Exfoliated Ferrierite-Related Unilamellar Nanosheets in Solution and Their Use for Preparation of Mixed Zeolite Hierarchical Structures
Status PubMed-not-MEDLINE Language English Country United States Media print-electronic
Document type Journal Article
PubMed
34264655
PubMed Central
PMC8397323
DOI
10.1021/jacs.1c04081
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
Direct exfoliation of layered zeolites into solutions of monolayers has remained unresolved since the 1990s. Recently, zeolite MCM-56 with the MWW topology (layers denoted mww) has been exfoliated directly in high yield by soft-chemical treatment with tetrabutylammonium hydroxide (TBAOH). This has enabled preparation of zeolite-based hierarchical materials and intimate composites with other active species that are unimaginable via the conventional solid-state routes. The extension to other frameworks, which provides broader benefits, diversified activity, and functionality, is not routine and requires finding suitable synthesis formulations, viz. compositions and conditions, of the layered zeolites themselves. This article reports exfoliation and characterization of layers with ferrierite-related structure, denoted bifer, having rectangular lattice constants like those of the FER and CDO zeolites, and thickness of approximately 2 nm, which is twice that of the so-called fer layer. Several techniques were combined to prove the exfoliation, supported by simulations: AFM; in-plane, in situ, and powder X-ray diffraction; TEM; and SAED. The results confirmed (i) the structure and crystallinity of the layers without unequivocal differentiation between the FER and CDO topologies and (ii) uniform thickness in solution (monodispersity), ruling out significant multilayered particles and other impurities. The bifer layers are zeolitic with Brønsted acid sites, demonstrated catalytic activity in the alkylation of mesitylene with benzyl alcohol, and intralayer pores visible in TEM. The practical benefits are demonstrated by the preparation of unprecedented intimately mixed zeolite composites with the mww, with activity greater than the sum of the components despite high content of inert silica as pillars.
Faculty of Chemistry Jagiellonian University Gronostajowa 2 Kraków 30 387 Poland
International Centre for Materials Nanoarchitectonics 1 1 Namiki Tsukuba 305 0044 Ibaraki Japan
See more in PubMed
Roth W. J.; Sasaki T.; Wolski K.; Song Y.; Tang D. M.; Ebina Y.; Ma R. Z.; Grzybek J.; Kalahurska K.; Gil B.; Mazur M.; Zapotoczny S.; Cejka J. Liquid dispersions of zeolite monolayers with high catalytic activity prepared by soft-chemical exfoliation. Science Advances 2020, 6 (12), eaay816310.1126/sciadv.aay8163. PubMed DOI PMC
Sirisaksoontorn W.; Adenuga A. A.; Remcho V. T.; Lerner M. M. Preparation and characterization of a tetrabutylammonium graphite intercalation compound. J. Am. Chem. Soc. 2011, 133 (32), 12436–12438. 10.1021/ja2053539. PubMed DOI
Liu Z. H.; Ooi K.; Kanoh H.; Tang W. P.; Tomida T. Swelling and delamination behaviors of birnessite-type manganese oxide by intercalation of tetraalkylammonium ions. Langmuir 2000, 16 (9), 4154–4164. 10.1021/la9913755. DOI
Sasaki T.; Watanabe M.; Hashizume H.; Yamada H.; Nakazawa H. Macromolecule-like aspects for a colloidal suspension of an exfoliated titanate. Pairwise association of nanosheets and dynamic reassembling process initiated from it. J. Am. Chem. Soc. 1996, 118 (35), 8329–8335. 10.1021/ja960073b. DOI
Nicolosi V.; Chhowalla M.; Kanatzidis M. G.; Strano M. S.; Coleman J. N. Liquid exfoliation of layered materials. Science 2013, 340 (6139), 1226419.10.1126/science.1226419. DOI
Osada M.; Sasaki T. Nanosheet architectonics: A hierarchically structured assembly for tailored fusion materials. Polym. J. 2015, 47 (2), 89–98. 10.1038/pj.2014.111. DOI
Shamzhy M.; Gil B.; Opanasenko M.; Roth W. J.; Čejka J. MWW and MFI frameworks as model layered zeolites: structures, transformations, properties, and activity. ACS Catal. 2021, 11 (4), 2366–2396. 10.1021/acscatal.0c05332. DOI
Jacobson A. J. Colloidal dispersions of compounds with layer and chain structures. Mater. Sci. Forum 1994, 152–153, 1–12. 10.4028/www.scientific.net/MSF.152-153.1. DOI
Alberti G.; Constantino U., Layered solids and their intercalation chemistry. In Comprehensive Supramolecular Chemistry, Solid-State Supramolecular Chemistry: Two- and Three-Dimensional Inorganic Networks; Alberti G., Bein T., Eds.; Pergamon Press: Oxford, U.K., 1996; Vol. 7, pp 1–23.
Roth W. J.; Gil B.; Makowski W.; Marszalek B.; Eliasova P. Layer like porous materials with hierarchical structure. Chem. Soc. Rev. 2016, 45 (12), 3400–3438. 10.1039/C5CS00508F. PubMed DOI
Agrawal K. V. Towards the ultimate membranes: two-dimensional nanoporous materials and films. Chimia 2018, 72 (5), 313–321. 10.2533/chimia.2018.313. PubMed DOI
Schulman E.; Wu W.; Liu D. X. Two-dimensional zeolite materials: structural and acidity properties. Materials 2020, 13 (8), 1822.10.3390/ma13081822. PubMed DOI PMC
Tsapatsis M. 2-dimensional zeolites. AIChE J. 2014, 60 (7), 2374–2381. 10.1002/aic.14462. DOI
Sabnis S.; Tanna V. A.; Li C.; Zhu J. X.; Vattipalli V.; Nonnenmann S. S.; Sheng G.; Lai Z. P.; Winter H. H.; Fan W. Exfoliation of two-dimensional zeolites in liquid polybutadienes. Chem. Commun. 2017, 53 (52), 7011–7014. 10.1039/C7CC03256K. PubMed DOI
Varoon K.; Zhang X. Y.; Elyassi B.; Brewer D. D.; Gettel M.; Kumar S.; Lee J. A.; Maheshwari S.; Mittal A.; Sung C. Y.; Cococcioni M.; Francis L. F.; McCormick A. V.; Mkhoyan K. A.; Tsapatsis M. Dispersible exfoliated zeolite nanosheets and their application as a selective membrane. Science 2011, 334 (6052), 72–75. 10.1126/science.1208891. PubMed DOI
Corma A.; Fornes V.; Pergher S. B.; Maesen T. L. M.; Buglass J. G. Delaminated zeolite precursors as selective acidic catalysts. Nature 1998, 396 (6709), 353–356. 10.1038/24592. DOI
Ouyang X. Y.; Hwang S. J.; Runnebaum R. C.; Xie D.; Wanglee Y. J.; Rea T.; Zones S. I.; Katz A. Single-step delamination of a MWW borosilicate layered zeolite precursor under mild conditions without surfactant and sonication. J. Am. Chem. Soc. 2014, 136 (4), 1449–1461. 10.1021/ja410141u. PubMed DOI
Ogino I.; Eilertsen E. A.; Hwang S. J.; Rea T.; Xie D.; Ouyang X. Y.; Zones S. I.; Katz A. Heteroatom-tolerant delamination of layered zeolite precursor materials. Chem. Mater. 2013, 25 (9), 1502–1509. 10.1021/cm3032785. DOI
Ogino I.; Nigra M. M.; Hwang S. J.; Ha J. M.; Rea T.; Zones S. I.; Katz A. Delamination of layered zeolite precursors under mild conditions: synthesis of UCB-1 via fluoride/chloride anion-promoted exfoliation. J. Am. Chem. Soc. 2011, 133 (10), 3288–3291. 10.1021/ja111147z. PubMed DOI
Luo H. Y.; Michaelis V. K.; Hodges S.; Griffin R. G.; Román-Leshkov Y. One-pot synthesis of MWW zeolite nanosheets using a rationally designed organic structure-directing agent. Chemical Science 2015, 6 (11), 6320–6324. 10.1039/C5SC01912E. PubMed DOI PMC
Corma A.; Diaz U.; Domine M. E.; Fornes V. New aluminosilicate and titanosilicate delaminated materials active for acid catalysis, and oxidation reactions using H2O2. J. Am. Chem. Soc. 2000, 122 (12), 2804–2809. 10.1021/ja9938130. DOI
Leonowicz M. E.; Lawton J. A.; Lawton S. L.; Rubin M. K. MCM-22 - a molecular sieve with 2 independent multidimensional channel systems. Science 1994, 264 (5167), 1910–1913. 10.1126/science.264.5167.1910. PubMed DOI
Roth W. J.; Kresge C. T.; Vartuli J. C.; Leonowicz M. E.; Fung A. S.; McCullen S. B. MCM-36: The first pillared molecular sieve with zeolite properties. Stud. Surf. Sci. Catal. 1995, 94, 301–8. 10.1016/S0167-2991(06)81236-X. DOI
Schreyeck L.; Caullet P.; Mougenel J. C.; Guth J. L.; Marler B. PREFER: A new layered (alumino) silicate precursor of FER-type zeolite. Microporous Mater. 1996, 6 (5–6), 259–271. 10.1016/0927-6513(96)00032-6. DOI
Maluangnont T.; Yamauchi Y.; Sasaki T.; Roth W. J.; Cejka J.; Kubu M. The aqueous colloidal suspension of ultrathin 2D MCM-22P crystallites. Chem. Commun. 2014, 50 (55), 7378–7381. 10.1039/c4cc02540g. PubMed DOI
Marler B.; Gies H. Hydrous layer silicates as precursors for zeolites obtained through topotactic condensation: a review. Eur. J. Mineral. 2012, 24 (3), 405–428. 10.1127/0935-1221/2012/0024-2187. DOI
Rubin M. K.; Chu P.. Composition of synthetic porous crystalline material, its synthesis and use. U.S. Patent 4 954 325, 1990.
Dorset D. L.; Kennedy G. J. Crystal structure of MCM-65: An alternative linkage of ferrierite layers. J. Phys. Chem. B 2004, 108 (39), 15216–15222. 10.1021/jp040305q. DOI
Roth W. J.; Dorset D. L. The role of symmetry in building up zeolite frameworks from layered zeolite precursors having ferrierite and CAS layers. Struct. Chem. 2010, 21 (2), 385–390. 10.1007/s11224-009-9540-y. DOI
Marler B.; Wang Y.; Song J.; Gies H. Topotactic condensation of layer silicates with ferrierite-type layers forming porous tectosilicates. Dalton Trans. 2014, 43 (27), 10396–10416. 10.1039/C4DT00262H. PubMed DOI
Roth W. J.; Gil B.; Makowski W.; Sławek A.; Grzybek J.; Kubu M.; Čejka J. Interconversion of the CDO layered precursor ZSM-55 between FER and CDO frameworks by controlled deswelling and reassembly. Chem. Mater. 2016, 28 (11), 3616–3619. 10.1021/acs.chemmater.6b01302. DOI
De Baerdemaeker T.; Feyen M.; Vanbergen T.; Müller U.; Yilmaz B.; Xiao F. S.; Zhang W.; Yokoi T.; Bao X.; De Vos D. E.; Gies H. From layered zeolite precursors to zeolites with a three-dimensional porosity: Textural and structural modifications through alkaline treatment. Chem. Mater. 2015, 27 (1), 316–326. 10.1021/cm504014d. DOI
Roth W. J.; Gil B.; Mayoral A.; Grzybek J.; Korzeniowska A.; Kubu M.; Makowski W.; Cejka J.; Olejniczak Z.; Mazur M. Pillaring of layered zeolite precursors with ferrierite topology leading to unusual molecular sieves on the micro/mesoporous border. Dalton Trans. 2018, 47 (9), 3029–3037. 10.1039/C7DT03718J. PubMed DOI
Corma A.; Diaz U.; Domine M. E.; Fornés V. AIITQ-6 and TiITQ-6: Synthesis, characterization, and catalytic activity. Angew. Chem., Int. Ed. 2000, 39 (8), 1499–1501. 10.1002/(SICI)1521-3773(20000417)39:8<1499::AID-ANIE1499>3.0.CO;2-0. PubMed DOI
Benoit P. H. Adaptation to microcomputer of the Appleman-Evans program for indexing and least-squares refinement of powder-diffraction data for unit-cell dimensions. Am. Mineral. 1987, 72 (9–10), 1018–1019.
Database of Zeolite Structures. http://www.iza-structure.org/databases/ (accessed 2021-06-02).
Spencer M. S.; Whittam T. V. Catalytic conversion of methanol to hydrocarbons over zeolite FU-1. J. Mol. Catal. 1982, 17 (2–3), 271–277. 10.1016/0304-5102(82)85038-4. DOI
Dewing J.; Spencer M. S.; Whittam T. V. Synthesis, characterization, and catalytic properties of NU-1, FU-1, and related zeolites. Catal. Rev.: Sci. Eng. 1985, 27 (3), 461–514. 10.1080/01614948508064742. DOI
Roth W. J.; Kresge C. T. Intercalation chemistry of NU-6(1), the layered precursor to zeolite NSI, leading to the pillared zeolite MCM-39(Si). Microporous Mesoporous Mater. 2011, 144 (1–3), 158–161. 10.1016/j.micromeso.2011.04.006. DOI
Sasaki T.; Watanabe M. Osmotic swelling to exfoliation. Exceptionally high degrees of hydration of a layered titanate. J. Am. Chem. Soc. 1998, 120 (19), 4682–4689. 10.1021/ja974262l. DOI
Omomo Y.; Sasaki T.; Wang L. Z.; Watanabe M. Redoxable nanosheet crystallites of MnO2 derived via delamination of a layered manganese oxide. J. Am. Chem. Soc. 2003, 125 (12), 3568–3575. 10.1021/ja021364p. PubMed DOI
Li L.; Ma R. Z.; Ebina Y.; Iyi N.; Sasaki T. Positively charged nanosheets derived via total delamination of layered double hydroxides. Chem. Mater. 2005, 17 (17), 4386–4391. 10.1021/cm0510460. DOI
Fukuda K.; Nakai I.; Ebina Y.; Ma R. Z.; Sasaki T. Colloidal unilamellar layers of tantalum oxide with open channels. Inorg. Chem. 2007, 46 (12), 4787–4789. 10.1021/ic7004002. PubMed DOI
Fukuda K.; Akatsuka K.; Ebina Y.; Ma R.; Takada K.; Nakai I.; Sasaki T. Exfoliated nanosheet crystallite of cesium tungstate with 2D pyrochlore structure: Synthesis, characterization, and photochromic properties. ACS Nano 2008, 2 (8), 1689–1695. 10.1021/nn800184w. PubMed DOI
Ebina Y.; Akatsuka K.; Fukuda K.; Sasaki T. Synthesis and in situ X-ray diffraction characterization of two-dimensional perovskite-type oxide colloids with a controlled molecular thickness. Chem. Mater. 2012, 24 (21), 4201–4208. 10.1021/cm302480h. DOI
Kilaas R. Optimal and near-optimal filters in high-resolution electron microscopy. J. Microsc. 1998, 190 (1–2), 45–51. 10.1046/j.1365-2818.1998.3070861.x. DOI
Roth W. J.; Čejka J.; Millini R.; Montanari E.; Gil B.; Kubu M. Swelling and interlayer chemistry of layered MWW zeolites MCM-22 and MCM-56 with high Al content. Chem. Mater. 2015, 27 (13), 4620–4629. 10.1021/acs.chemmater.5b01030. DOI
Gil B.; Marszalek B.; Micek-Ilnicka A.; Olejniczak Z. The influence of Si/Al ratio on the distribution of OH groups in zeolites with MWW topology. Top. Catal. 2010, 53, 1340–1348. 10.1007/s11244-010-9592-7. DOI