Respiratory Sinus Arrhythmia as an Index of Cardiac Vagal Control in Mitral Valve Prolapse
Jazyk angličtina Země Česko Médium print
Typ dokumentu časopisecké články
PubMed
32228022
PubMed Central
PMC8604051
DOI
10.33549/physiolres.934402
PII: 934402
Knihovny.cz E-zdroje
- MeSH
- elektrokardiografie metody MeSH
- index tělesné hmotnosti * MeSH
- lidé MeSH
- mladiství MeSH
- nervus vagus fyziologie MeSH
- prolaps mitrální chlopně diagnóza patofyziologie MeSH
- respirační sinusová arytmie fyziologie MeSH
- srdeční frekvence fyziologie MeSH
- Check Tag
- lidé MeSH
- mladiství MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
Respiratory sinus arrhythmia (RSA), i.e. heart rate (HR) variations during inspiration and expiration, is considered as a noninvasive index of cardiac vagal control. Mitral valve prolapse (MVP) could be associated with increased cardiovascular risk; however, the studies are rare particularly at adolescent age. Therefore, we aimed to study cardiac vagal control indexed by RSA in adolescent patients suffering from MVP using short-term heart rate variability (HRV) analysis. We examined 12 adolescents (girls) with MVP (age 15.9±0.5 years) and 12 age and gender matched controls. Resting ECG was continuously recorded during 5 minutes. Evaluated HRV indices were RR interval (ms), rMSSD (ms), pNN50 (%), log HF (ms(2)), peak HF (Hz) and respiratory rate (breaths/min). RR interval was significantly shortened in MVP group compared to controls (p=0.004). HRV parameters-rMSSD, pNN50 and log HF were significantly lower in MVP compared to controls (p=0.017, p=0.014, p= 0.015 respectively). Our study revealed reduced RSA magnitude indicating impaired cardiac vagal control in MVP already at adolescent age that could be crucial for early diagnosis of cardiovascular risk in MVP.
Zobrazit více v PubMed
ABBOUD FM, HARWANI SC, CHAPLEAU MW. Autonomic neural regulation of the immune system: implications for hypertension and cardiovascular disease. Hypertension. 2012;59:755–762. doi: 10.1161/hypertensionaha.111.186833. PubMed DOI PMC
AHERN GL, SOLLERS JJ, LANE RD, LABINER DM, HERRING AM, WEINAND ME, HUTZLER R, THAYER JF. Heart rate and heart rate variability changes in the intracarotid sodium amobarbital test. Epilepsia. 2001;42:912–921. doi: 10.1046/j.1528-1157.2001.042007912.x. PubMed DOI
BAKKESTRØM R, BANKE A, CHRISTENSEN NL, PECINI R, IRMUKHAMEDOV A, ANDERSEN M, BORLAUG BA, MØLLER JE. Hemodynamic characteristics in significant symptomatic and asymptomatic primary mitral valve regurgitation at rest and during exercise. Circ Cardiovasc Imaging. 2018;11:e007171. doi: 10.1161/circimaging.117.007171. PubMed DOI
BENARROCH EE. The central autonomic network: functional organization, dysfunction, and perspective. Mayo Clin Proc. 1993;68:988–1001. doi: 10.1016/s0025-6196(12)62272-1. PubMed DOI
BERNTSON GG, BIGGER JT, ECKBERG DL, GROSSMAN P, KAUFMANN PG, MALIK M, NAGARAJA HN, PORGES SW, SAUL JP, STONE PH, van der MOLEN MW. Heart rate variability: Origins, methods, and interpretive caveats. Psychophysiology. 1997;34:623–648. doi: 10.1111/j.1469-8986.1997.tb02140.x. PubMed DOI
BOARDMAN A, SCHLINDWEIN FS, ROCHA AP, LEITE A. A study on the optimum order of autoregressive models for heart rate variability. Physiol Meas. 2002;23:325–336. doi: 10.1088/0967-3334/23/2/308. PubMed DOI
CHEN Z, CHEN H, CHEN F, GU D, SUN L, ZHANG W, FAN L, LIN Y, DONG R, LAI K. Vagotomy decreases the neuronal activities of medulla oblongata and alleviates neurogenic inflammation of airways induced by repeated intra-esophageal instillation of HCl in guinea pigs. Physiol Res. 2017;66:1021–1028. doi: 10.33549/physiolres.933574. PubMed DOI
COOPER PJ, KOHL P. Species- and preparation-dependence of stretch effects on sino-atrial node pacemaking. Ann NY Acad Sci. 2005;1047:324–335. doi: 10.1196/annals.1341.029. PubMed DOI
DELLING FN, VASAN RS. Epidemiology and pathophysiology of mitral valve prolapse: new insights into disease progression, genetics, and molecular basis. Circulation. 2014;129:2158–2170. doi: 10.1161/circulationaha.113.006702. PubMed DOI PMC
GARAFOVA A, PENESOVA A, CIZMAROVA E, MARKO A, VLCEK M, JEZOVA D. Cardiovascular and sympathetic responses to a mental stress task in young patients with hypertension and/or obesity. Physiol Res. 2014;63(Suppl 4):S459–S467. PubMed
GROSSMAN P, WILHELM FH, SPOERLE M. Respiratory sinus arrhythmia, cardiac vagal control, and daily activity. Am J Physiol Heart Circ Physiol. 2004;287:H728–H734. PubMed
HAN L, HO TF, YIP WC, CHAN KY. Heart rate variability of children with mitral valve prolapse. J Electrocardiol. 2000;33:219–224. doi: 10.1054/jelc.2000.7661. PubMed DOI
HU X, WANG HZ, LIU J, CHEN AQ, YE XF, ZHAO Q. A novel role of sympathetic activity in regulating mitral valve prolapse. Circ J. 2014;78:1486–1493. doi: 10.1253/circj.cj-13-1222. PubMed DOI
HU X, ZHAO Q. Autonomic dysregulation as a novel underlying cause of mitral valve prolapse: a hypothesis. Med Sci Monit. 2011;17:27–31. doi: 10.12659/msm.881918. PubMed DOI PMC
JÍRA M, ZÁVODNÁ E, NOVÁKOVÁ Z, FISER B, HONZÍKOVÁ N. Reproducibility of blood pressure and inter-beat interval variability in man. Physiol Res. 2010;59:113–121. PubMed
KIM HG, CHEON EJ, BAI DS, LEE YH, KOO BH. Stress and heart rate variability: a meta-analysis and review of the literature. Psychiatry Investig. 2018;15:235–245. doi: 10.30773/pi.2017.08.17. PubMed DOI PMC
LABORDE S, MOSLEY E, THAYER JF. Heart rate variability and cardiac vagal tone in psychophysiological research - recommendations for experiment planning, data analysis, and data reporting. Front Psychol. 2017;8:213. doi: 10.3389/fpsyg.2017.00213. PubMed DOI PMC
LANE R, MCRAE K, REIMAN E, CHEN K, AHERN G, THAYER J. Neural correlates of heart rate variability during emotion. Neuroimage. 2009;44:213–222. doi: 10.1016/j.neuroimage.2008.07.056. PubMed DOI
LANGER P, JURÁK P, VONDRA V, HALÁMEK J, MEŠŤANÍK M, TONHAJZEROVÁ I, VIŠČOR I, SOUKUP L, MATEJKOVA M, ZÁVODNÁ E, LEINVEBER P. Respiratory-induced hemodynamic changes measured by whole-body multichannel impedance plethysmography. Physiol Res. 2018;67:571–581. doi: 10.33549/physiolres.933778. PubMed DOI
LEVY MN. Autonomic interactions in cardiac control. Ann N Y Acad Sci. 1990;601:209–221. PubMed
LICHT CMM, DE GEUS EJC, PENNINX BWJH. Dysregulation of the autonomic nervous system predicts the development of the metabolic syndrome. J Clin Endocrinol Metab. 2013;98:2484–2493. doi: 10.1210/jc.2012-3104. PubMed DOI
MESTANIK M, MESTANIKOVA A, LANGER P, GRENDAR M, JURKO A, SEKANINOVA N, VISNOVCOVA N, TONHAJZEROVA I. Respiratory sinus arrhythmia - testing the method of choice for evaluation of cardiovagal regulation. Respir Physiol Neurobiol. 2019;259:86–92. doi: 10.1016/j.resp.2018.08.002. PubMed DOI
MESTANIK M, MESTANIKOVA A, VISNOVCOVA Z, CALKOVSKA A, TONHAJZEROVA I. Cardiovascular sympathetic arousal in response to different mental stressors. Physiol Res. 2015;64:585–594. PubMed
MORTOLA JP, MARGHESCU D, SIEGRIST-JOHNSTONE R. Thinking about breathing: Effects on respiratory sinus arrhythmia. Respir Physiol Neurobiol. 2016;223:28–36. doi: 10.1016/j.resp.2015.12.004. PubMed DOI
PARK G, THAYER JF. From the heart to the mind: cardiac vagal tone modulates top-down and bottom-up visual perception and attention to emotional stimuli. Front Psychol. 2014;5:278. doi: 10.3389/fpsyg.2014.00278. PubMed DOI PMC
PARK G, VASEY MW, VAN BAVEL JJ, THAYER JF. Cardiac vagal tone is correlated with selective attention to neutral distractors under load. Psychophysiology. 2013;50:398–406. doi: 10.1111/psyp.12029. PubMed DOI
RAMSHUR JT. Design, Evaluation, and application of heart rate variability analysis software (HRVAS) The University of Memphis; 2010.
SUNG SH, LEE CW, WANG PN, LEE HY, CHEN CH, CHUNG CP. Cognitive functions and jugular venous reflux in severe mitral regurgitation: A pilot study. PLoS One. 2019;14:e0207832. doi: 10.1371/journal.pone.0207832. PubMed DOI PMC
TARVAINEN MP, RANTA-AHO PO, KARJALAINEN PA. An advanced detrending method with application to HRV analysis. IEEE Trans Biomed Eng. 2002;49:172–175. doi: 10.1109/10.979357. PubMed DOI
TASK FORCE OF THE EUROPEAN SOCIETY OF CARDIOLOGY AND THE NORTH AMERICAN SOCIETY OF PACING ELECTROPHYSIOLOGY. Heart rate variability: standards of measurement, physiological interpretation and clinical use. Circulation. 1996;93:1043–1065. doi: 10.1161/01.cir.93.5.1043. PubMed DOI
THAYER JF, ÅHS F, FREDRIKSON M, SOLLERS JJ, WAGER TD. A meta-analysis of heart rate variability and neuroimaging studies: Implications for heart rate variability as a marker of stress and health. Neurosci Biobehav Rev. 2012;36:747–756. doi: 10.1016/j.neubiorev.2011.11.009. PubMed DOI
THAYER JF, HANSEN AL, SAUS-ROSE E, JOHNSEN BH. Heart rate variability, prefrontal neural function, and cognitive performance: the neurovisceral integration perspective on self-regulation, adaptation, and health. Ann Behav Med. 2009;37:141–153. doi: 10.1007/s12160-009-9101-z. PubMed DOI
THAYER JF, LANE RD. A model of neurovisceral integration in emotion regulation and dysregulation. J Affect Disord. 2000;61:201–216. doi: 10.1016/s0165-0327(00)00338-4. PubMed DOI
THAYER JF, LANE RD. Claude Bernard and the heart-brain connection: Further elaboration of a model of neurovisceral integration. Neurosci Biobehav Rev. 2009;33:81–88. doi: 10.1016/j.neubiorev.2008.08.004. PubMed DOI
UIJTDEHAAGE SH, THAYER JF. Accentuated antagonism in the control of human heart rate. Clin Auton Res. 2000;10:107–110. doi: 10.1007/bf02278013. PubMed DOI
VISNOVCOVA Z, MESTANIK M, JAVORKA M, MOKRA D, GALA M, JURKO A, CALKOVSKA A, TONHAJZEROVA I. Complexity and time asymmetry of heart rate variability are altered in acute mental stress. Physiol Meas. 2014;35:1319–1334. doi: 10.1088/0967-3334/35/7/1319. PubMed DOI
ZINCHENKO YP, PERVICHKO EI. Qualitative characteristics of emotion regulation process in adolescents with mitral valve prolapse. Procedia - Soc Behav Sci. 2014;146:76–82. doi: 10.1016/j.sbspro.2014.08.089. DOI
Complex sympathetic regulation in adolescent mitral valve prolapse
Legacy of Prof. Juraj Korpáš: International Impact of Slovak School of Experimental Respirology