Liquid dispersions of zeolite monolayers with high catalytic activity prepared by soft-chemical exfoliation
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
32219163
PubMed Central
PMC7083615
DOI
10.1126/sciadv.aay8163
PII: aay8163
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
The most effective approach to practical exploitation of the layered solids that often have unique valuable properties-such as graphene, clays, and other compounds-is by dispersion into colloidal suspensions of monolayers, called liquid exfoliation. This fundamentally expected behavior can be used to deposit monolayers on supports or to reassemble into hierarchical materials to produce, by design, catalysts, nanodevices, films, drug delivery systems, and other products. Zeolites have been known as extraordinary catalysts and sorbents with three-dimensional structures but emerged as an unexpected new class of layered solids contributing previously unknown valuable features: catalytically active layers with pores inside or across. The self-evident question of layered zeolite exfoliation has remained unresolved for three decades. Here, we report the first direct exfoliation of zeolites into suspension of monolayers as proof of the concept, which enables diverse applications including membranes and hierarchical catalysts with improved access.
Faculty of Chemistry Jagiellonian University Gronostajowa 2 30 387 Kraków Poland
International Centre for Materials Nanoarchitectonics 1 1 Namiki Tsukuba Ibaraki 305 0044 Japan
Zobrazit více v PubMed
G. Alberti, U. Constantino, Layered solids and their intercalation chemistry, in Comprehensive Supramolecular Chemistry, J. L. Atwood, J. E. D. Davies, D. D. MacNichol, F. Vogtle, Eds. (Pergamon, 1996), vol. 7, pp. 1–23.
D. O'Hare, Inorganic Intercalation Compounds, in Inorganic Materials, D. W. Bruce, D. O'Hare, Eds. (Wiley, 1997), pp. 172–254.
Jacobson A. J., Colloidal dispersions of compounds with layer and chain structures. Mater. Sci. Forum 152-153, 1–12 (1994).
Novoselov K. S., Jiang D., Schedin F., Booth T. J., Khotkevich V. V., Morozov S. V., Geim A. K., Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. U.S.A. 102, 10451–10453 (2005). PubMed PMC
Agrawal K. V., Towards the ultimate membranes: Two-dimensional nanoporous materials and films. Chimia 72, 313–321 (2018). PubMed
Ma R., Sasaki T., Two-dimensional oxide and hydroxide nanosheets: Controllable high-quality exfoliation, molecular assembly, and exploration of functionality. Acc. Chem. Res. 48, 136–143 (2014). PubMed
Osada M., Sasaki T., Nanosheet architectonics: A hierarchically structured assembly for tailored fusion materials. Polym. J. 47, 89–98 (2015).
Nicolosi V., Chhowalla M., Kanatzidis M. G., Strano M. S., Coleman J. N., Liquid exfoliation of layered materials. Science 340, 1226419 (2013).
Masters A. F., Maschmeyer T., Zeolites - From curiosity to cornerstone. Micropor. Mesopor. Mat. 142, 423–438 (2011).
International Zeolite Association, Database of Zeolite Structures (2017); www.iza-structure.org/databases/.
Leonowicz M. E., Lawton J. A., Lawton S. L., Rubin M. K., MCM-22: A molecular sieve with two independent multidimensional channel systems. Science 264, 1910–1913 (1994). PubMed
Schreyeck L., Caullet P., Mougenel J. C., Guth J. L., Marler B., PREFER: A new layered (alumino) silicate precursor of FER-type zeolite. Micropor. Mat. 6, 259–271 (1996).
Roth W. J., Nachtigall P., Morris R. E., Čejka J., Two-dimensional zeolites: current status and perspectives. Chem. Rev. 114, 4807–4837 (2014). PubMed
Choi M., Na K., Kim J., Sakamoto Y., Terasaki O., Ryoo R., Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts. Nature 461, 246–249 (2009). PubMed
Varoon K., Zhang X. Y., Elyassi B., Brewer D. D., Gettel M., Kumar S., Lee J. A., Maheshwari S., Mittal A., Sung C.-Y., Cococcioni M., Francis L. F., McCormick A. V., Mkhoyan K. A., Tsapatsis M., Dispersible exfoliated zeolite nanosheets and their application as a selective membrane. Science 334, 72–75 (2011). PubMed
Roth W. J., Gil B., Makowski W., Marszalek B., Eliášová P., Layer like porous materials with hierarchical structure. Chem. Soc. Rev. 45, 3400–3438 (2016). PubMed
Corma A., Fornes V., Pergher S. B., Maesen T. L. M., Buglass J. G., Delaminated zeolite precursors as selective acidic catalysts. Nature 396, 353–356 (1998).
Ma R., Sasaki T., Nanosheets of oxides and hydroxides: Ultimate 2D charge-bearing functional crystallites. Adv. Mater. 22, 5082–5104 (2010). PubMed
Wang L., Sasaki T., Titanium oxide nanosheets: Graphene analogues with versatile functionalities. Chem. Rev. 114, 9455–9486 (2014). PubMed
Roth W. J., Chlubná P., Kubů M., Vitvarová D., Swelling of MCM-56 and MCM-22P with a new medium - surfactant-tetramethylammonium hydroxide mixtures. Catal. Today 204, 8–14 (2013).
Juttu G. G., Lobo R. F., Characterization and catalytic properties of MCM-56 and MCM-22 zeolites. Micropor. Mesopor. Mat. 40, 9–23 (2000).
W. J. Roth, MCM-22 zeolite family and the delaminated zeolite MCM-56 obtained in one-step synthesis, in Molecular Sieves: From Basic Research to Industrial Applications, J. Čejka, N. Žilková, P. Nachtigall, Eds. (Elsevier, 2005), vol. 158A and B, pp. 19–26.
Grzybek J., Roth W. J., Gil B., Korzeniowska A., Mazur M., Čejka J., Morris R. E., A new layered MWW zeolite synthesized with the bifunctional surfactant template and the updated classification of layered zeolite forms obtained by direct synthesis. J. Mater. Chem. A 7, 7701–7709 (2019).
Roth W. J., Čejka J., Millini R., Montanari E., Gil B., Kubu M., Swelling and interlayer chemistry of layered MWW zeolites MCM-22 and MCM-56 with high Al content. Chem. Mater. 27, 4620–4629 (2015).
Sasaki T., Watanabe M., Osmotic swelling to exfoliation. Exceptionally high degrees of hydration of a layered titanate. J. Am. Chem. Soc. 120, 4682–4689 (1998).
Jeon M. Y., Kim D., Kumar P., Lee P. S., Rangnekar N., Bai P., Shete M., Elyassi B., Lee H. S., Narasimharao K., Basahel S. N., Al-Thabaiti S., Xu W., Cho H. J., Fetisov E. O., Thyagarajan R., DeJaco R. F., Fan W., Mkhoyan K. A., Siepmann J. I., Tsapatsis M., Ultra-selective high-flux membranes from directly synthesized zeolite nanosheets. Nature 543, 690–694 (2017). PubMed
Wang L. Z., Ebina Y., Takada K., Kurashima R., Sasaki T., A new mesoporous manganese oxide pillared with double layers of alumina. Adv. Mater. 16, 1412–1416 (2004).
Lawton S. L., Fung A. S., Kennedy G. J., Alemany L. B., Chang C. D., Hatzikos G. H., Lissy D. N., Rubin M. K., Timken H.-K. C., Steuernagel S., Woessner D. E., Zeolite MCM-49: A three-dimensional MCM-22 analogue synthesized by in situ crystallization. J. Phys. Chem. 100, 3788–3798 (1996).
R. C. Reynolds, Diffraction by small and disordered molecules, in Modern Powder Diffraction, D. L. Bish, J. E. Post, Eds. (Mineralogical Society of America, 1989), vol. 20, pp. 145–182.
G. W. Brindley, Order-disorder in clay mineral structures, in Crystal Structures of Clay Minerals and their X-ray Identification, G. W. Brindley, G. Brown, Eds. (Mineralogical Society, 1980), pp. 125–197.
Vaughan D. E. W., Pillared clays - a historical perspective. Catal. Today 2, 187–198 (1988).
W. J. Roth, C. T. Kresge, J. C. Vartuli, M. E. Leonowicz, A. S. Fung, S. B. McCullen, MCM-36: The first pillared molecular sieve with zeolite properties, in Catalysis by Microporous Materials, H. K. Beyer, H. G. Karge, I. Kiricsi, J. B. Nagy, Eds. (Elsevier, 1995), vol. 94, pp. 301–308.
Maheshwari S., Jordan E., Kumar S., Bates F. S., Penn R. L., Shantz D. F., Tsapatsis M., Layer structure preservation during swelling, pillaring, and exfoliation of a zeolite precursor. J. Am. Chem. Soc. 130, 1507–1516 (2008). PubMed
Thommes M., Physical adsorption characterization of nanoporous materials. Chem. Ing. Tech. 82, 1059–1073 (2010).
Degnan T. F. Jr., Smith C. M., Venkat C. R., Alkylation of aromatics with ethylene and propylene: Recent developments in commercial processes. Appl. Catal. Gen. 221, 283–294 (2001).
R. C. Reynolds, Principles of powder diffraction, in Modern Powder Diffraction, D. L. Bish, J. E. Post, Eds. (Mineralogical Society of America, 1989), vol. 20, pp. 1–18.
C. T. Koch, “Determination of core structure periodicity and point defect density along dislocations,” thesis, Arizona State University (2002).