Occurrence and pathogenicity of Corinectria spp. - an emerging canker disease of Abies sibirica in Central Siberia
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32221468
PubMed Central
PMC7101354
DOI
10.1038/s41598-020-62566-y
PII: 10.1038/s41598-020-62566-y
Knihovny.cz E-zdroje
- MeSH
- fylogeneze MeSH
- jedle mikrobiologie MeSH
- mikroskopie elektronová rastrovací MeSH
- Nectria genetika patogenita ultrastruktura MeSH
- nemoci rostlin mikrobiologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Sibiř MeSH
During recent years, a new disease of Siberian fir (A. sibirica) emerged in Central Siberia, exhibiting symptoms of stem/branch deformation, cambium necrosis, and dieback of branches and twigs, the causal agent remaining unknown. The aim was to identify agent of the disease and to investigate its pathogenicity to A. sibirica and Norway spruce (Picea abies). Symptomatic tissues of fir were subjected to pure culture isolation of anticipated pathogen(s). Obtained isolates were subjected to molecular identification, phylogenetic analyses, and pathogenicity tests with A. sibirica saplings, and seeds and seedlings of A. sibirica and P. abies. The study demonstrated that, (i) most commonly isolated fungus from canker wounds of A. sibirica exhibited Acremonium-like anamorphs; (ii) phylogeny demonstrated that investigated fungi belong to genus Corinectria, but are genetically well separated from other worldwide known Corinectria spp.; (iii) one species of isolated fungi has the capacity to cause the disease and kill A. sibirica saplings and seedlings, but also seedlings of P. abies. Guidelines for future research were defined in order to generate needed information on species description, its origin and ecology, and estimation of potential risks upon the eventual invasion of the pathogen to new geographic areas, in particular of Europe.
Zobrazit více v PubMed
Tolmachev, A. I. Flora of the North-East of European part of the USSR. (1974).
González CD, Chaverri P. Corinectria, a new genus to accommodate Neonectria fuckeliana and C. constricta sp. nov. from Pinus radiata in Chile. Mycol. Prog. 2017;16:1015–1027. doi: 10.1007/s11557-017-1343-8. DOI
Ramsfield TD, Power MWP, Kimberley MO. The relationship between pruning and the incidence of Neonectria fuckeliana in Pinus radiata. NZ J. Forestry Sci. 2013;43:13.
Pavlov IN. Biotic and abiotic factors as causes of coniferous forests die-back in Siberia and Far East. Contemp. Probl. Ecol. 2015;8:440–456. doi: 10.1134/S1995425515040125. DOI
Pavlov, I. N. et al. Mass reproduction of Polygraphus proximus Blandford in fir forests of Siberia infected with root and stem pathogens: monitoring, patterns, biological control. Contemp Probl Ecol In Press (2020).
Laing EV. Preliminary note on a disease of Sitka spruce in Cairnhill plantation, Durris, Kincardineshire (Picea sitchensis Carr.) Forestry. 1947;21:217–220. doi: 10.1093/oxfordjournals.forestry.a062881. DOI
Metzler B. Quantitative assessment of fungal colonization in Norway spruce after green pruning. Eur. J. For. Pathol. 1997;27:1–11. doi: 10.1111/j.1439-0329.1997.tb00848.x. DOI
Phillips, D. H. & Burdekin, D. A. Diseases of forest and ornamental trees. 435 (MacMillan Press, 1982).
Butin, H. Tree diseases and disorders. 252 (Oxford University Press, 1995).
Smerlis E. Pathogenicity tests of four pyrenomycetes in Quebec. Plant. Dis. Rep. 1969;53:979–981.
Ouellette GB. Nectria macrospora (Wr.) Ouellette sp. nov. (=N. fuckeliana var. macrospora): strains, physiology and pathogenicity, and comparison with N. fuckeliana var. fuckeliana. Eur. J. For. Pathol. 1972;2:172–181. doi: 10.1111/j.1439-0329.1972.tb00358.x. DOI
Scharpf, R. F. Diseases of Pacific coast conifers. 199 (USDA Forest Service, 1993).
Dick MA, Power MWP, Carlson CA. Neonectria fuckeliana infection of Pinus radiata nursery stock. NZ Plant. Prot. 2011;64:183–187.
Crane PE, Hopkins AJM, Dick MA, Bulman LS. Behaviour of Neonectria fuckeliana causing a pine canker disease in New Zealand. Can. J. For. Res. 2009;39:2119–2128. doi: 10.1139/X09-133. DOI
Morales R. Detection of Neonectria fuckeliana in Chile associated to stem cankers and malformation in Pinus radiata plantations. Bosque. 2009;30:106–110. doi: 10.4067/S0717-92002009000200007. DOI
Gonzalez C, Morales R, Riegel R, Aravena M, Valenzuela E. Geographical distribution and phenotypic and molecular characterization of Neonectria fuckeliana, associated with upper-stem cankers of Pinus radiata in Chile. Bosque. 2015;36:531–541. doi: 10.4067/S0717-92002015000300019. DOI
Musolin DL, Selikhovkin AV, Shabunin DA, Zviagintsev VB, Baranchikov YN. Between ash dieback and Emerald ash borer: two Asian invaders in Russia and the future of ash in Europe. Balt. For. 2017;23:316–333.
Menkis A, Ihrmark K, Stenlid J, Vasaitis R. Root-associated fungi of Rosa rugosa grown on the frontal dunes of the Baltic Sea coast in Lithuania. Microb. Ecol. 2014;67:769–774. doi: 10.1007/s00248-013-0351-8. PubMed DOI
Hall T. BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acid. S. 1999;41:95–98.
Swofford, D. L. PAUP*: phylogenetic analysis using parsimony (* and other methods). Version 4 edn, (Sinauer Associates, 2002).
Posada D. jModelTest: phylogenetic model averaging. Mol. Biol. Evol. 2008;25:1253–1256. doi: 10.1093/molbev/msn083. PubMed DOI
Huelsenbeck JP, Ronquist F. MrBayes: Bayesian inference of phylogenetic trees. Bioinformatics. 2001;17:754–755. doi: 10.1093/bioinformatics/17.8.754. PubMed DOI
Alfaro M, Zoller S, Lutzoni F. Bayes or bootstrap? A simulation study comparing the performance of bayesian markov chain monte carlo sampling and bootstrapping in assessing phylogenetic confidence. Mol. Biol. Evol. 2003;20:255–266. doi: 10.1093/molbev/msg028. PubMed DOI
Bakys R, Vasaitis R, Barklund P, Thomsen I, Stenlid J. Occurrence and pathogenicity of fungi in necrotic and non-symptomatic shoots of declining common ash (Fraxinus excelsior) in Sweden. Eur. J. For. Res. 2009;128:51–60. doi: 10.1007/s10342-008-0238-2. DOI
Bakys R, Vasaitis R, Barklund P, Ihrmark K, Stenlid J. Investigations concerning the role of Chalara fraxinea in declining Fraxinus excelsior. Plant. Pathol. 2009;58:284–292. doi: 10.1111/j.1365-3059.2008.01977.x. DOI
Lazreg F, Belabid L, Sanchez J, Gallego E, Bayaa B. Pathogenicity of Fusarium spp. associated with diseases of Aleppo-pine seedlings in Algerian forest nurseries. J. For. Sci. 2014;60:115–120. doi: 10.17221/65/2013-JFS. DOI
Alghuthaymi MA, Aly AA, Amal-Asran A, Abd-Elsalam KA. A rapid and simple screening method for pathogenicity of Rhizoctonia solani and Macrophomina phaseolina on cotton seedlings. Pl. Pathol. Quarant. 2015;5:53–61. doi: 10.5943/ppq/5/2/4. DOI
Güney IG, Güldür ME. Inoculation techniques for assessing pathogenicity of Rhizoctonia solani, Macrophomina phaseolina, Fusarium oxysporum and Fusarium solani on pepper seedlings. Turk. J. Agric. Res. 2018;5:1–8.