The Effect of Mask Style and Fabric Selection on the Comfort Properties of Fabric Masks
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
35407890
PubMed Central
PMC9000258
DOI
10.3390/ma15072559
PII: ma15072559
Knihovny.cz E-zdroje
- Klíčová slova
- COVID-19, fabric masks, humidity, mask style, micro-climate, temperature,
- Publikační typ
- časopisecké články MeSH
The purpose of fabric masks in the prevention of the spread of COVID-19 often requires that the masks be worn for extended periods without removal. The management of the conditions in the micro-climate inside the masks is important to keep the wearer comfortable and enhance user compliance. In this study, the effect of mask design and fabric type on the micro-climate was investigated using thermocron iButtons to record the temperature and humidity inside the masks. It was found that the mask style, and its effect on the amount of air incorporated in the micro-climate, had a significant influence on the factors that determine the temperature and humidity levels. In the shaped masks, the impact of the mask design on the results was stronger than the effect of fabric type. In the folded masks that fit snugly around the face, the effect of fabric type was significant, and both fibre composition and fabric structure contributed to the differences in the performance of the three fabrics tested. In the case of the masks with an inserted filter, a significant amount of trapped still air in the fabric layers and the increased mask stiffness had the strongest effect on the temperature and humidity inside the masks. Significant differences were also found in the temperatures recorded in the different time segments, highlighting the importance of conducting comfort evaluations over a long enough time to prevent false interpretations. The results of this study emphasize the importance of considering all the components of mask design, namely style, fibre type, and fabric structure, in the development of masks to enhance user compliance.
Zobrazit více v PubMed
Prather B.K.A., Wang C.C., Schooley R.T. Reducing transmission of SARS-CoV-2. Science. 2020;368:1422–1424. doi: 10.1126/science.abc6197. PubMed DOI
Milton D.K., Fabian M.P., Cowling B.J., Grantham M.L., McDevitt J.J. Influenza Virus Aerosols in Human Exhaled BreathParticle Size, Culturability, and Effect of Surgical Masks. PLoS Pathog. 2013;9:e1003205. doi: 10.1371/journal.ppat.1003205. PubMed DOI PMC
Asadi S., Gaaloul ben Hnia N., Barre R.S., Wexler A.S., Ristenpart W.D., Bouvier N.M. Influenza A virus is transmissible via aerosolized fomites. Nat. Commun. 2020;11:4062. doi: 10.1038/s41467-020-17888-w. PubMed DOI PMC
Lindsley W.G., Beezhold D.H., Coyle J., Derk R.C., Blachere F.M., Boots T., Reynolds J.S., Mckinney W.G., Sinsel E., Noti J.D. Efficacy of universal masking for source control and personal protection from simulated cough and exhaled aerosols in a room. J. Occup. Environ. Hyg. 2021;18:409–422. doi: 10.1080/15459624.2021.1939879. PubMed DOI PMC
Li Y. The science of clothing comfort. Text. Prog. 2001;31:1–135. doi: 10.1080/00405160108688951. DOI
Scarano A., Inchingolo F., Lorusso F. Facial skin temperature and discomfort when wearing protective face masks: Thermal infrared imaging evaluation and hands moving the mask. Int. J. Environ. Res. Public Health. 2020;17:4624. doi: 10.3390/ijerph17134624. PubMed DOI PMC
Das B., Das A., Kothari V.K., Fanguiero R., de Araújo M. Moisture transmission through textiles: Part I: Processes involved in moisture transmission and the factors at play. Autex Res. J. 2007;7:100–110.
Bhatia D., Malhotra U. Thermophysiological Wear Comfort of Clothing: An Overview. J. Text. Sci. Eng. 2016;6:1–6. doi: 10.4172/2165-8064.1000250. DOI
Fan L.J., Hunter L. Engineering Apparel Fabrics and Garments. Woodhead Publishing Ltd.; Cambridge, UK: 2009.
Lee K.P., Yip J., Kan C.W., Chiou J.C., Yung K.F. Reusable face masks as alternative for disposable medical masks: Factors that affect their wear-comfort. Int. J. Environ. Res. Public Health. 2020;17:6623. doi: 10.3390/ijerph17186623. PubMed DOI PMC
Cao W., Cloud R.M. Balancing comfort and function in textiles worn by medical personnel. In: Song G., editor. Improving Comfort in Clothing. Woodhead Publishing Ltd.; Cambridge, UK: 2011. pp. 370–382.
Braswell M.L. Implementing AORN Recommended Practices for Surgical Attire. Aorn J. 2012;95:122–137. doi: 10.1016/j.aorn.2011.10.017. PubMed DOI
Li Y., Tokura H., Guo Y.P., Wong A.S.W., Wong T., Chung J., Newton E. Effects of wearing N95 and surgical facemasks on heart rate, thermal stress and subjective sensations. Int. Arch. Occup. Environ. Health. 2005;78:501–509. doi: 10.1007/s00420-004-0584-4. PubMed DOI PMC
Ruth N., Berglund L.G., Gwosdow A.R., Dubois A.B. Thermal sensation of the body as influenced by the thermal microclimate in a face mask. Ergonomics. 1987;30:1689–1703. doi: 10.1080/00140138708966058. PubMed DOI
Hayashi C., Tokura H. The effects of two kinds of mask (with or without exhaust valve) on clothing microclimates inside the mask in participants wearing protective clothing for spraying pesticides. Int. Arch. Occup. Environ. Health. 2004;77:73–78. doi: 10.1007/s00420-003-0472-3. PubMed DOI
Romney M.G. Surgical face masks in the operating theatre: Re-examining the evidence95. J. Hosp. Infect. 2001;47:251–256. doi: 10.1053/jhin.2000.0912. PubMed DOI
Gericke A., Militky J., Venkataraman M., Steyn H.J., Vermaas J. Investigation of thermal comfort properties of fabrics containing mohair. J. Text. Inst. 2022;113:616–627. doi: 10.1080/00405000.2021.1896158. DOI
Afzal A., Ahmad S., Rasheed A., Ahmad F., Iftikhar F., Nawab Y. Influence of fabric parameters on thermal comfort performance of double layer knitted interlock fabrics. Autex Res. J. 2017;17:20–26. doi: 10.1515/aut-2015-0037. DOI
Jhanji Y., Gupta D., Kothari V.K. Thermo-physiological properties of polyester–cotton plated fabrics in relation to fibre linear density and yarn type. Fash. Text. 2015;2:16. doi: 10.1186/s40691-015-0041-x. DOI
Holcombe B.V., Hoschke B.N. Part IV: Prediction of Tensile Properties. Text. Res. J. 1983;53:368–374. doi: 10.1177/004051758305300608. DOI
Jung J.-Y., Kang C., Seong Y., Jang S.-H., Lee J.-Y. Effects of Wearing COVID-19 Protective Face Masks on Respiratory, Cardiovascular Responses and Wear Comfort During Rest and Exercise. Fash. Text. Res. J. 2020;22:862–872. doi: 10.5805/SFTI.2020.22.6.862. DOI
Gericke A., Venkataraman M., Milititky J., Steyn H.S.V.J. Unmasking the mask. Investigating the role of physical fabric properties in the efficacy of fabric masks to prevent the spread of the COVID-19 virus. Materials. 2021;14:7756. doi: 10.3390/ma14247756. PubMed DOI PMC
Hes L., Dolezal I. New Method Thermal and Equipment for Measuring Properties of Textiles. Sen’i Kikai Gakkaishi (J. Text. Mach. Soc. Jpn.) 1989;42:71–75. doi: 10.4188/transjtmsj.42.8_T124. DOI
Kadolph S.J., Marcketti S. Textiles. 12th ed. Pearson Education; Hoboken, NJ, USA: 2016.