• This record comes from PubMed

Exfoliated Ferrierite-Related Unilamellar Nanosheets in Solution and Their Use for Preparation of Mixed Zeolite Hierarchical Structures

. 2021 Jul 28 ; 143 (29) : 11052-11062. [epub] 20210715

Status PubMed-not-MEDLINE Language English Country United States Media print-electronic

Document type Journal Article

Direct exfoliation of layered zeolites into solutions of monolayers has remained unresolved since the 1990s. Recently, zeolite MCM-56 with the MWW topology (layers denoted mww) has been exfoliated directly in high yield by soft-chemical treatment with tetrabutylammonium hydroxide (TBAOH). This has enabled preparation of zeolite-based hierarchical materials and intimate composites with other active species that are unimaginable via the conventional solid-state routes. The extension to other frameworks, which provides broader benefits, diversified activity, and functionality, is not routine and requires finding suitable synthesis formulations, viz. compositions and conditions, of the layered zeolites themselves. This article reports exfoliation and characterization of layers with ferrierite-related structure, denoted bifer, having rectangular lattice constants like those of the FER and CDO zeolites, and thickness of approximately 2 nm, which is twice that of the so-called fer layer. Several techniques were combined to prove the exfoliation, supported by simulations: AFM; in-plane, in situ, and powder X-ray diffraction; TEM; and SAED. The results confirmed (i) the structure and crystallinity of the layers without unequivocal differentiation between the FER and CDO topologies and (ii) uniform thickness in solution (monodispersity), ruling out significant multilayered particles and other impurities. The bifer layers are zeolitic with Brønsted acid sites, demonstrated catalytic activity in the alkylation of mesitylene with benzyl alcohol, and intralayer pores visible in TEM. The practical benefits are demonstrated by the preparation of unprecedented intimately mixed zeolite composites with the mww, with activity greater than the sum of the components despite high content of inert silica as pillars.

See more in PubMed

Roth W. J.; Sasaki T.; Wolski K.; Song Y.; Tang D. M.; Ebina Y.; Ma R. Z.; Grzybek J.; Kalahurska K.; Gil B.; Mazur M.; Zapotoczny S.; Cejka J. Liquid dispersions of zeolite monolayers with high catalytic activity prepared by soft-chemical exfoliation. Science Advances 2020, 6 (12), eaay816310.1126/sciadv.aay8163. PubMed DOI PMC

Sirisaksoontorn W.; Adenuga A. A.; Remcho V. T.; Lerner M. M. Preparation and characterization of a tetrabutylammonium graphite intercalation compound. J. Am. Chem. Soc. 2011, 133 (32), 12436–12438. 10.1021/ja2053539. PubMed DOI

Liu Z. H.; Ooi K.; Kanoh H.; Tang W. P.; Tomida T. Swelling and delamination behaviors of birnessite-type manganese oxide by intercalation of tetraalkylammonium ions. Langmuir 2000, 16 (9), 4154–4164. 10.1021/la9913755. DOI

Sasaki T.; Watanabe M.; Hashizume H.; Yamada H.; Nakazawa H. Macromolecule-like aspects for a colloidal suspension of an exfoliated titanate. Pairwise association of nanosheets and dynamic reassembling process initiated from it. J. Am. Chem. Soc. 1996, 118 (35), 8329–8335. 10.1021/ja960073b. DOI

Nicolosi V.; Chhowalla M.; Kanatzidis M. G.; Strano M. S.; Coleman J. N. Liquid exfoliation of layered materials. Science 2013, 340 (6139), 1226419.10.1126/science.1226419. DOI

Osada M.; Sasaki T. Nanosheet architectonics: A hierarchically structured assembly for tailored fusion materials. Polym. J. 2015, 47 (2), 89–98. 10.1038/pj.2014.111. DOI

Shamzhy M.; Gil B.; Opanasenko M.; Roth W. J.; Čejka J. MWW and MFI frameworks as model layered zeolites: structures, transformations, properties, and activity. ACS Catal. 2021, 11 (4), 2366–2396. 10.1021/acscatal.0c05332. DOI

Jacobson A. J. Colloidal dispersions of compounds with layer and chain structures. Mater. Sci. Forum 1994, 152–153, 1–12. 10.4028/www.scientific.net/MSF.152-153.1. DOI

Alberti G.; Constantino U., Layered solids and their intercalation chemistry. In Comprehensive Supramolecular Chemistry, Solid-State Supramolecular Chemistry: Two- and Three-Dimensional Inorganic Networks; Alberti G., Bein T., Eds.; Pergamon Press: Oxford, U.K., 1996; Vol. 7, pp 1–23.

Roth W. J.; Gil B.; Makowski W.; Marszalek B.; Eliasova P. Layer like porous materials with hierarchical structure. Chem. Soc. Rev. 2016, 45 (12), 3400–3438. 10.1039/C5CS00508F. PubMed DOI

Agrawal K. V. Towards the ultimate membranes: two-dimensional nanoporous materials and films. Chimia 2018, 72 (5), 313–321. 10.2533/chimia.2018.313. PubMed DOI

Schulman E.; Wu W.; Liu D. X. Two-dimensional zeolite materials: structural and acidity properties. Materials 2020, 13 (8), 1822.10.3390/ma13081822. PubMed DOI PMC

Tsapatsis M. 2-dimensional zeolites. AIChE J. 2014, 60 (7), 2374–2381. 10.1002/aic.14462. DOI

Sabnis S.; Tanna V. A.; Li C.; Zhu J. X.; Vattipalli V.; Nonnenmann S. S.; Sheng G.; Lai Z. P.; Winter H. H.; Fan W. Exfoliation of two-dimensional zeolites in liquid polybutadienes. Chem. Commun. 2017, 53 (52), 7011–7014. 10.1039/C7CC03256K. PubMed DOI

Varoon K.; Zhang X. Y.; Elyassi B.; Brewer D. D.; Gettel M.; Kumar S.; Lee J. A.; Maheshwari S.; Mittal A.; Sung C. Y.; Cococcioni M.; Francis L. F.; McCormick A. V.; Mkhoyan K. A.; Tsapatsis M. Dispersible exfoliated zeolite nanosheets and their application as a selective membrane. Science 2011, 334 (6052), 72–75. 10.1126/science.1208891. PubMed DOI

Corma A.; Fornes V.; Pergher S. B.; Maesen T. L. M.; Buglass J. G. Delaminated zeolite precursors as selective acidic catalysts. Nature 1998, 396 (6709), 353–356. 10.1038/24592. DOI

Ouyang X. Y.; Hwang S. J.; Runnebaum R. C.; Xie D.; Wanglee Y. J.; Rea T.; Zones S. I.; Katz A. Single-step delamination of a MWW borosilicate layered zeolite precursor under mild conditions without surfactant and sonication. J. Am. Chem. Soc. 2014, 136 (4), 1449–1461. 10.1021/ja410141u. PubMed DOI

Ogino I.; Eilertsen E. A.; Hwang S. J.; Rea T.; Xie D.; Ouyang X. Y.; Zones S. I.; Katz A. Heteroatom-tolerant delamination of layered zeolite precursor materials. Chem. Mater. 2013, 25 (9), 1502–1509. 10.1021/cm3032785. DOI

Ogino I.; Nigra M. M.; Hwang S. J.; Ha J. M.; Rea T.; Zones S. I.; Katz A. Delamination of layered zeolite precursors under mild conditions: synthesis of UCB-1 via fluoride/chloride anion-promoted exfoliation. J. Am. Chem. Soc. 2011, 133 (10), 3288–3291. 10.1021/ja111147z. PubMed DOI

Luo H. Y.; Michaelis V. K.; Hodges S.; Griffin R. G.; Román-Leshkov Y. One-pot synthesis of MWW zeolite nanosheets using a rationally designed organic structure-directing agent. Chemical Science 2015, 6 (11), 6320–6324. 10.1039/C5SC01912E. PubMed DOI PMC

Corma A.; Diaz U.; Domine M. E.; Fornes V. New aluminosilicate and titanosilicate delaminated materials active for acid catalysis, and oxidation reactions using H2O2. J. Am. Chem. Soc. 2000, 122 (12), 2804–2809. 10.1021/ja9938130. DOI

Leonowicz M. E.; Lawton J. A.; Lawton S. L.; Rubin M. K. MCM-22 - a molecular sieve with 2 independent multidimensional channel systems. Science 1994, 264 (5167), 1910–1913. 10.1126/science.264.5167.1910. PubMed DOI

Roth W. J.; Kresge C. T.; Vartuli J. C.; Leonowicz M. E.; Fung A. S.; McCullen S. B. MCM-36: The first pillared molecular sieve with zeolite properties. Stud. Surf. Sci. Catal. 1995, 94, 301–8. 10.1016/S0167-2991(06)81236-X. DOI

Schreyeck L.; Caullet P.; Mougenel J. C.; Guth J. L.; Marler B. PREFER: A new layered (alumino) silicate precursor of FER-type zeolite. Microporous Mater. 1996, 6 (5–6), 259–271. 10.1016/0927-6513(96)00032-6. DOI

Maluangnont T.; Yamauchi Y.; Sasaki T.; Roth W. J.; Cejka J.; Kubu M. The aqueous colloidal suspension of ultrathin 2D MCM-22P crystallites. Chem. Commun. 2014, 50 (55), 7378–7381. 10.1039/c4cc02540g. PubMed DOI

Marler B.; Gies H. Hydrous layer silicates as precursors for zeolites obtained through topotactic condensation: a review. Eur. J. Mineral. 2012, 24 (3), 405–428. 10.1127/0935-1221/2012/0024-2187. DOI

Rubin M. K.; Chu P.. Composition of synthetic porous crystalline material, its synthesis and use. U.S. Patent 4 954 325, 1990.

Dorset D. L.; Kennedy G. J. Crystal structure of MCM-65: An alternative linkage of ferrierite layers. J. Phys. Chem. B 2004, 108 (39), 15216–15222. 10.1021/jp040305q. DOI

Roth W. J.; Dorset D. L. The role of symmetry in building up zeolite frameworks from layered zeolite precursors having ferrierite and CAS layers. Struct. Chem. 2010, 21 (2), 385–390. 10.1007/s11224-009-9540-y. DOI

Marler B.; Wang Y.; Song J.; Gies H. Topotactic condensation of layer silicates with ferrierite-type layers forming porous tectosilicates. Dalton Trans. 2014, 43 (27), 10396–10416. 10.1039/C4DT00262H. PubMed DOI

Roth W. J.; Gil B.; Makowski W.; Sławek A.; Grzybek J.; Kubu M.; Čejka J. Interconversion of the CDO layered precursor ZSM-55 between FER and CDO frameworks by controlled deswelling and reassembly. Chem. Mater. 2016, 28 (11), 3616–3619. 10.1021/acs.chemmater.6b01302. DOI

De Baerdemaeker T.; Feyen M.; Vanbergen T.; Müller U.; Yilmaz B.; Xiao F. S.; Zhang W.; Yokoi T.; Bao X.; De Vos D. E.; Gies H. From layered zeolite precursors to zeolites with a three-dimensional porosity: Textural and structural modifications through alkaline treatment. Chem. Mater. 2015, 27 (1), 316–326. 10.1021/cm504014d. DOI

Roth W. J.; Gil B.; Mayoral A.; Grzybek J.; Korzeniowska A.; Kubu M.; Makowski W.; Cejka J.; Olejniczak Z.; Mazur M. Pillaring of layered zeolite precursors with ferrierite topology leading to unusual molecular sieves on the micro/mesoporous border. Dalton Trans. 2018, 47 (9), 3029–3037. 10.1039/C7DT03718J. PubMed DOI

Corma A.; Diaz U.; Domine M. E.; Fornés V. AIITQ-6 and TiITQ-6: Synthesis, characterization, and catalytic activity. Angew. Chem., Int. Ed. 2000, 39 (8), 1499–1501. 10.1002/(SICI)1521-3773(20000417)39:8<1499::AID-ANIE1499>3.0.CO;2-0. PubMed DOI

Benoit P. H. Adaptation to microcomputer of the Appleman-Evans program for indexing and least-squares refinement of powder-diffraction data for unit-cell dimensions. Am. Mineral. 1987, 72 (9–10), 1018–1019.

Database of Zeolite Structures. http://www.iza-structure.org/databases/ (accessed 2021-06-02).

Spencer M. S.; Whittam T. V. Catalytic conversion of methanol to hydrocarbons over zeolite FU-1. J. Mol. Catal. 1982, 17 (2–3), 271–277. 10.1016/0304-5102(82)85038-4. DOI

Dewing J.; Spencer M. S.; Whittam T. V. Synthesis, characterization, and catalytic properties of NU-1, FU-1, and related zeolites. Catal. Rev.: Sci. Eng. 1985, 27 (3), 461–514. 10.1080/01614948508064742. DOI

Roth W. J.; Kresge C. T. Intercalation chemistry of NU-6(1), the layered precursor to zeolite NSI, leading to the pillared zeolite MCM-39(Si). Microporous Mesoporous Mater. 2011, 144 (1–3), 158–161. 10.1016/j.micromeso.2011.04.006. DOI

Sasaki T.; Watanabe M. Osmotic swelling to exfoliation. Exceptionally high degrees of hydration of a layered titanate. J. Am. Chem. Soc. 1998, 120 (19), 4682–4689. 10.1021/ja974262l. DOI

Omomo Y.; Sasaki T.; Wang L. Z.; Watanabe M. Redoxable nanosheet crystallites of MnO2 derived via delamination of a layered manganese oxide. J. Am. Chem. Soc. 2003, 125 (12), 3568–3575. 10.1021/ja021364p. PubMed DOI

Li L.; Ma R. Z.; Ebina Y.; Iyi N.; Sasaki T. Positively charged nanosheets derived via total delamination of layered double hydroxides. Chem. Mater. 2005, 17 (17), 4386–4391. 10.1021/cm0510460. DOI

Fukuda K.; Nakai I.; Ebina Y.; Ma R. Z.; Sasaki T. Colloidal unilamellar layers of tantalum oxide with open channels. Inorg. Chem. 2007, 46 (12), 4787–4789. 10.1021/ic7004002. PubMed DOI

Fukuda K.; Akatsuka K.; Ebina Y.; Ma R.; Takada K.; Nakai I.; Sasaki T. Exfoliated nanosheet crystallite of cesium tungstate with 2D pyrochlore structure: Synthesis, characterization, and photochromic properties. ACS Nano 2008, 2 (8), 1689–1695. 10.1021/nn800184w. PubMed DOI

Ebina Y.; Akatsuka K.; Fukuda K.; Sasaki T. Synthesis and in situ X-ray diffraction characterization of two-dimensional perovskite-type oxide colloids with a controlled molecular thickness. Chem. Mater. 2012, 24 (21), 4201–4208. 10.1021/cm302480h. DOI

Kilaas R. Optimal and near-optimal filters in high-resolution electron microscopy. J. Microsc. 1998, 190 (1–2), 45–51. 10.1046/j.1365-2818.1998.3070861.x. DOI

Roth W. J.; Čejka J.; Millini R.; Montanari E.; Gil B.; Kubu M. Swelling and interlayer chemistry of layered MWW zeolites MCM-22 and MCM-56 with high Al content. Chem. Mater. 2015, 27 (13), 4620–4629. 10.1021/acs.chemmater.5b01030. DOI

Gil B.; Marszalek B.; Micek-Ilnicka A.; Olejniczak Z. The influence of Si/Al ratio on the distribution of OH groups in zeolites with MWW topology. Top. Catal. 2010, 53, 1340–1348. 10.1007/s11244-010-9592-7. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...