
Lee D.C., Lee J.J., Yun S.J. The mechanical characteristics of smart composite structures with embedded optical fiber sensors. Compos. Struct. 1995;32:39–50. doi: 10.1016/0263-8223(95)00038-0. DOI
Amjadi M., Pichitpajongkit A., Lee S., Ryu S., Park I. Highly stretchable and sensitive strain sensor based on silver nanowire-elastomer nanocomposite. ACS Nano. 2014;8:5154–5163. doi: 10.1021/nn501204t. PubMed DOI
Spinelli G., Lamberti P., Tucci V., Vertuccio L., Guadagno L. Experimental and theoretical study on piezoresistive properties of a structural resin reinforced with carbon nanotubes for strain sensing and damage monitoring. Compos. Part B Eng. 2018;145:90–99. doi: 10.1016/j.compositesb.2018.03.025. DOI
Wang X.D., Wang J.C., Biswas S., Kim H., Nam I.W. Mechanical, electrical, and piezoresistive sensing characteristics of epoxy-based composites incorporating hybridized networks of carbon nanotubes, graphene, carbon nanofibers, or graphite nanoplatelets. Sensors. 2020;20:2094. doi: 10.3390/s20072094. PubMed DOI PMC
Nasouri K., Shoushtari A.M. Designing, modeling and manufacturing of lightweight carbon nanotubes/polymer composite nanofibers for electromagnetic interference shielding application. Compos. Sci. Technol. 2017;145:46–54. doi: 10.1016/j.compscitech.2017.03.041. DOI
Barkoula N.M., Alcock B., Cabrera N.O., Peijs T. Flame-Retardancy Properties of Intumescent Ammonium Poly(Phosphate) and Mineral Filler Magnesium Hydroxide in Combination with Graphene. Polym. Polym. Compos. 2008;16:101–113. doi: 10.1177/096739110801600203. DOI
Li D., Chen Q., Yang Y., Chen Y., Xiao C. Effects of flake graphite on property optimisation in thermal conductive composites based on polyamide 66. Plast. Rubber Compos. 2017;46:266–276. doi: 10.1080/14658011.2017.1327506. DOI
Obitayo W., Liu T. A review: Carbon nanotube-based piezoresistive strain sensors. J. Sens. 2012;2012:652438. doi: 10.1155/2012/652438. DOI
Li Q., Liu Y., Chen D., Miao J., Lin S., Cui D. Highly Sensitive and Flexible Piezoresistive Pressure Sensors Based on 3D Reduced Graphene Oxide Aerogel. IEEE Electron. Device Lett. 2021;42:589–592. doi: 10.1109/LED.2021.3063166. DOI
Phiri J., Gane P., Maloney T.C. General overview of graphene: Production, properties and application in polymer composites. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 2017;215:9–28. doi: 10.1016/j.mseb.2016.10.004. DOI
Mittal G., Dhand V., Rhee K.Y., Park S.-J., Lee W.R. A review on carbon nanotubes and graphene as fillers in reinforced polymer nanocomposites. J. Ind. Eng. Chem. 2015;21:11–25. doi: 10.1016/j.jiec.2014.03.022. DOI
Szeluga U., Pusz S., Kumanek B., Olszowska K., Kobyliukh A., Trzebicka B. Effect of graphene filler structure on electrical, thermal, mechanical, and fire retardant properties of epoxy-graphene nanocomposites—A review. Crit. Rev. Solid State Mater. Sci. 2021;46:152–187. doi: 10.1080/10408436.2019.1708702. DOI
Yasmin A., Luo J.J., Daniel I.M. Processing of expanded graphite reinforced polymer nanocomposites. Compos. Sci. Technol. 2006;66:1182–1189. doi: 10.1016/j.compscitech.2005.10.014. DOI
Qiu S., Hu W., Yu B., Yuan B., Zhu Y., Jiang S., Wang B., Song L., Hu Y. Effect of functionalized graphene oxide with organophosphorus oligomer on the thermal and mechanical properties and fire safety of polystyrene. Ind. Eng. Chem. Res. 2015;54:3309–3319. doi: 10.1021/ie504511f. DOI
Johnson D.W., Dobson B.P., Coleman K.S. A manufacturing perspective on graphene dispersions. Curr. Opin. Colloid Interface Sci. 2015;20:367–382. doi: 10.1016/j.cocis.2015.11.004. DOI
Mamunya Y.P. Morphology and percolation conductivity of polymer blends containing carbon black Morphology and Percolation Conductivity of Polymer Blends Containing Carbon Black. J. Macromol. Sci. Part B Phys. 1999;B38:615–622. doi: 10.1080/00222349908248125. DOI
Mamunya Y., Boudenne A., Lebovka N., Ibos L., Candau Y., Lisunova M. Electrical and thermophysical behaviour of PVC-MWCNT nanocomposites. Compos. Sci. Technol. 2008;68:1981–1988. doi: 10.1016/j.compscitech.2007.11.014. DOI
Lisunova M.O., Mamunya Y.P., Lebovka N.I., Melezhyk A.V. Percolation behaviour of ultrahigh molecular weight polyethylene/multi-walled carbon nanotubes composites. Eur. Polym. J. 2007;43:949–958. doi: 10.1016/j.eurpolymj.2006.12.015. DOI
Mamunya Y., Matzui L., Vovchenko L., Maruzhenko O., Oliynyk V., Pusz S., Kumanek B., Szeluga U. Influence of conductive nano- and microfiller distribution on electrical conductivity and EMI shielding properties of polymer/carbon composites. Compos. Sci. Technol. 2019;170:51–59. doi: 10.1016/j.compscitech.2018.11.037. DOI
Kolisnyk R., Korab M., Iurzhenko M., Masiuchok O., Mamunya Y. Development of heating elements based on conductive polymer composites for electrofusion welding of plastics. J. Appl. Polym. Sci. 2021;138:50418. doi: 10.1002/app.50418. DOI
Masiuchok O., Iurzhenko M., Kolisnyk R., Mamunya Y., Godzierz M., Demchenko V., Yermolenko D., Shadrin A. Polylactide/Carbon Black Segregated Composites for 3D Printing of Conductive Products. Polymers. 2022;14:4022. doi: 10.3390/polym14194022. PubMed DOI PMC
Maruzhenko O., Mamunya Y., Boiteux G., Pusz S., Szeluga U., Pruvost S. Improving the thermal and electrical properties of polymer composites by ordered distribution of carbon micro- and nanofillers. Int. J. Heat Mass Transf. 2019;138:75–84. doi: 10.1016/j.ijheatmasstransfer.2019.04.043. DOI
Hu H., Wang X., Wang J., Wan L., Liu F., Zheng H., Chen R., Xu C. Preparation and properties of graphene nanosheets-polystyrene nanocomposites via in situ emulsion polymerization. Chem. Phys. Lett. 2010;484:247–253. doi: 10.1016/j.cplett.2009.11.024. DOI
Chen W., Wang B., Zhu Q., Yan X. Flexible pressure sensors with a wide detection range based on self-assembled polystyrene microspheres. Sensors. 2019;19:5194. doi: 10.3390/s19235194. PubMed DOI PMC
Gong T., Zhang H., Huang W., Mao L., Ke Y., Gao M., Yu B. Highly responsive flexible strain sensor using polystyrene nanoparticle doped reduced graphene oxide for human health monitoring. Carbon. 2018;140:286–295. doi: 10.1016/j.carbon.2018.09.007. DOI
Bachmatiuk A., Mendes R.G., Hirsch C., Jähne C., Lohe M.R., Grothe J., Kaskel S., Fu L., Klingeler R., Eckert J., et al. Few-layer graphene shells and nonmagnetic encapsulates: A versatile and nontoxic carbon nanomaterial. ACS Nano. 2013;7:10552–10562. doi: 10.1021/nn4051562. PubMed DOI
Rümmeli M.H., Kramberger C., Grüneis A., Ayala P., Gemming T., Büchner B., Pichler T. On the graphitization nature of oxides for the formation of carbon nanostructures. Chem. Mater. 2007;19:4105–4107. doi: 10.1021/cm0712220. DOI
Weibel A., Mesguich D., Chevallier G., Flahaut E., Laurent C. Fast and easy preparation of few-layered-graphene/magnesia powders for strong, hard and electrically conducting composites. Carbon. 2018;136:270–279. doi: 10.1016/j.carbon.2018.04.085. DOI
Yang Z., Chabi S., Xia Y., Zhu Y. Preparation of 3D graphene-based architectures and their applications in supercapacitors. Prog. Nat. Sci. Mater. Int. 2015;25:554–562. doi: 10.1016/j.pnsc.2015.11.010. DOI
Rietveld H.M. Line profiles of neutron powder-diffraction peaks for structure refinement. Acta Crystallogr. 1967;22:151–152. doi: 10.1107/S0365110X67000234. DOI
Rietveld H. A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 1969;2:65–71. doi: 10.1107/S0021889869006558. DOI
Karolus M., Łagiewka E. Crystallite size and lattice strain in nanocrystalline Ni-Mo alloys studied by Rietveld refinement. J. Alloys Compd. 2004;367:235–238. doi: 10.1016/j.jallcom.2003.08.044. DOI
Toby B.H. R factors in Rietveld analysis: How good is good enough? Powder Diffr. 2006;21:67–70. doi: 10.1154/1.2179804. DOI
Visweswaran S., Venkatachalapathy R., Haris M., Murugesan R. Characterization of MgO thin film prepared by spray pyrolysis technique using perfume atomizer. J. Mater. Sci. Mater. Electron. 2020;31:14838–14850. doi: 10.1007/s10854-020-04046-7. DOI
Debelak B., Lafdi K. Use of exfoliated graphite filler to enhance polymer physical properties. Carbon. 2007;45:1727–1734. doi: 10.1016/j.carbon.2007.05.010. DOI
Kim J., Kim J., Song S., Zhang S., Cha J., Kim K., Yoon H., Jung Y., Paik K.-W., Jeon S. Strength dependence of epoxy composites on the average filler size of non-oxidized graphene flake. Carbon. 2017;113:379–386. doi: 10.1016/j.carbon.2016.11.023. DOI
Smoleń P., Czujko T., Komorek Z., Grochala D., Rutkowska A., Osiewicz-Powęzka M. Mechanical and electrical properties of epoxy composites modified by functionalized multiwalled carbon nanotubes. Materials. 2021;14:3325. doi: 10.3390/ma14123325. PubMed DOI PMC
Zacharia R., Ulbricht H., Hertel T. Interlayer cohesive energy of graphite from thermal desorption of polyaromatic hydrocarbons. Phys. Rev. B. 2004;69:155406. doi: 10.1103/PhysRevB.69.155406. DOI
Lu H., Nutt S. Restricted relaxation in polymer nanocomposites near the glass transition. Macromolecules. 2003;36:4010–4016. doi: 10.1021/ma034049b. DOI
Shen L., Liu L., Wang W., Zhou Y. In situ self-sensing of delamination initiation and growth in multi-directional laminates using carbon nanotube interleaves. Compos. Sci. Technol. 2018;167:141–147. doi: 10.1016/j.compscitech.2018.07.044. DOI
Wang G., Wang Y., Zhang P., Zhai Y., Luo Y., Li L., Luo S. Structure dependent properties of carbon nanomaterials enabled fiber sensors for in situ monitoring of composites. Compos. Struct. 2018;195:36–44. doi: 10.1016/j.compstruct.2018.04.052. DOI
Alamusi, Hu N., Fukunaga H., Atobe S., Liu Y., Li J. Piezoresistive strain sensors made from carbon nanotubes based polymer nanocomposites. Sensors. 2011;11:10691–10723. doi: 10.3390/s111110691. PubMed DOI PMC
Daňová R., Olejnik R., Slobodian P., Matyas J. The piezoresistive highly elastic sensor based on carbon nanotubes for the detection of breath. Polymers. 2020;12:713. doi: 10.3390/polym12030713. PubMed DOI PMC
Huang W., Dai K., Zhai Y., Liu H., Zhan P., Gao J., Zheng G., Liu C., Shen C. Flexible and Lightweight Pressure Sensor Based on Carbon Nanotube/Thermoplastic Polyurethane-Aligned Conductive Foam with Superior Compressibility and Stability. ACS Appl. Mater. Interfaces. 2017;9:42266–42277. doi: 10.1021/acsami.7b16975. PubMed DOI
Wang X., Li H., Wang T., Niu X., Wang Y., Xu S., Jiang Y., Chen L., Liu H. Flexible and high-performance piezoresistive strain sensors based on multi-walled carbon nanotubes@polyurethane foam. RSC Adv. 2022;12:14190–14196. doi: 10.1039/D2RA01291J. PubMed DOI PMC