Unmasking the Mask: Investigating the Role of Physical Properties in the Efficacy of Fabric Masks to Prevent the Spread of the COVID-19 Virus
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
34947347
PubMed Central
PMC8705731
DOI
10.3390/ma14247756
PII: ma14247756
Knihovny.cz E-zdroje
- Klíčová slova
- air permeability, breathability, fabric masks, filtration efficiency, source control,
- Publikační typ
- časopisecké články MeSH
To function as source control, a fabric mask must be able to filter micro-droplets (≥5 µm) in expiratory secretions and still allow the wearer to breathe normally. This study investigated the effects of fabric structural properties on the filtration efficiency (FE) and air permeability (AP) of a range of textile fabrics, using a new method to measure the filtration of particles in the described conditions. The FE improved significantly when the number of layers increased. The FE of the woven fabrics was generally higher, but double-layer weft knitted fabrics, especially when combined with a third (filter) layer, provided a comparable FE without compromising on breathability. This also confirmed the potential of nonwoven fabrics as filter layers in masks. None of the physical fabric properties studied affected FE significantly more than the others. The variance in results achieved within the sample groups show that the overall performance properties of each textile fabric are a product of its combined physical or structural properties, and assumptions that fabrics which appear to be similar will exhibit the same performance properties cannot be made. The combination of layers of fabric in the design of a mask further contributes to the product performance.
Zobrazit více v PubMed
Prather B.K.A., Wang C.C., Schooley R.T. Reducing transmission of SARS-CoV-2. Science. 2020;368:1422–1424. doi: 10.1126/science.abc6197. PubMed DOI
Milton D.K., Fabian M.P., Cowling B.J., Grantham M.L., McDevitt J.J. Influenza Virus Aerosols in Human Exhaled Breath: Particle Size, Culturability, and Effect of Surgical Masks. PLoS Pathog. 2013;9:e1003205. doi: 10.1371/journal.ppat.1003205. PubMed DOI PMC
Asadi S., Cappa C.D., Barreda S., Wexler A.S., Bouvier N.M., Ristenpart W.D. Efficacy of masks and face coverings in controlling outward aerosol particle emission from expiratory activities. Sci. Rep. 2020;10:15665. doi: 10.1038/s41598-020-72798-7. PubMed DOI PMC
WHO Advice on the Use of Masks in the Context of COVID-19: Interim Guidance-5 June 2020. [(accessed on 12 June 2020)]. Available online: https://apps.who.int/iris/handle/10665/3322932.
Lindsley W.G., Beezhold D.H., Coyle J., Derk R.C., Blachere F.M., Boots T., Reynolds J.S., Mckinney W.G., Sinsel E., Noti J.D. Efficacy of universal masking for source control and personal protection from simulated cough and exhaled aerosols in a room. J. Occup. Environ. Hyg. ISSN. 2021;18:409–422. doi: 10.1080/15459624.2021.1939879. PubMed DOI PMC
Davies A., Thompson K.A., Giri K., Kafatos G., Walker J., Bennett A. Testing the efficacy of homemade masks: Would they protect in an influenza pandemic? Disaster Med. Public Health Prep. 2013;7:413–418. doi: 10.1017/dmp.2013.43. PubMed DOI PMC
Anfinrud P., Bax C.E., Stadnytskyi V., Bax A. Could SARS-CoV-2 be transmitted via speech droplets? medRxiv. 2020 doi: 10.1101/2020.04.02.20051177. DOI
Konda A., Prakash A., Moss G.A., Schmoldt M., Grant G.D., Guha S. Aerosol Filtration Efficiency of Common Fabrics Used in Respiratory Cloth Masks. ACS Nano. 2020;14:6339–6347. doi: 10.1021/acsnano.0c03252. PubMed DOI
Howard J., Huang A., Li Z., Tufekci Z., Zdimal V., van der Westhuizen H.-M., von Delft A., Price A., Fridman L., Tang L.-H., et al. Face Mask Against COVID-19: An Evidence Review. Br. Med. J. 2020:1–8. doi: 10.1073/pnas.2014564118. PubMed DOI PMC
Duguid J.P. Expulsion of Pathogenic Organisms from Respiratory Tract. Br. Med. J. 1946;1:265–268. doi: 10.1136/bmj.1.4442.265. PubMed DOI
Chao C.Y.H., Wan M.P., Morawska L., Johnson G.R., Ristovski Z.D., Hargreaves M., Mengersen K., Corbett S., Li Y., Xie X., et al. Characterization of expiration air jets and droplet size distributions immediately at the mouth opening. J. Aerosol Sci. 2009;40:122–133. doi: 10.1016/j.jaerosci.2008.10.003. PubMed DOI PMC
Shah M., Crompton P., Vickers M.D.A. The efficacy of face masks. Ann. R. Coll. Surg. Engl. 1983;65:380–381. PubMed PMC
Leung N.H.L., Chu D.K.W., Shiu E.Y.C., Chan K.H., McDevitt J.J., Hau B.J.P., Yen H.L., Li Y., Ip D.K.M., Peiris J.S.M., et al. Respiratory virus shedding in exhaled breath and efficacy of face masks. Nat. Med. 2020;26:676–680. doi: 10.1038/s41591-020-0843-2. PubMed DOI PMC
Xie X., Li Y., Sun H., Liu L. Exhaled droplets due to talking and coughing. J. R. Soc. Interface. 2009;6:S703–S714. doi: 10.1098/rsif.2009.0388.focus. PubMed DOI PMC
Dbouk T., Drikakis D. On respiratory droplets and face masks. Phys. Fluids. 2020;32:063303. doi: 10.1063/5.0015044. PubMed DOI PMC
Scharfman B.E., Techet A.H., Bush J.W.M., Bourouiba L. Visualization of sneeze ejecta: Steps of fluid fragmentation leading to respiratory droplets. Exp. Fluids. 2016;57:24. doi: 10.1007/s00348-015-2078-4. PubMed DOI PMC
Asadi S., Gaaloul ben Hnia N., Barre R.S., Wexler A.S., Ristenpart W.D., Bouvier N.M. Influenza A virus is transmissible via aerosolized fomites. Nat. Commun. 2020;11:4062. doi: 10.1038/s41467-020-17888-w. PubMed DOI PMC
Zhong W. An Introduction to Healthcare and Medical Textiles. 1st ed. DEStech Publications, Inc.; Lancaster, PA, USA: 2013.
Department of Trade Industry and Competition Recommended Guidelines for the Manufacturing of Fabric Face Masks for General Public Use. [(accessed on 4 May 2020)]; Available online: http://www.treasury.gov.za/comm_media/press/2020/Annexure%20B%20-%20Recommended%20Guidelines%20Fabric%20Face%20Masks%20RSA%20DTIC.pdf.
Hinds W.C. Aerosol Technology: Properties, Behavior and Measurement of Airborne Particles. Wiley; New York, NY, USA: 1999. pp. 187–196.
Podgórski A., Bałazy A., Gradoń L. Application of nanofibers to improve the filtration efficiency of the most penetrating aerosol particles in fibrous filters. Chem. Eng. Sci. 2006;61:6804–6815. doi: 10.1016/j.ces.2006.07.022. DOI
Abdul-Rahman A., Pilouk M., Aebischer B., Catenazzi G., Jakob M., Africa W., Appiah S.K., Ageep T.B., Cox J., Hassan M.M., et al. Thermal Comfort. Geophys. Res. Lett. 2012;6:1–5.
Tcharkhtchi A., Abbasnezhad N., Zarbini Seydani M., Zirak N., Farzaneh S., Shirinbayan M. An overview of filtration efficiency through the masks: Mechanisms of the aerosols penetration. Bioact. Mater. 2021;6:106–122. doi: 10.1016/j.bioactmat.2020.08.002. PubMed DOI PMC
Gupta D. Functional clothing- definition and classification. Indian J. Fibre Text. Res. 2011;36:312–326.
Kadolph S., Marcketti S. Textiles. 12th ed. Pearson Education; New York, NY, USA: 2016.
Militky J., Novak O., Kremenakova D., Wiener J., Venkataraman M., Zhu G., Yao J., Aneja A. A review of impact of textile research on protective face masks. Materials. 2021;14:1937. doi: 10.3390/ma14081937. PubMed DOI PMC
Anand S.C., Lawton P.J. The development of knitted structures for filtration. J. Text. Inst. 1991;82:297–308. doi: 10.1080/00405009108659213. DOI
Horrocks A.R., Anand S.C. Handbook of Technical Textiles. Woodhead Publishing Ltd; Cambridge, UK:
Çinçik E., Koç E. An analysis on air permeability of polyester/viscose blended needle-punched nonwovens. Text. Res. J. 2012;82:430–442. doi: 10.1177/0040517511414977. DOI
Bunsell A.R., editor. Handbook of Properties of Textile and Technical Fibres. 2nd ed. Woodhead Publishing; Duxford, UK: 2018.
WHO Coronavirus Disease (COVID-19) Advice for the Public: When and How to Use Masks. [(accessed on 5 April 2020)]. Available online: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/advice-for-public/when-and-how-to-use-masks.
The Effect of Mask Style and Fabric Selection on the Comfort Properties of Fabric Masks