Flexible Piezoresistive Polystyrene Composite Sensors Filled with Hollow 3D Graphitic Shells

. 2023 Dec 11 ; 15 (24) : . [epub] 20231211

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38139926

The objective of this research was to develop highly effective conductive polymer composite (CPC) materials for flexible piezoresistive sensors, utilizing hollow three-dimensional graphitic shells as a highly conductive particulate component. Polystyrene (PS), a cost-effective and robust polymer widely used in various applications such as household appliances, electronics, automotive parts, packaging, and thermal insulation materials, was chosen as the polymer matrix. The hollow spherical three-dimensional graphitic shells (GS) were synthesized through chemical vapor deposition (CVD) with magnesium oxide (MgO) nanoparticles serving as a support, which was removed post-synthesis and employed as the conductive filler. Commercial multi-walled carbon nanotubes (CNTs) were used as a reference one-dimensional graphene material. The main focus of this study was to investigate the impact of the GS on the piezoresistive response of carbon/polymer composite thin films. The distribution and arrangement of GS and CNTs in the polymer matrix were analyzed using techniques such as X-ray diffraction and scanning electron microscopy, while the electrical, thermal, and mechanical properties of the composites were also evaluated. The results revealed that the PS composite films filled with GS exhibited a more pronounced piezoresistive response as compared to the CNT-based composites, despite their lower mechanical and thermal performance.

Zobrazit více v PubMed

Ferreira A., Silva J.P., Rodrigues R., Martin N., Lanceros-Méndez S., Vaz F. High performance piezoresistive response of nanostructured ZnO/Ag thin films for pressure sensing applications. Thin Solid Films. 2019;691:137587. doi: 10.1016/j.tsf.2019.137587. DOI

Ferreira A., Correia V., Mendes E., Lopes C., Vaz J.F.V., Lanceros-Mendez S. Piezoresistive Polymer-Based Materials for Real-Time Assessment of the Stump/Socket Interface Pressure in Lower Limb Amputees. IEEE Sens. J. 2017;17:2182–2190. doi: 10.1109/JSEN.2017.2667717. DOI

Lee D.C., Lee J.J., Yun S.J. The mechanical characteristics of smart composite structures with embedded optical fiber sensors. Compos. Struct. 1995;32:39–50. doi: 10.1016/0263-8223(95)00038-0. DOI

Amjadi M., Pichitpajongkit A., Lee S., Ryu S., Park I. Highly stretchable and sensitive strain sensor based on silver nanowire-elastomer nanocomposite. ACS Nano. 2014;8:5154–5163. doi: 10.1021/nn501204t. PubMed DOI

Spinelli G., Lamberti P., Tucci V., Vertuccio L., Guadagno L. Experimental and theoretical study on piezoresistive properties of a structural resin reinforced with carbon nanotubes for strain sensing and damage monitoring. Compos. Part B Eng. 2018;145:90–99. doi: 10.1016/j.compositesb.2018.03.025. DOI

Wang X.D., Wang J.C., Biswas S., Kim H., Nam I.W. Mechanical, electrical, and piezoresistive sensing characteristics of epoxy-based composites incorporating hybridized networks of carbon nanotubes, graphene, carbon nanofibers, or graphite nanoplatelets. Sensors. 2020;20:2094. doi: 10.3390/s20072094. PubMed DOI PMC

Nasouri K., Shoushtari A.M. Designing, modeling and manufacturing of lightweight carbon nanotubes/polymer composite nanofibers for electromagnetic interference shielding application. Compos. Sci. Technol. 2017;145:46–54. doi: 10.1016/j.compscitech.2017.03.041. DOI

Barkoula N.M., Alcock B., Cabrera N.O., Peijs T. Flame-Retardancy Properties of Intumescent Ammonium Poly(Phosphate) and Mineral Filler Magnesium Hydroxide in Combination with Graphene. Polym. Polym. Compos. 2008;16:101–113. doi: 10.1177/096739110801600203. DOI

Li D., Chen Q., Yang Y., Chen Y., Xiao C. Effects of flake graphite on property optimisation in thermal conductive composites based on polyamide 66. Plast. Rubber Compos. 2017;46:266–276. doi: 10.1080/14658011.2017.1327506. DOI

Obitayo W., Liu T. A review: Carbon nanotube-based piezoresistive strain sensors. J. Sens. 2012;2012:652438. doi: 10.1155/2012/652438. DOI

Li Q., Liu Y., Chen D., Miao J., Lin S., Cui D. Highly Sensitive and Flexible Piezoresistive Pressure Sensors Based on 3D Reduced Graphene Oxide Aerogel. IEEE Electron. Device Lett. 2021;42:589–592. doi: 10.1109/LED.2021.3063166. DOI

Phiri J., Gane P., Maloney T.C. General overview of graphene: Production, properties and application in polymer composites. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 2017;215:9–28. doi: 10.1016/j.mseb.2016.10.004. DOI

Mittal G., Dhand V., Rhee K.Y., Park S.-J., Lee W.R. A review on carbon nanotubes and graphene as fillers in reinforced polymer nanocomposites. J. Ind. Eng. Chem. 2015;21:11–25. doi: 10.1016/j.jiec.2014.03.022. DOI

Szeluga U., Pusz S., Kumanek B., Olszowska K., Kobyliukh A., Trzebicka B. Effect of graphene filler structure on electrical, thermal, mechanical, and fire retardant properties of epoxy-graphene nanocomposites—A review. Crit. Rev. Solid State Mater. Sci. 2021;46:152–187. doi: 10.1080/10408436.2019.1708702. DOI

Yasmin A., Luo J.J., Daniel I.M. Processing of expanded graphite reinforced polymer nanocomposites. Compos. Sci. Technol. 2006;66:1182–1189. doi: 10.1016/j.compscitech.2005.10.014. DOI

Qiu S., Hu W., Yu B., Yuan B., Zhu Y., Jiang S., Wang B., Song L., Hu Y. Effect of functionalized graphene oxide with organophosphorus oligomer on the thermal and mechanical properties and fire safety of polystyrene. Ind. Eng. Chem. Res. 2015;54:3309–3319. doi: 10.1021/ie504511f. DOI

Johnson D.W., Dobson B.P., Coleman K.S. A manufacturing perspective on graphene dispersions. Curr. Opin. Colloid Interface Sci. 2015;20:367–382. doi: 10.1016/j.cocis.2015.11.004. DOI

Mamunya Y.P. Morphology and percolation conductivity of polymer blends containing carbon black Morphology and Percolation Conductivity of Polymer Blends Containing Carbon Black. J. Macromol. Sci. Part B Phys. 1999;B38:615–622. doi: 10.1080/00222349908248125. DOI

Mamunya Y., Boudenne A., Lebovka N., Ibos L., Candau Y., Lisunova M. Electrical and thermophysical behaviour of PVC-MWCNT nanocomposites. Compos. Sci. Technol. 2008;68:1981–1988. doi: 10.1016/j.compscitech.2007.11.014. DOI

Lisunova M.O., Mamunya Y.P., Lebovka N.I., Melezhyk A.V. Percolation behaviour of ultrahigh molecular weight polyethylene/multi-walled carbon nanotubes composites. Eur. Polym. J. 2007;43:949–958. doi: 10.1016/j.eurpolymj.2006.12.015. DOI

Mamunya Y., Matzui L., Vovchenko L., Maruzhenko O., Oliynyk V., Pusz S., Kumanek B., Szeluga U. Influence of conductive nano- and microfiller distribution on electrical conductivity and EMI shielding properties of polymer/carbon composites. Compos. Sci. Technol. 2019;170:51–59. doi: 10.1016/j.compscitech.2018.11.037. DOI

Kolisnyk R., Korab M., Iurzhenko M., Masiuchok O., Mamunya Y. Development of heating elements based on conductive polymer composites for electrofusion welding of plastics. J. Appl. Polym. Sci. 2021;138:50418. doi: 10.1002/app.50418. DOI

Masiuchok O., Iurzhenko M., Kolisnyk R., Mamunya Y., Godzierz M., Demchenko V., Yermolenko D., Shadrin A. Polylactide/Carbon Black Segregated Composites for 3D Printing of Conductive Products. Polymers. 2022;14:4022. doi: 10.3390/polym14194022. PubMed DOI PMC

Maruzhenko O., Mamunya Y., Boiteux G., Pusz S., Szeluga U., Pruvost S. Improving the thermal and electrical properties of polymer composites by ordered distribution of carbon micro- and nanofillers. Int. J. Heat Mass Transf. 2019;138:75–84. doi: 10.1016/j.ijheatmasstransfer.2019.04.043. DOI

Hu H., Wang X., Wang J., Wan L., Liu F., Zheng H., Chen R., Xu C. Preparation and properties of graphene nanosheets-polystyrene nanocomposites via in situ emulsion polymerization. Chem. Phys. Lett. 2010;484:247–253. doi: 10.1016/j.cplett.2009.11.024. DOI

Chen W., Wang B., Zhu Q., Yan X. Flexible pressure sensors with a wide detection range based on self-assembled polystyrene microspheres. Sensors. 2019;19:5194. doi: 10.3390/s19235194. PubMed DOI PMC

Gong T., Zhang H., Huang W., Mao L., Ke Y., Gao M., Yu B. Highly responsive flexible strain sensor using polystyrene nanoparticle doped reduced graphene oxide for human health monitoring. Carbon. 2018;140:286–295. doi: 10.1016/j.carbon.2018.09.007. DOI

Bachmatiuk A., Mendes R.G., Hirsch C., Jähne C., Lohe M.R., Grothe J., Kaskel S., Fu L., Klingeler R., Eckert J., et al. Few-layer graphene shells and nonmagnetic encapsulates: A versatile and nontoxic carbon nanomaterial. ACS Nano. 2013;7:10552–10562. doi: 10.1021/nn4051562. PubMed DOI

Rümmeli M.H., Kramberger C., Grüneis A., Ayala P., Gemming T., Büchner B., Pichler T. On the graphitization nature of oxides for the formation of carbon nanostructures. Chem. Mater. 2007;19:4105–4107. doi: 10.1021/cm0712220. DOI

Weibel A., Mesguich D., Chevallier G., Flahaut E., Laurent C. Fast and easy preparation of few-layered-graphene/magnesia powders for strong, hard and electrically conducting composites. Carbon. 2018;136:270–279. doi: 10.1016/j.carbon.2018.04.085. DOI

Yang Z., Chabi S., Xia Y., Zhu Y. Preparation of 3D graphene-based architectures and their applications in supercapacitors. Prog. Nat. Sci. Mater. Int. 2015;25:554–562. doi: 10.1016/j.pnsc.2015.11.010. DOI

Rietveld H.M. Line profiles of neutron powder-diffraction peaks for structure refinement. Acta Crystallogr. 1967;22:151–152. doi: 10.1107/S0365110X67000234. DOI

Rietveld H. A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 1969;2:65–71. doi: 10.1107/S0021889869006558. DOI

Karolus M., Łagiewka E. Crystallite size and lattice strain in nanocrystalline Ni-Mo alloys studied by Rietveld refinement. J. Alloys Compd. 2004;367:235–238. doi: 10.1016/j.jallcom.2003.08.044. DOI

Toby B.H. R factors in Rietveld analysis: How good is good enough? Powder Diffr. 2006;21:67–70. doi: 10.1154/1.2179804. DOI

Visweswaran S., Venkatachalapathy R., Haris M., Murugesan R. Characterization of MgO thin film prepared by spray pyrolysis technique using perfume atomizer. J. Mater. Sci. Mater. Electron. 2020;31:14838–14850. doi: 10.1007/s10854-020-04046-7. DOI

Debelak B., Lafdi K. Use of exfoliated graphite filler to enhance polymer physical properties. Carbon. 2007;45:1727–1734. doi: 10.1016/j.carbon.2007.05.010. DOI

Kim J., Kim J., Song S., Zhang S., Cha J., Kim K., Yoon H., Jung Y., Paik K.-W., Jeon S. Strength dependence of epoxy composites on the average filler size of non-oxidized graphene flake. Carbon. 2017;113:379–386. doi: 10.1016/j.carbon.2016.11.023. DOI

Smoleń P., Czujko T., Komorek Z., Grochala D., Rutkowska A., Osiewicz-Powęzka M. Mechanical and electrical properties of epoxy composites modified by functionalized multiwalled carbon nanotubes. Materials. 2021;14:3325. doi: 10.3390/ma14123325. PubMed DOI PMC

Zacharia R., Ulbricht H., Hertel T. Interlayer cohesive energy of graphite from thermal desorption of polyaromatic hydrocarbons. Phys. Rev. B. 2004;69:155406. doi: 10.1103/PhysRevB.69.155406. DOI

Lu H., Nutt S. Restricted relaxation in polymer nanocomposites near the glass transition. Macromolecules. 2003;36:4010–4016. doi: 10.1021/ma034049b. DOI

Shen L., Liu L., Wang W., Zhou Y. In situ self-sensing of delamination initiation and growth in multi-directional laminates using carbon nanotube interleaves. Compos. Sci. Technol. 2018;167:141–147. doi: 10.1016/j.compscitech.2018.07.044. DOI

Wang G., Wang Y., Zhang P., Zhai Y., Luo Y., Li L., Luo S. Structure dependent properties of carbon nanomaterials enabled fiber sensors for in situ monitoring of composites. Compos. Struct. 2018;195:36–44. doi: 10.1016/j.compstruct.2018.04.052. DOI

Alamusi, Hu N., Fukunaga H., Atobe S., Liu Y., Li J. Piezoresistive strain sensors made from carbon nanotubes based polymer nanocomposites. Sensors. 2011;11:10691–10723. doi: 10.3390/s111110691. PubMed DOI PMC

Daňová R., Olejnik R., Slobodian P., Matyas J. The piezoresistive highly elastic sensor based on carbon nanotubes for the detection of breath. Polymers. 2020;12:713. doi: 10.3390/polym12030713. PubMed DOI PMC

Huang W., Dai K., Zhai Y., Liu H., Zhan P., Gao J., Zheng G., Liu C., Shen C. Flexible and Lightweight Pressure Sensor Based on Carbon Nanotube/Thermoplastic Polyurethane-Aligned Conductive Foam with Superior Compressibility and Stability. ACS Appl. Mater. Interfaces. 2017;9:42266–42277. doi: 10.1021/acsami.7b16975. PubMed DOI

Wang X., Li H., Wang T., Niu X., Wang Y., Xu S., Jiang Y., Chen L., Liu H. Flexible and high-performance piezoresistive strain sensors based on multi-walled carbon nanotubes@polyurethane foam. RSC Adv. 2022;12:14190–14196. doi: 10.1039/D2RA01291J. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...