Immunomodulatory Potential of Differently-Terminated Ultra-Small Silicon Carbide Nanoparticles
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
National Sustainability Program I No. LO1503
Ministerstvo Školství, Mládeže a Tělovýchovy
PROGRES Q26
Univerzita Karlova v Praze
UNCE/SCI/010
Univerzita Karlova v Praze
SVV 260390
Univerzita Karlova v Praze
EU QuantERA Nanospin project (NKFIH Grant No. 127902)
Nemzeti Kutatási Fejlesztési és Innovációs Hivatal
National Quantum Technology Project (NKFIH Grant No. 2017-1.2.1-NKP-2017-00001)
Nemzeti Kutatási Fejlesztési és Innovációs Hivatal
NVKP project (NKFIH Grant No. NVKP_16-1-2016-0043)
Nemzeti Kutatási Fejlesztési és Innovációs Hivatal
János Bolyai Scholarship
Magyar Tudományos Akadémia
NTP-NFTÖ-18-B-0243 national talent program
Emberi Eroforrások Minisztériuma
UNKP-19 New National Excellence program
Nemzeti Kutatási Fejlesztési és Innovációs Hivatal
PubMed
32235697
PubMed Central
PMC7153366
DOI
10.3390/nano10030573
PII: nano10030573
Knihovny.cz E-zdroje
- Klíčová slova
- cytotoxicity, immune cells, nanoparticles, osteoblasts, silicon carbide,
- Publikační typ
- časopisecké články MeSH
Ultra-small nanoparticles with sizes comparable to those of pores in the cellular membrane possess significant potential for application in the field of biomedicine. Silicon carbide ultra-small nanoparticles with varying surface termination were tested for the biological system represented by different human cells (using a human osteoblastic cell line as the reference system and a monocyte/macrophage cell line as immune cells). The three tested nanoparticle surface terminations resulted in the observation of different effects on cell metabolic activity. These effects were mostly noticeable in cases of monocytic cells, where each type of particle caused a completely different response ('as-prepared' particles, i.e., were highly cytotoxic, -OH terminated particles slightly increased the metabolic activity, while -NH2 terminated particles caused an almost doubled metabolic activity) after 24 h of incubation. Subsequently, the release of cytokines from such treated monocytes and their differentiation into activated cells was determined. The results revealed the potential modulation of immune cell behavior following stimulation with particular ultra-small nanoparticles, thus opening up new fields for novel silicon carbide nanoparticle biomedical applications.
Biomedical Center Faculty of Medicine in Pilsen Charles University 323 00 Pilsen Czech Republic
Department of Atomic Physics Budapest University of Technology and Economics 1111 Budapest Hungary
Zobrazit více v PubMed
Lee M.Y., Yang J.A., Jung H.S., Beack S., Choi J.E., Hur W., Koo H., Kim K., Yoon S.K., Hahn S.K. Hyaluronic acid-gold nanoparticle/interferon alpha complex for targeted treatment of hepatitis C virus infection. ACS Nano. 2012;6:9522–9531. doi: 10.1021/nn302538y. PubMed DOI
Slowing I.I., Vivero-Escoto J.L., Wu C.W., Lin V.S. Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv. Drug Deliv. Rev. 2008;60:1278–1288. doi: 10.1016/j.addr.2008.03.012. PubMed DOI
Dasari B.C., Cashman S.M., Kumar-Singh R. Reducible PEG-POD/DNA Nanoparticles for Gene Transfer In Vitro and In Vivo: Application in a Mouse Model of Age-Related Macular Degeneration. Mol. Ther. Nucleic. Acids. 2017;8:77–89. doi: 10.1016/j.omtn.2017.06.004. PubMed DOI PMC
Ha S.W., Sikorski J.A., Weitzmann M.N., Beck G.R., Jr. Bio-active engineered 50 nm silica nanoparticles with bone anabolic activity: therapeutic index, effective concentration, and cytotoxicity profile in vitro. Toxicol In Vitro. 2014;28:354–364. doi: 10.1016/j.tiv.2013.12.001. PubMed DOI PMC
Zang X., Zhao X., Hu H., Qiao M., Deng Y., Chen D. Nanoparticles for tumor immunotherapy. Eur. J. Pharm. Biopharm. 2017;115:243–256. doi: 10.1016/j.ejpb.2017.03.013. PubMed DOI
Zhu P., Huang S., Li M., Ding N., Peng B., Kong L., Bo Y. A sandwiched biological fluorescent probe for the diagnosis of human ovarian tumor based on TiO2 nanoparticles. J. Fluoresc. 2011;21:179–186. doi: 10.1007/s10895-010-0702-5. PubMed DOI
Costo R., Bello V., Robic C., Port M., Marco J.F., Puerto Morales M., Veintemillas-Verdaguer S. Ultrasmall iron oxide nanoparticles for biomedical applications: improving the colloidal and magnetic properties. Langmuir. 2012;28:178–185. doi: 10.1021/la203428z. PubMed DOI
Cassano D., Mapanao A.-K., Summa M., Vlamidis Y., Giannone G., Santi M., Guzzolino E., Pitto L., Poliseno L., Bertorelli R., et al. Biosafety and Biokinetics of Noble Metals: The Impact of Their Chemical Nature. ACS Appl. Bio Mater. 2019;2:4464–4470. doi: 10.1021/acsabm.9b00630. PubMed DOI
Li C., Xu L., Liu Z., Li Z., Quan Z., Al Kheraif A.A., Lin J. Current progress in the controlled synthesis and biomedical applications of ultrasmall (<10 nm) NaREF4 nanoparticles. Dalton. Trans. 2018;47:8538–8556. doi: 10.1039/c8dt00258d. PubMed DOI
Frewin C.L., Locke C., Saddow S.E., Weeber E.J. Single-crystal cubic silicon carbide: an in vivo biocompatible semiconductor for brain machine interface devices. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2011;2011:2957–2960. doi: 10.1109/IEMBS.2011.6090582. PubMed DOI
Beke D., Szekrényes Z., Pálfi D., Róna G., Balogh I., Maák P.A., Katona G., Czigány Z., Kamarás K., Rózsa B., et al. Silicon carbide quantum dots for bioimaging. J. Mater. Res. 2012;28:205–209. doi: 10.1557/jmr.2012.296. DOI
Santavirta S., Takagi M., Nordsletten L., Anttila A., Lappalainen R., Konttinen Y.T. Biocompatibility of silicon carbide in colony formation test in vitro. Arch. Orthopaedic Trauma Surgery. 1998;118:89–91. doi: 10.1007/s004020050319. PubMed DOI
Beke D., Szekrényes Z., Balogh I., Veres M., Fazakas É., Varga L.K., Kamarás K., Czigány Z., Gali A. Characterization of luminescent silicon carbide nanocrystals prepared by reactive bonding and subsequent wet chemical etching. Appl. Phys. Lett. 2011;99 doi: 10.1063/1.3663220. DOI
Dravecz G., Janosi T.Z., Beke D., Major D.A., Karolyhazy G., Erostyak J., Kamaras K., Gali A. Identification of the binding site between bovine serum albumin and ultrasmall SiC fluorescent biomarkers. Phys. Chem. Chem. Phys. 2018;20:13419–13429. doi: 10.1039/C8CP02144A. PubMed DOI
Albanese A., Tang P.S., Chan W.C. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu. Rev. Biomed. Eng. 2012;14:1–16. doi: 10.1146/annurev-bioeng-071811-150124. PubMed DOI
Bhattacharjee S., Rietjens I.M., Singh M.P., Atkins T.M., Purkait T.K., Xu Z., Regli S., Shukaliak A., Clark R.J., Mitchell B.S., et al. Cytotoxicity of surface-functionalized silicon and germanium nanoparticles: the dominant role of surface charges. Nanoscale. 2013;5:4870–4883. doi: 10.1039/c3nr34266b. PubMed DOI PMC
Frohlich E. The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles. Int. J. Nanomed. 2012;7:5577–5591. doi: 10.2147/IJN.S36111. PubMed DOI PMC
Herd H., Daum N., Jones A.T., Huwer H., Ghandehari H., Lehr C.M. Nanoparticle geometry and surface orientation influence mode of cellular uptake. ACS Nano. 2013;7:1961–1973. doi: 10.1021/nn304439f. PubMed DOI PMC
Monopoli M.P., Aberg C., Salvati A., Dawson K.A. Biomolecular coronas provide the biological identity of nanosized materials. Nat. Nanotechnol. 2012;7:779–786. doi: 10.1038/nnano.2012.207. PubMed DOI
Escamilla-Rivera V., Uribe-Ramirez M., Gonzalez-Pozos S., Lozano O., Lucas S., De Vizcaya-Ruiz A. Protein corona acts as a protective shield against Fe3O4-PEG inflammation and ROS-induced toxicity in human macrophages. Toxicol. Lett. 2016;240:172–184. doi: 10.1016/j.toxlet.2015.10.018. PubMed DOI
Lesniak A., Fenaroli F., Monopoli M.P., Aberg C., Dawson K.A., Salvati A. Effects of the presence or absence of a protein corona on silica nanoparticle uptake and impact on cells. ACS Nano. 2012;6:5845–5857. doi: 10.1021/nn300223w. PubMed DOI
Wang F., Yu L., Monopoli M.P., Sandin P., Mahon E., Salvati A., Dawson K.A. The biomolecular corona is retained during nanoparticle uptake and protects the cells from the damage induced by cationic nanoparticles until degraded in the lysosomes. Nanomedicine. 2013;9:1159–1168. doi: 10.1016/j.nano.2013.04.010. PubMed DOI
Erickson H.P. Size and shape of protein molecules at the nanometer level determined by sedimentation, gel filtration, and electron microscopy. Biol. Proced. Online. 2009;11:32–51. doi: 10.1007/s12575-009-9008-x. PubMed DOI PMC
Sukwong P., Kongseng S., Chaicherd S., Yoovathaworn K., Tubtimkuna S., Pissuwan D. Comparison effects of titanium dioxide nanoparticles on immune cells in adaptive and innate immune system. IET Nanobiotechnol. 2017;11:759–765. doi: 10.1049/iet-nbt.2016.0205. DOI
Chen Q., Wang N., Zhu M., Lu J., Zhong H., Xue X., Guo S., Li M., Wei X., Tao Y., et al. TiO2 nanoparticles cause mitochondrial dysfunction, activate inflammatory responses, and attenuate phagocytosis in macrophages: A proteomic and metabolomic insight. Redox. Biol. 2018;15:266–276. doi: 10.1016/j.redox.2017.12.011. PubMed DOI PMC
Hirai T., Yoshioka Y., Izumi N., Ichihashi K., Handa T., Nishijima N., Uemura E., Sagami K., Takahashi H., Yamaguchi M., et al. Metal nanoparticles in the presence of lipopolysaccharides trigger the onset of metal allergy in mice. Nat. Nanotechnol. 2016;11:808–816. doi: 10.1038/nnano.2016.88. PubMed DOI
Cho W.S., Duffin R., Poland C.A., Duschl A., Oostingh G.J., Macnee W., Bradley M., Megson I.L., Donaldson K. Differential pro-inflammatory effects of metal oxide nanoparticles and their soluble ions in vitro and in vivo; zinc and copper nanoparticles, but not their ions, recruit eosinophils to the lungs. Nanotoxicology. 2012;6:22–35. doi: 10.3109/17435390.2011.552810. PubMed DOI
Nemmar A., Albarwani S., Beegam S., Yuvaraju P., Yasin J., Attoub S., Ali B.H. Amorphous silica nanoparticles impair vascular homeostasis and induce systemic inflammation. Int. J. Nanomed. 2014;9:2779–2789. doi: 10.2147/IJN.S52818. PubMed DOI PMC
Caracciolo G., Palchetti S., Colapicchioni V., Digiacomo L., Pozzi D., Capriotti A.L., La Barbera G., Lagana A. Stealth effect of biomolecular corona on nanoparticle uptake by immune cells. Langmuir. 2015;31:10764–10773. doi: 10.1021/acs.langmuir.5b02158. PubMed DOI
Lappas C.M. The immunomodulatory effects of titanium dioxide and silver nanoparticles. Food Chem. Toxicol. 2015;85:78–83. doi: 10.1016/j.fct.2015.05.015. PubMed DOI
Liu Y., Hardie J., Zhang X., Rotello V.M. Effects of engineered nanoparticles on the innate immune system. Semin. Immunol. 2017;34:25–32. doi: 10.1016/j.smim.2017.09.011. PubMed DOI PMC
Beke D., Szekrényes Z., Balogh I., Czigány Z., Kamarás K., Gali A. Preparation of small silicon carbide quantum dots by wet chemical etching. J. Mater. Res. 2012;28:44–49. doi: 10.1557/jmr.2012.223. DOI
Szekrényes Z., Somogyi B., Beke D., Károlyházy G., Balogh I., Kamarás K., Gali A. Chemical Transformation of Carboxyl Groups on the Surface of Silicon Carbide Quantum Dots. J. Phys. Chem. C. 2014;118:19995–20001. doi: 10.1021/jp5053024. DOI
Beke D., Jánosi T.Z., Somogyi B., Major D.Á., Szekrényes Z., Erostyák J., Kamarás K., Gali A. Identification of Luminescence Centers in Molecular-Sized Silicon Carbide Nanocrystals. J. Phys. Chem. C. 2015;120:685–691. doi: 10.1021/acs.jpcc.5b09503. DOI
Hanaor D., Michelazzi M., Leonelli C., Sorrell C.C. The effects of carboxylic acids on the aqueous dispersion and electrophoretic deposition of ZrO2. J. Eur. Ceramic Soc. 2012;32:235–244. doi: 10.1016/j.jeurceramsoc.2011.08.015. DOI
O’Brien R.W., Midmore B.R., Lamb A., Hunter R.J. Electroacoustic studies of moderately concentrated colloidal suspensions. Faraday Discuss. Chem. Soc. 1990;90 doi: 10.1039/dc9909000301. DOI
Flahaut E., Durrieu M.C., Remy-Zolghadri M., Bareille R., Baquey C. Study of the cytotoxicity of CCVD carbon nanotubes. J. Mater. Sci. 2006;41:2411–2416. doi: 10.1007/s10853-006-7069-7. DOI
Sikora A., Shard A.G., Minelli C. Size and ζ-Potential Measurement of Silica Nanoparticles in Serum Using Tunable Resistive Pulse Sensing. Langmuir. 2016;32:2216–2224. doi: 10.1021/acs.langmuir.5b04160. PubMed DOI
Branda F., Silvestri B., Costantini A., Luciani G. The fate of silica based Stober particles soaked into growth media (RPMI and M254): A DLS and zeta-potential study. Colloids Surf B Biointerfaces. 2015;135:840–845. doi: 10.1016/j.colsurfb.2015.03.033. PubMed DOI
Lin J., Alexander-Katz A. Cell membranes open “doors” for cationic nanoparticles/biomolecules: insights into uptake kinetics. ACS Nano. 2013;7:10799–10808. doi: 10.1021/nn4040553. PubMed DOI
Jiang Y., Huo S., Mizuhara T., Das R., Lee Y.W., Hou S., Moyano D.F., Duncan B., Liang X.J., Rotello V.M. The Interplay of Size and Surface Functionality on the Cellular Uptake of Sub-10 nm Gold Nanoparticles. ACS Nano. 2015;9:9986–9993. doi: 10.1021/acsnano.5b03521. PubMed DOI PMC
Ostrovska L., Broz A., Fucikova A., Belinova T., Sugimoto H., Kanno T., Fujii M., Valenta J., Kalbacova M.H. The impact of doped silicon quantum dots on human osteoblasts. RSC Adv. 2016;6:63403–63413. doi: 10.1039/C6RA14430F. DOI
Balek L., Buchtova M., Kunova Bosakova M., Varecha M., Foldynova-Trantirkova S., Gudernova I., Vesela I., Havlik J., Neburkova J., Turner S., et al. Nanodiamonds as “artificial proteins”: Regulation of a cell signalling system using low nanomolar solutions of inorganic nanocrystals. Biomaterials. 2018;176:106–121. doi: 10.1016/j.biomaterials.2018.05.030. PubMed DOI
Belinova T., Vrabcova L., Machova I., Fucikova A., Valenta J., Sugimoto H., Fujii M., Hubalek Kalbacova M. Silicon Quantum Dots and Their Impact on Different Human Cells. Phys. Status Solidi (b) 2018 doi: 10.1002/pssb.201700597. DOI
Tang H.L., Yuen K.L., Tang H.M., Fung M.C. Reversibility of apoptosis in cancer cells. Br. J. Cancer. 2009;100:118–122. doi: 10.1038/sj.bjc.6604802. PubMed DOI PMC
Wei X., Jiang W., Yu J., Ding L., Hu J., Jiang G. Effects of SiO2 nanoparticles on phospholipid membrane integrity and fluidity. J. Hazard. Mater. 2015;287:217–224. doi: 10.1016/j.jhazmat.2015.01.063. PubMed DOI
Lankoff A., Arabski M., Wegierek-Ciuk A., Kruszewski M., Lisowska H., Banasik-Nowak A., Rozga-Wijas K., Wojewodzka M., Slomkowski S. Effect of surface modification of silica nanoparticles on toxicity and cellular uptake by human peripheral blood lymphocytes in vitro. Nanotoxicology. 2013;7:235–250. doi: 10.3109/17435390.2011.649796. PubMed DOI
Guller A.E., Generalova A.N., Petersen E.V., Nechaev A.V., Trusova I.A., Landyshev N.N., Nadort A., Grebenik E.A., Deyev S.M., Shekhter A.B., et al. Cytotoxicity and non-specific cellular uptake of bare and surface-modified upconversion nanoparticles in human skin cells. Nano Res. 2015;8:1546–1562. doi: 10.1007/s12274-014-0641-6. DOI
Bernas T., Dobrucki J. Mitochondrial and nonmitochondrial reduction of MTT: interaction of MTT with TMRE, JC-1, and NAO mitochondrial fluorescent probes. Cytometry. 2002;47:236–242. doi: 10.1002/cyto.10080. PubMed DOI
Berridge M.V., Tan A.S. Characterization of the cellular reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT): subcellular localization, substrate dependence, and involvement of mitochondrial electron transport in MTT reduction. Arch. Biochem. Biophys. 1993;303:474–482. doi: 10.1006/abbi.1993.1311. PubMed DOI
Freemerman A.J., Johnson A.R., Sacks G.N., Milner J.J., Kirk E.L., Troester M.A., Macintyre A.N., Goraksha-Hicks P., Rathmell J.C., Makowski L. Metabolic reprogramming of macrophages: glucose transporter 1 (GLUT1)-mediated glucose metabolism drives a proinflammatory phenotype. J. Biol. Chem. 2014;289:7884–7896. doi: 10.1074/jbc.M113.522037. PubMed DOI PMC
Palsson-McDermott E.M., O’Neill L.A. The Warburg effect then and now: from cancer to inflammatory diseases. Bioessays. 2013;35:965–973. doi: 10.1002/bies.201300084. PubMed DOI
Choi J., Zhang Q., Reipa V., Wang N.S., Stratmeyer M.E., Hitchins V.M., Goering P.L. Comparison of cytotoxic and inflammatory responses of photoluminescent silicon nanoparticles with silicon micron-sized particles in RAW 264.7 macrophages. J. Appl. Toxicol. 2009;29:52–60. doi: 10.1002/jat.1382. PubMed DOI
Gomez D.M., Urcuqui-Inchima S., Hernandez J.C. Silica nanoparticles induce NLRP3 inflammasome activation in human primary immune cells. Innate. Immun. 2017;23:697–708. doi: 10.1177/1753425917738331. PubMed DOI
Chou C.C., Chen W., Hung Y., Mou C.Y. Molecular Elucidation of Biological Response to Mesoporous Silica Nanoparticles in Vitro and in Vivo. ACS Appl. Mater. Interfaces. 2017;9:22235–22251. doi: 10.1021/acsami.7b05359. PubMed DOI
Li A., Dubey S., Varney M.L., Dave B.J., Singh R.K. IL-8 directly enhanced endothelial cell survival, proliferation, and matrix metalloproteinases production and regulated angiogenesis. J. Immunol. 2003;170:3369–3376. doi: 10.4049/jimmunol.170.6.3369. PubMed DOI
Himly M., Mills-Goodlet R., Geppert M., Duschl A. Nanomaterials in the Context of Type 2 Immune Responses-Fears and Potentials. Front. Immunol. 2017;8:471. doi: 10.3389/fimmu.2017.00471. PubMed DOI PMC
Kishimoto T.K., Maldonado R.A. Nanoparticles for the Induction of Antigen-Specific Immunological Tolerance. Front. Immunol. 2018;9:230. doi: 10.3389/fimmu.2018.00230. PubMed DOI PMC
Lakshman R., Finn A. Neutrophil disorders and their management. J. Clin. Pathol. 2001;54:7–19. doi: 10.1136/jcp.54.1.7. PubMed DOI PMC