A Review of Impact of Textile Research on Protective Face Masks
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
33924470
PubMed Central
PMC8070024
DOI
10.3390/ma14081937
PII: ma14081937
Knihovny.cz E-zdroje
- Klíčová slova
- COVID-19, anti-viral, facemask, nanoparticles, textiles,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
COVID-19, classified as SARS-CoV-2, is causing an ongoing global pandemic. The pandemic has resulted in the loss of lives and has caused economic hardships. Most of the devices used to protect against the transmission of the novel COVID-19 disease are related to textile structures. Hence, the challenge for textile professionals is to design and develop suitable textile structures with multiple functionalities for capturing viruses, passivating them, and, at the same time, having no adverse effects on humans during the complete period of use. In addition to manufacturing efficient, biocompatible, and cost-effective protective face masks, it is also necessary to inform the public about the benefits and risks of protective face mask materials. The purpose of this article is to address the concerns of efficiency and efficacy of face masks by primarily reviewing the literature of research conducted at the Technical University of Liberec. The main focus is on the presentation of problems related to the specification of aims of face mask applications, mechanisms of capture, durability, and modes of sterilization. The recommendations, instead of conclusions, are addressed to the whole textile society because they should be leading players in the design, creation, and proper treatment of face masks due to their familiarity with the complex behavior of textile structures and targeted changes of structural hierarchy starting from polymeric chains (nano-level) and ending in planar textile structures (millimeter level) due to action by mechanical, physical and chemical fields. This becomes extremely critical to saving hundreds of thousands of lives from COVID-19.
Department of Engineering East Carolina University Greenville NC 27858 USA
School of Materials Science and Engineering Zhejiang Sci Tech University Hangzhou 310018 China
Zobrazit více v PubMed
Pal M., Berhanu G., Desalegn C., Kandi V. Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2): An Update. Cureus. 2020;12:e7423. doi: 10.7759/cureus.7423. PubMed DOI PMC
Sahin A.R., Erdogan A., Agaoglu P.M., Dineri Y., Cakirci A.Y., Senel M.E., Okyay R.A., Tasdogan A.M. 2019 novel coronavirus (COVID-19) outbreak: A review of the current literature. EJMO. 2020;4:1–7. doi: 10.14744/ejmo.2020.12220. DOI
Alexandra C.W., Young-Jun P.M., Alejandra T., Abigail W., Andrew T.M., David V. Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell. 2020;181:281–292. PubMed PMC
Van Doremalen N., Bushmaker T., Morris D.H., Holbrook M.G., Gamble A., Williamson B.N., Tamin A., Lloyd-Smith J.O., de Wit E. Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. N. Engl. J. Med. 2020;382:1564–1567. doi: 10.1056/NEJMc2004973. PubMed DOI PMC
Wu Z., Fernandez-Lima F.A., Russell D.H. Amino Acid Influence on Copper Binding to Peptides. J. Am. Soc. Mass Spectrom. 2010;21:522–533. doi: 10.1016/j.jasms.2009.12.020. PubMed DOI
Kryštůfek J., Militký J., Vik M., Wiener J. Textile Dyeing and Applications. TUL Press; Liberec, Czech Republic: 2013. p. 334.
Militký J., Prince A., Venkataraman M., editors. Textiles and Their Use in Microbial Protection. CRC Press; Boca Raton, FL, USA: 2021.
Howard J., Huang A., Li Z., Tufekci Z., Zdimal V., van der Westhuizen H., von Delft A., Price A., Fridman L., Tang L., et al. Face Masks Against COVID-19: An Evidence Review. Preprints. 2020:2020040203. doi: 10.20944/preprints202004.0203.v1. PubMed DOI PMC
Chua M.H., Cheng W., Goh S.S., Kong J., Li B., Lim J., Mao L., Wang S., Xue K., Yang L., et al. Face Masks in the New COVID-19 Normal: Materials, Testing, and Perspectives. Research. 2020 doi: 10.34133/2020/7286735. PubMed DOI PMC
Greene V.W., Vesley D. Method for evaluating effectiveness of surgical masks. J. Bacteriol. 1962;83:663–667. doi: 10.1128/JB.83.3.663-667.1962. PubMed DOI PMC
Rengasamy S., Eimer B., Shaffer R.E. Simple respiratory protection—Evaluation of the filtration performance of cloth masks and common fabric materials against 20–1000 nm size particles. Ann. Occup. Hyg. 2010;54:789–798. PubMed PMC
Swennen G.R.J., Pottel L., Haers P.E. Custom-made 3D-printed face masks in case of pandemic crisis situations with a lack of commercially available FFP2/3 masks. Int. J. Oral Maxillofac. Surg. 2020;49:673–677. doi: 10.1016/j.ijom.2020.03.015. PubMed DOI PMC
Coetzee D., Militký J., Venkataraman M. Antiviral Finishes for Protection against SARS-CoV-2. 2021. Unpublished work.
Lee S., Obenorf K. Use electrospun nanofiber web for protective textile materials as barriers to liquid penetration. Text. Res. J. 2007;77:696–702. doi: 10.1177/0040517507080284. DOI
Mishra R., Militký J. In The Textile Institute Book Series, Nanotechnology in Textiles. Woodhead Publishing; Cambridge, UK: 2019. pp. 35–161.
Yang S., Lee G.W., Chen C.M., Wu C.C., Yu K.P. The Size and Concentration of Droplets Generated by Coughing in Human Subjects. J. Aerosol Med. Off. J. Int. Soc. Aerosols Med. 2007;20:484–494. doi: 10.1089/jam.2007.0610. PubMed DOI
Novák O., Chaloupek J. Preparation of Microporous Layers by Melt-Blown Technology. 2021. Unpublished work.
Xiao Y., Wen E., Sakib N., Yue Z., Wang Y., Cheng S., Militky J., Venkataraman M., Zhu G. Performance of Electrospun Polyvinylidene Fluoride Nanofibrous Membrane in Air Filtration. Autex Res. J. 2019 doi: 10.2478/aut-2019-0043. DOI
Xiao Y., Sakib N., Yue Z., Wang Y., Cheng S., You J., Militky J., Prasad M., Zhu G. Study on the Relationship between Structure Parameters and Filtration Performance of Polypropylene Meltblown Nonwovens. Autex Res. J. 2019 doi: 10.2478/aut-2019-0029. DOI
Khan M.Z., Baheti V., Militky J., Wiener J., Ali A. Self-cleaning properties of polyester fabrics coated with flower-like TiO2 particles and trimethoxy (octadecyl)silane. J. Ind. Text. 2019;50:543–565. doi: 10.1177/1528083719836938. DOI
Chaturvedi U.C., Shrivastava R. Interaction of viral proteins with metal ions. FEMS Immunol. Med. Microbiol. 2005;43:105–114. doi: 10.1016/j.femsim.2004.11.004. PubMed DOI PMC
Venkataraman M., Yang K., Periyasamy A.P., Xiong X., Militky J., Mishra R. Modification of electromagnetic property of copper coated milife fabrics; Proceedings of the NANOCON 2018-Conference Proceedings, 10th Anniversary International Conference on Nanomaterials-Research and Application; Brno, Czech Republic. 17–19 October 2018; pp. 694–700.
Militky J., Kremenakova D., Venkataraman M., Vecernik J. Exceptional Electromagnetic Shielding Properties of Lightweight and Porous Multifunctional Layers. ACS Appl. Electron. Mater. 2020;2:1138–1144. doi: 10.1021/acsaelm.0c00109. DOI
Chen L., Liang J. An overview of functional nanoparticles as novel emerging antiviral therapeutic agents. Mater. Sci. Eng. C. 2020;112:1–15. doi: 10.1016/j.msec.2020.110924. PubMed DOI PMC
Venkataraman M., Mishra R., Subramaniam V., Gnanamani A., Subha T.S. Application of silver nanoparticles to industrial sewing threads: Effects on physico-functional properties & seam efficiency. Fibers Polym. 2014;15:510–518.
Tunakova V., Hrubosova Z., Tunak M., Kasparova M., Mullerova J. Laser surface modification of electrically conductive fabrics: Material performance improvement and design effects. Opt. Laser Technol. 2018;98:178–189. doi: 10.1016/j.optlastec.2017.07.017. DOI