Ischemia-Reperfusion Injury in Marginal Liver Grafts and the Role of Hypothermic Machine Perfusion: Molecular Mechanisms and Clinical Implications
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
32244972
PubMed Central
PMC7141496
DOI
10.3390/jcm9030846
PII: jcm9030846
Knihovny.cz E-zdroje
- Klíčová slova
- HOPE, extended criteria donation, hypothermic machine perfusion, ischemia-reperfusion injury, machine perfusion,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Ischemia-reperfusion injury (IRI) constitutes a significant source of morbidity and mortality after orthotopic liver transplantation (OLT). The allograft is metabolically impaired during warm and cold ischemia and is further damaged by a paradox reperfusion injury after revascularization and reoxygenation. Short-term and long-term complications including post-reperfusion syndrome, delayed graft function, and immune activation have been associated with IRI. Due to the current critical organ shortage, extended criteria grafts are increasingly considered for transplantation, however, with an elevated risk to develop significant features of IRI. In recent years, ex vivo machine perfusion (MP) of the donor liver has witnessed significant advancements. Here, we describe the concept of hypothermic (oxygenated) machine perfusion (HMP/HOPE) approaches and highlight which allografts may benefit from this technology. This review also summarizes clinical applications and the main aspects of ongoing randomized controlled trials on hypothermic perfusion. The mechanistic aspects of IRI and hypothermic MP-which include tissue energy replenishment, optimization of mitochondrial function, and the reduction of oxidative and inflammatory damage following reperfusion-will be comprehensively discussed within the context of current preclinical and clinical evidence. Finally, we highlight novel trends and future perspectives in the field of hypothermic MP in the context of recent findings of basic and translational research.
Department of Surgery and Transplantation University Hospital RWTH Aachen 52074 Aachen Germany
The Liver Unit Queen Elizabeth Hospital Birmingham Birmingham B15 2TH UK
Zobrazit více v PubMed
Land W.G. The role of postischemic reperfusion injury and other nonantigen-dependent inflammatory pathways in transplantation. Transplantation. 2005;79:505–514. doi: 10.1097/01.TP.0000153160.82975.86. PubMed DOI
Zhang Z., Qiu L., Yan S., Wang J.-J., Thomas P.M., Kandpal M., Zhao L., Iovane A., Liu X.-F., Thorp E.B., et al. A clinically relevant murine model unmasks a “two-hit” mechanism for reactivation and dissemination of cytomegalovirus after kidney transplant. Am. J. Transplant. 2019;19:2421–2433. doi: 10.1111/ajt.15376. PubMed DOI PMC
Tacke F., Kroy D.C., Barreiros A.P., Neumann U.P. Liver transplantation in Germany. Liver Transplant. 2016 doi: 10.1002/lt.24461. PubMed DOI
Eurotransplant. [(accessed on 18 March 2020)]; Waiting List Mortality in 2015, by Country, by Organ. Available online: https://statistics.eurotransplant.org/
Czigany Z., Schoning W., Ulmer T.F., Bednarsch J., Amygdalos I., Cramer T., Rogiers X., Popescu I., Botea F., Fronek J., et al. Hypothermic oxygenated machine perfusion (HOPE) for orthotopic liver transplantation of human liver allografts from extended criteria donors (ECD) in donation after brain death (DBD): A prospective multicentre randomised controlled trial (HOPE ECD-DBD) BMJ Open. 2017;7:e017558. doi: 10.1136/bmjopen-2017-017558. PubMed DOI PMC
Czigany Z., Lurje I., Tolba R.H., Neumann U.P., Tacke F., Lurje G. Machine perfusion for liver transplantation in the era of marginal organs-New kids on the block. Liver Int. 2018 doi: 10.1111/liv.13946. PubMed DOI
Merion R.M., Goodrich N.P., Feng S. How can we define expanded criteria for liver donors? J. Hepatol. 2006;45:484–488. doi: 10.1016/j.jhep.2006.07.016. PubMed DOI
Ploeg R.J., D’Alessandro A.M., Knechtle S.J., Stegall M.D., Pirsch J.D., Hoffmann R.M., Sasaki T., Sollinger H.W., Belzer F.O., Kalayoglu M. Risk factors for primary dysfunction after liver transplantation--a multivariate analysis. Transplantation. 1993;55:807–813. doi: 10.1097/00007890-199304000-00024. PubMed DOI
Busquets J., Xiol X., Figueras J., Jaurrieta E., Torras J., Ramos E., Rafecas A., Fabregat J., Lama C., Ibanez L., et al. The impact of donor age on liver transplantation: Influence of donor age on early liver function and on subsequent patient and graft survival. Transplantation. 2001;71:1765–1771. doi: 10.1097/00007890-200106270-00011. PubMed DOI
Piratvisuth T., Tredger J.M., Hayllar K.A., Williams R. Contribution of true cold and rewarming ischemia times to factors determining outcome after orthotopic liver transplantation. Liver Transplant. Surg. 1995;1:296–301. doi: 10.1002/lt.500010505. PubMed DOI
Czigany Z., Bleilevens C., Beckers C., Stoppe C., Mohring M., Fulop A., Szijarto A., Lurje G., Neumann U.P., Tolba R.H. Limb remote ischemic conditioning of the recipient protects the liver in a rat model of arterialized orthotopic liver transplantation. PLoS ONE. 2018;13:e0195507. doi: 10.1371/journal.pone.0195507. PubMed DOI PMC
Emontzpohl C., Stoppe C., Theissen A., Beckers C., Neumann U.P., Lurje G., Ju C., Bernhagen J., Tolba R.H., Czigany Z. The Role of Macrophage Migration Inhibitory Factor in Remote Ischemic Conditioning Induced Hepatoprotection in A Rodent Model of Liver Transplantation. Shock. 2018 doi: 10.1097/SHK.0000000000001307. PubMed DOI
Gao W., Bentley R.C., Madden J.F., Clavien P.A. Apoptosis of sinusoidal endothelial cells is a critical mechanism of preservation injury in rat liver transplantation. Hepatology. 1998;27:1652–1660. doi: 10.1002/hep.510270626. PubMed DOI
Ploeg R.J., van Bockel J.H., Langendijk P.T., Groenewegen M., van der Woude F.J., Persijn G.G., Thorogood J., Hermans J. Effect of preservation solution on results of cadaveric kidney transplantation. The European Multicentre Study Group. Lancet. 1992;340:129–137. doi: 10.1016/0140-6736(92)93212-6. PubMed DOI
Jaeschke H. Molecular mechanisms of hepatic ischemia-reperfusion injury and preconditioning. Am. J. Physiol. Gastrointest. Liver Physiol. 2003;284:G15–G26. doi: 10.1152/ajpgi.00342.2002. PubMed DOI
Hessheimer A.J., Garcia-Valdecasas J.C., Fondevila C. Abdominal regional in-situ perfusion in donation after circulatory determination of death donors. Curr. Opin. Organ Transplant. 2016;21:322–328. doi: 10.1097/MOT.0000000000000315. PubMed DOI
Stewart R.K., Dangi A., Huang C., Murase N., Kimura S., Stolz D.B., Wilson G.C., Lentsch A.B., Gandhi C.R. A novel mouse model of depletion of stellate cells clarifies their role in ischemia/reperfusion- and endotoxin-induced acute liver injury. J. Hepatol. 2014;60:298–305. doi: 10.1016/j.jhep.2013.09.013. PubMed DOI PMC
Belzer F.O., Southard J.H. Principles of solid-organ preservation by cold storage. Transplantation. 1988;45:673–676. doi: 10.1097/00007890-198804000-00001. PubMed DOI
Chouchani E.T., Pell V.R., James A.M., Work L.M., Saeb-Parsy K., Frezza C., Krieg T., Murphy M.P. A Unifying Mechanism for Mitochondrial Superoxide Production during Ischemia-Reperfusion Injury. Cell Metab. 2016;23:254–263. doi: 10.1016/j.cmet.2015.12.009. PubMed DOI
Peralta C., Bartrons R., Riera L., Manzano A., Xaus C., Gelpi E., Rosello-Catafau J. Hepatic preconditioning preserves energy metabolism during sustained ischemia. Am. J. Physiol. Gastrointest. Liver Physiol. 2000;279:G163–G171. doi: 10.1152/ajpgi.2000.279.1.G163. PubMed DOI
Carini R., Bellomo G., Benedetti A., Fulceri R., Gamberucci A., Parola M., Dianzani M.U., Albano E. Alteration of Na+ homeostasis as a critical step in the development of irreversible hepatocyte injury after adenosine triphosphate depletion. Hepatology. 1995;21:1089–1098. PubMed
Zaouali M.A., Ben Abdennebi H., Padrissa-Altes S., Mahfoudh-Boussaid A., Rosello-Catafau J. Pharmacological strategies against cold ischemia reperfusion injury. Expert Opin. Pharmacother. 2010;11:537–555. doi: 10.1517/14656560903547836. PubMed DOI
Niatsetskaya Z.V., Sosunov S.A., Matsiukevich D., Utkina-Sosunova I.V., Ratner V.I., Starkov A.A., Ten V.S. The oxygen free radicals originating from mitochondrial complex I contribute to oxidative brain injury following hypoxia-ischemia in neonatal mice. J. Neurosci. 2012;32:3235–3244. doi: 10.1523/JNEUROSCI.6303-11.2012. PubMed DOI PMC
Chen Q., Moghaddas S., Hoppel C.L., Lesnefsky E.J. Reversible blockade of electron transport during ischemia protects mitochondria and decreases myocardial injury following reperfusion. J. Pharmacol. Exp. Ther. 2006;319:1405–1412. doi: 10.1124/jpet.106.110262. PubMed DOI
Hoyer D.P., Mathe Z., Gallinat A., Canbay A.C., Treckmann J.W., Rauen U., Paul A., Minor T. Controlled Oxygenated Rewarming of Cold Stored Livers Prior to Transplantation: First Clinical Application of a New Concept. Transplantation. 2016;100:147–152. doi: 10.1097/TP.0000000000000915. PubMed DOI
van Golen R.F., Reiniers M.J., Olthof P.B., van Gulik T.M., Heger M. Sterile inflammation in hepatic ischemia/reperfusion injury: Present concepts and potential therapeutics. J. Gastroenterol. Hepatol. 2013;28:394–400. doi: 10.1111/jgh.12072. PubMed DOI
Essani N.A., McGuire G.M., Manning A.M., Jaeschke H. Endotoxin-induced activation of the nuclear transcription factor kappa B and expression of E-selectin messenger RNA in hepatocytes, Kupffer cells, and endothelial cells in vivo. J. Immunol. 1996;156:2956–2963. PubMed
Essani N.A., Fisher M.A., Jaeschke H. Inhibition of NF-kappa B activation by dimethyl sulfoxide correlates with suppression of TNF-alpha formation, reduced ICAM-1 gene transcription, and protection against endotoxin-induced liver injury. Shock. 1997;7:90–96. doi: 10.1097/00024382-199702000-00003. PubMed DOI
Jaeschke H., Farhood A. Neutrophil and Kupffer cell-induced oxidant stress and ischemia-reperfusion injury in rat liver. Am. J. Physiol. 1991;260:G355–G362. doi: 10.1152/ajpgi.1991.260.3.G355. PubMed DOI
Perry B.C., Soltys D., Toledo A.H., Toledo-Pereyra L.H. Tumor necrosis factor-alpha in liver ischemia/reperfusion injury. J. Investig. Surg. 2011;24:178–188. doi: 10.3109/08941939.2011.568594. PubMed DOI
van Golen R.F., van Gulik T.M., Heger M. Mechanistic overview of reactive species-induced degradation of the endothelial glycocalyx during hepatic ischemia/reperfusion injury. Free Radic. Biol. Med. 2012;52:1382–1402. doi: 10.1016/j.freeradbiomed.2012.01.013. PubMed DOI
Cywes R., Packham M.A., Tietze L., Sanabria J.R., Harvey P.R., Phillips M.J., Strasberg S.M. Role of platelets in hepatic allograft preservation injury in the rat. Hepatology. 1993;18:635–647. doi: 10.1002/hep.1840180324. PubMed DOI
Koo A., Komatsu H., Tao G., Inoue M., Guth P.H., Kaplowitz N. Contribution of no-reflow phenomenon to hepatic injury after ischemia-reperfusion: Evidence for a role for superoxide anion. Hepatology. 1992;15:507–514. doi: 10.1002/hep.1840150325. PubMed DOI
Clemens M.G. Nitric oxide in liver injury. Hepatology. 1999;30:1–5. doi: 10.1002/hep.510300148. PubMed DOI
Boecker J., Czigany Z., Bednarsch J., Amygdalos I., Meister F., Santana D.A.M., Liu W.J., Strnad P., Neumann U.P., Lurje G. Potential value and limitations of different clinical scoring systems in the assessment of short- and long-term outcome following orthotopic liver transplantation. PLoS ONE. 2019;14:e0214221. doi: 10.1371/journal.pone.0214221. PubMed DOI PMC
Boteon Y.L., Boteon A., Attard J., Mergental H., Mirza D.F., Bhogal R.H., Afford S.C. Ex situ machine perfusion as a tool to recondition steatotic donor livers: Troublesome features of fatty livers and the role of defatting therapies. A systematic review. Am. J. Transplant. 2018;18:2384–2399. doi: 10.1111/ajt.14992. PubMed DOI
Ijaz S., Yang W., Winslet M.C., Seifalian A.M. Impairment of hepatic microcirculation in fatty liver. Microcirculation. 2003;10:447–456. doi: 10.1038/sj.mn.7800206. PubMed DOI
Fernandez L., Carrasco-Chaumel E., Serafin A., Xaus C., Grande L., Rimola A., Rosello-Catafau J., Peralta C. Is ischemic preconditioning a useful strategy in steatotic liver transplantation? Am. J. Transplant. 2004;4:888–899. doi: 10.1111/j.1600-6143.2004.00447.x. PubMed DOI
Ben Mosbah I., Alfany-Fernandez I., Martel C., Zaouali M.A., Bintanel-Morcillo M., Rimola A., Rodes J., Brenner C., Rosello-Catafau J., Peralta C. Endoplasmic reticulum stress inhibition protects steatotic and non-steatotic livers in partial hepatectomy under ischemia-reperfusion. Cell Death Dis. 2010;1:e52. doi: 10.1038/cddis.2010.29. PubMed DOI PMC
Ijaz S., Yang W., Winslet M.C., Seifalian A.M. The role of nitric oxide in the modulation of hepatic microcirculation and tissue oxygenation in an experimental model of hepatic steatosis. Microvasc. Res. 2005;70:129–136. doi: 10.1016/j.mvr.2005.08.001. PubMed DOI
Hayashi M., Tokunaga Y., Fujita T., Tanaka K., Yamaoka Y., Ozawa K. The effects of cold preservation on steatotic graft viability in rat liver transplantation. Transplantation. 1993;56:282–287. doi: 10.1097/00007890-199308000-00005. PubMed DOI
Kron P., Schlegel A., Mancina L., Clavien P.A., Dutkowski P. Hypothermic oxygenated perfusion (HOPE) for fatty liver grafts in rats and humans. J. Hepatol. 2017 doi: 10.1016/j.jhep.2017.08.028. PubMed DOI
Jay C.L., Lyuksemburg V., Ladner D.P., Wang E., Caicedo J.C., Holl J.L., Abecassis M.M., Skaro A.I. Ischemic cholangiopathy after controlled donation after cardiac death liver transplantation: A meta-analysis. Ann. Surg. 2011;253:259–264. doi: 10.1097/SLA.0b013e318204e658. PubMed DOI
Foley D.P., Fernandez L.A., Leverson G., Anderson M., Mezrich J., Sollinger H.W., D’Alessandro A. Biliary complications after liver transplantation from donation after cardiac death donors: An analysis of risk factors and long-term outcomes from a single center. Ann. Surg. 2011;253:817–825. doi: 10.1097/SLA.0b013e3182104784. PubMed DOI PMC
Dawson P.A., Lan T., Rao A. Bile acid transporters. J. Lipid Res. 2009;50:2340–2357. doi: 10.1194/jlr.R900012-JLR200. PubMed DOI PMC
Hertl M., Harvey P.R.C., Swanson P.E., West D.D., Howard T.K., Shenoy S., Strasberg S.M. Evidence of preservation injury to bile ducts by bile salts in the pig and its prevention by infusions of hydrophilic bile salts. Hepatology. 1995;21:1130–1137. doi: 10.1002/hep.1840210436. PubMed DOI
Durand F., Levitsky J., Cauchy F., Gilgenkrantz H., Soubrane O., Francoz C. Age and liver transplantation. J. Hepatol. 2019;70:745–758. doi: 10.1016/j.jhep.2018.12.009. PubMed DOI
Bertuzzo V.R., Cescon M., Odaldi F., Di Laudo M., Cucchetti A., Ravaioli M., Del Gaudio M., Ercolani G., D’Errico A., Pinna A.D. Actual Risk of Using Very Aged Donors for Unselected Liver Transplant Candidates: A European Single-center Experience in the MELD Era. Ann. Surg. 2017;265:388–396. doi: 10.1097/SLA.0000000000001681. PubMed DOI
Detelich D., Markmann J.F. The dawn of liver perfusion machines. Curr. Opin. Organ Transplant. 2018;23:151–161. doi: 10.1097/MOT.0000000000000500. PubMed DOI PMC
Diaz Jaime F., Berenguer M. Pushing the donor limits: Deceased donor liver transplantation using organs from octogenarian donors. Liver Transplant. 2017;23:S22–S26. doi: 10.1002/lt.24841. PubMed DOI
Starzl T.E., Groth C.G., Brettschneider L., Penn I., Fulginiti V.A., Moon J.B., Blanchard H., Martin A.J., Jr., Porter K.A. Orthotopic homotransplantation of the human liver. Ann. Surg. 1968;168:392–415. doi: 10.1097/00000658-196809000-00009. PubMed DOI PMC
Vogel T., Brockmann J.G., Coussios C., Friend P.J. The role of normothermic extracorporeal perfusion in minimizing ischemia reperfusion injury. Transplant. Rev. 2012;26:156–162. doi: 10.1016/j.trre.2011.02.004. PubMed DOI
Reddy S.P., Bhattacharjya S., Maniakin N., Greenwood J., Guerreiro D., Hughes D., Imber C.J., Pigott D.W., Fuggle S., Taylor R., et al. Preservation of porcine non-heart-beating donor livers by sequential cold storage and warm perfusion. Transplantation. 2004;77:1328–1332. doi: 10.1097/01.TP.0000119206.63326.56. PubMed DOI
Mergental H., Laing R.W., Kirkham A.J., Perera T.P.R., Boteon Y., Attard J., Barton D., Wilkhu M., Curbishley S., Neil D.A., et al. Transplantation after Viability Testing of Discarded Livers with Normothermic Machine Perfusion (NMP): The Vittal (VIability Testing and Transplantation of mArginal Livers) Trial 90-Day Outcomes. Hepatology. 2018;68 doi: 10.1002/hep.30256. DOI
Nasralla D., Coussios C.C., Mergental H., Akhtar M.Z., Butler A.J., Ceresa C.D.L., Chiocchia V., Dutton S.J., Garcia-Valdecasas J.C., Heaton N., et al. A randomized trial of normothermic preservation in liver transplantation. Nature. 2018;557:50–56. doi: 10.1038/s41586-018-0047-9. PubMed DOI
Czigany Z., Tacke F., Lurje G. Evolving Trends in Machine Liver Perfusion: Comments on Clinical End Points and Selection Criteria. Gastroenterology. 2019;157:1166–1167. doi: 10.1053/j.gastro.2019.02.051. PubMed DOI
Eshmuminov D., Becker D., Bautista Borrego L., Hefti M., Schuler M.J., Hagedorn C., Muller X., Mueller M., Onder C., Graf R., et al. An integrated perfusion machine preserves injured human livers for 1 week. Nat. Biotechnol. 2020 doi: 10.1038/s41587-019-0374-x. PubMed DOI PMC
op den Dries S., Karimian N., Sutton M.E., Westerkamp A.C., Nijsten M.W., Gouw A.S., Wiersema-Buist J., Lisman T., Leuvenink H.G., Porte R.J. Ex vivo normothermic machine perfusion and viability testing of discarded human donor livers. Am. J. Transplant. 2013;13:1327–1335. doi: 10.1111/ajt.12187. PubMed DOI
Guarrera J.V., Henry S.D., Samstein B., Reznik E., Musat C., Lukose T.I., Ratner L.E., Brown R.S., Jr., Kato T., Emond J.C. Hypothermic machine preservation facilitates successful transplantation of “orphan” extended criteria donor livers. Am. J. Transplant. 2015;15:161–169. doi: 10.1111/ajt.12958. PubMed DOI
Moers C., Smits J.M., Maathuis M.H., Treckmann J., van Gelder F., Napieralski B.P., van Kasterop-Kutz M., van der Heide J.J., Squifflet J.P., van Heurn E., et al. Machine perfusion or cold storage in deceased-donor kidney transplantation. N. Engl. J. Med. 2009;360:7–19. doi: 10.1056/NEJMoa0802289. PubMed DOI
Guarrera J.V., Henry S.D., Samstein B., Odeh-Ramadan R., Kinkhabwala M., Goldstein M.J., Ratner L.E., Renz J.F., Lee H.T., Brown J.R.S., et al. Hypothermic Machine Preservation in Human Liver Transplantation: The First Clinical Series. Am. J. Transplant. 2010;10:372–381. doi: 10.1111/j.1600-6143.2009.02932.x. PubMed DOI
Henry S.D., Nachber E., Tulipan J., Stone J., Bae C., Reznik L., Kato T., Samstein B., Emond J.C., Guarrera J.V. Hypothermic machine preservation reduces molecular markers of ischemia/reperfusion injury in human liver transplantation. Am. J. Transplant. 2012;12:2477–2486. doi: 10.1111/j.1600-6143.2012.04086.x. PubMed DOI
Balzan S., Belghiti J., Farges O., Ogata S., Sauvanet A., Delefosse D., Durand F. The “50-50 Criteria” on Postoperative Day 5: An Accurate Predictor of Liver Failure and Death After Hepatectomy. Ann. Surg. 2005;242:824–829. doi: 10.1097/01.sla.0000189131.90876.9e. PubMed DOI PMC
de Rougemont O., Breitenstein S., Leskosek B., Weber A., Graf R., Clavien P.A., Dutkowski P. One hour hypothermic oxygenated perfusion (HOPE) protects nonviable liver allografts donated after cardiac death. Ann. Surg. 2009;250:674–683. doi: 10.1097/SLA.0b013e3181bcb1ee. PubMed DOI
Dutkowski P., Schlegel A., de Oliveira M., Mullhaupt B., Neff F., Clavien P.A. HOPE for human liver grafts obtained from donors after cardiac death. J. Hepatol. 2014;60:765–772. doi: 10.1016/j.jhep.2013.11.023. PubMed DOI
Dutkowski P., Polak W.G., Muiesan P., Schlegel A., Verhoeven C.J., Scalera I., DeOliveira M.L., Kron P., Clavien P.A. First Comparison of Hypothermic Oxygenated PErfusion Versus Static Cold Storage of Human Donation After Cardiac Death Liver Transplants: An International-matched Case Analysis. Ann. Surg. 2015;262:764–771. doi: 10.1097/SLA.0000000000001473. PubMed DOI
Schlegel A., Muller X., Kalisvaart M., Muellhaupt B., Perera M., Isaac J.R., Clavien P.A., Muiesan P., Dutkowski P. Outcomes of DCD liver transplantation using organs treated by hypothermic oxygenated perfusion before implantation. J. Hepatol. 2019;70:50–57. doi: 10.1016/j.jhep.2018.10.005. PubMed DOI
van Rijn R., Karimian N., Matton A.P.M., Burlage L.C., Westerkamp A.C., van den Berg A.P., de Kleine R.H.J., de Boer M.T., Lisman T., Porte R.J. Dual hypothermic oxygenated machine perfusion in liver transplants donated after circulatory death. Br. J. Surg. 2017;104:907–917. doi: 10.1002/bjs.10515. PubMed DOI PMC
van Rijn R., van Leeuwen O.B., Matton A.P.M., Burlage L.C., Wiersema-Buist J., van den Heuvel M.C., de Kleine R.H.J., de Boer M.T., Gouw A.S.H., Porte R.J. Hypothermic oxygenated machine perfusion reduces bile duct reperfusion injury after transplantation of donation after circulatory death livers. Liver Transplant. 2018;24:655–664. doi: 10.1002/lt.25023. PubMed DOI PMC
Patrono D., Surra A., Catalano G., Rizza G., Berchialla P., Martini S., Tandoi F., Lupo F., Mirabella S., Stratta C., et al. Hypothermic Oxygenated Machine Perfusion of Liver Grafts from Brain-Dead Donors. Sci. Rep. 2019;9:9337. doi: 10.1038/s41598-019-45843-3. PubMed DOI PMC
Brüggenwirth I.M.A., Burlage L.C., Porte R.J., Martins P.N. Is single portal vein perfusion the best approach for machine preservation of liver grafts? J. Hepatol. 2016;64:1194–1195. doi: 10.1016/j.jhep.2015.12.025. PubMed DOI
van Rijn R., van den Berg A.P., Erdmann J.I., Heaton N., van Hoek B., de Jonge J., Leuvenink H.G.D., Mahesh S.V.K., Mertens S., Monbaliu D., et al. Study protocol for a multicenter randomized controlled trial to compare the efficacy of end-ischemic dual hypothermic oxygenated machine perfusion with static cold storage in preventing non-anastomotic biliary strictures after transplantation of liver grafts donated after circulatory death: DHOPE-DCD trial. BMC Gastroenterol. 2019;19:40. doi: 10.1186/s12876-019-0956-6. PubMed DOI PMC
van Leeuwen O.B., de Vries Y., Fujiyoshi M., Nijsten M.W.N., Ubbink R., Pelgrim G.J., Werner M.J.M., Reyntjens K., van den Berg A.P., de Boer M.T., et al. Transplantation of High-risk Donor Livers After Ex Situ Resuscitation and Assessment Using Combined Hypo- and Normothermic Machine Perfusion: A Prospective Clinical Trial. Ann. Surg. 2019;270:906–914. doi: 10.1097/SLA.0000000000003540. PubMed DOI
Boteon Y.L., Laing R.W., Schlegel A., Wallace L., Smith A., Attard J., Bhogal R.H., Reynolds G., Pr Perera M.T., Muiesan P., et al. The impact on the bioenergetic status and oxidative-mediated tissue injury of a combined protocol of hypothermic and normothermic machine perfusion using an acellular haemoglobin-based oxygen carrier: The cold-to-warm machine perfusion of the liver. PLoS ONE. 2019;14:e0224066. doi: 10.1371/journal.pone.0224066. PubMed DOI PMC
Mergental H., Stephenson B.T.F., Laing R.W., Kirkham A.J., Neil D.A.H., Wallace L.L., Boteon Y.L., Widmer J., Bhogal R.H., Perera M., et al. Development of Clinical Criteria for Functional Assessment to Predict Primary Nonfunction of High-Risk Livers Using Normothermic Machine Perfusion. Liver Transplant. 2018;24:1453–1469. doi: 10.1002/lt.25291. PubMed DOI PMC
Brockmann J., Reddy S., Coussios C., Pigott D., Guirriero D., Hughes D., Morovat A., Roy D., Winter L., Friend P.J. Normothermic perfusion: A new paradigm for organ preservation. Ann. Surg. 2009;250:1–6. doi: 10.1097/SLA.0b013e3181a63c10. PubMed DOI
Selten J., Schlegel A., de Jonge J., Dutkowski P. Hypo- and normothermic perfusion of the liver: Which way to go? Best Pract. Res. Clin. Gastroenterol. 2017;31:171–179. doi: 10.1016/j.bpg.2017.04.001. PubMed DOI
Muller X., Schlegel A., Kron P., Eshmuminov D., Wurdinger M., Meierhofer D., Clavien P.A., Dutkowski P. Novel Real-time Prediction of Liver Graft Function During Hypothermic Oxygenated Machine Perfusion Before Liver Transplantation. Ann. Surg. 2019;270:783–790. doi: 10.1097/SLA.0000000000003513. PubMed DOI
Bhogal R.H., Mirza D.F., Afford S.C., Mergental H. Biomarkers of Liver Injury during Transplantation in an Era of Machine Perfusion. Int. J. Mol. Sci. 2020;21 doi: 10.3390/ijms21051578. PubMed DOI PMC
Boteon Y.L., Wallace L., Boteon A., Mirza D.F., Mergental H., Bhogal R.H., Afford S. An effective protocol for pharmacological defatting of primary human hepatocytes which is non-toxic to cholangiocytes or intrahepatic endothelial cells. PLoS ONE. 2018;13:e0201419. doi: 10.1371/journal.pone.0201419. PubMed DOI PMC
Yagi S., Nagai K., Kadaba P., Afify M., Teramukai S., Uemoto S., Tolba R.H. A novel organ preservation for small partial liver transplantations in rats: Venous systemic oxygen persuf fl ation with nitric oxide gas. Am. J. Transplant. 2013;13:222–228. doi: 10.1111/j.1600-6143.2012.04310.x. PubMed DOI
Jochmans I., O’Callaghan J.M., Pirenne J., Ploeg R.J. Hypothermic machine perfusion of kidneys retrieved from standard and high-risk donors. Transplant. Int. 2015;28:665–676. doi: 10.1111/tri.12530. PubMed DOI
Yao C.G., Martins P.N. Nanotechnology Applications in Transplantation Medicine. Transplantation. 2019 doi: 10.1097/TP.0000000000003032. PubMed DOI
Tietjen G.T., Hosgood S.A., DiRito J., Cui J., Deep D., Song E., Kraehling J.R., Piotrowski-Daspit A.S., Kirkiles-Smith N.C., Al-Lamki R., et al. Nanoparticle targeting to the endothelium during normothermic machine perfusion of human kidneys. Sci. Transl. Med. 2017;9 doi: 10.1126/scitranslmed.aam6764. PubMed DOI PMC
Gillooly A.R., Perry J., Martins P.N. First Report of siRNA Uptake (for RNA Interference) During Ex Vivo Hypothermic and Normothermic Liver Machine Perfusion. Transplantation. 2019;103:e56–e57. doi: 10.1097/TP.0000000000002515. PubMed DOI
Thijssen M.F., Bruggenwirth I.M.A., Gillooly A., Khvorova A., Kowalik T.F., Martins P.N. Gene Silencing With siRNA (RNA Interference): A New Therapeutic Option During Ex Vivo Machine Liver Perfusion Preservation. Liver Transplant. 2019;25:140–151. doi: 10.1002/lt.25383. PubMed DOI
Van Raemdonck D., Neyrinck A., Rega F., Devos T., Pirenne J. Machine perfusion in organ transplantation: A tool for ex-vivo graft conditioning with mesenchymal stem cells? Curr. Opin. Organ Transplant. 2013;18:24–33. doi: 10.1097/MOT.0b013e32835c494f. PubMed DOI
Kalenski J., Mancina E., Paschenda P., Beckers C., Bleilevens C., Tothova L., Boor P., Gross D., Tolba R.H., Doorschodt B.M. Comparison of Aerobic Preservation by Venous Systemic Oxygen Persufflation or Oxygenated Machine Perfusion of Warm-Ischemia-Damaged Porcine Kidneys. Eur. Surg. Res. Eur. Chir. Forsch. Rech. Chir. Eur. 2016;57:10–21. doi: 10.1159/000444851. PubMed DOI
Karimian N., Yeh H. Opportunities for Therapeutic Intervention During Machine Perfusion. Curr. Transplant. Rep. 2017;4:141–148. doi: 10.1007/s40472-017-0144-y. PubMed DOI PMC
Huang V., Karimian N., Detelich D., Raigani S., Geerts S., Beijert I., Fontan F.M., Aburawi M.M., Ozer S., Banik P., et al. Split-Liver Ex Situ Machine Perfusion: A Novel Technique for Studying Organ Preservation and Therapeutic Interventions. J. Clin. Med. 2020;9 doi: 10.3390/jcm9010269. PubMed DOI PMC
Schlegel A., de Rougemont O., Graf R., Clavien P.A., Dutkowski P. Protective mechanisms of end-ischemic cold machine perfusion in DCD liver grafts. J. Hepatol. 2013;58:278–286. doi: 10.1016/j.jhep.2012.10.004. PubMed DOI
Peralta C., Jimenez-Castro M.B., Gracia-Sancho J. Hepatic ischemia and reperfusion injury: Effects on the liver sinusoidal milieu. J. Hepatol. 2013;59:1094–1106. doi: 10.1016/j.jhep.2013.06.017. PubMed DOI
Upadhya G.A., Topp S.A., Hotchkiss R.S., Anagli J., Strasberg S.M. Effect of cold preservation on intracellular calcium concentration and calpain activity in rat sinusoidal endothelial cells. Hepatology. 2003;37:313–323. doi: 10.1053/jhep.2003.50069. PubMed DOI
Abudhaise H., Davidson B.R., DeMuylder P., Luong T.V., Fuller B. Evolution of dynamic, biochemical, and morphological parameters in hypothermic machine perfusion of human livers: A proof-of-concept study. PLoS ONE. 2018;13:e0203803. doi: 10.1371/journal.pone.0203803. PubMed DOI PMC
Martinez-Mier G., Toledo-Pereyra L.H., Ward P.A. Adhesion molecules in liver ischemia and reperfusion. J. Surg. Res. 2000;94:185–194. doi: 10.1006/jsre.2000.6006. PubMed DOI
Lazeyras F., Buhler L., Vallee J.P., Hergt M., Nastasi A., Ruttimann R., Morel P., Buchs J.B. Detection of ATP by “in line” 31P magnetic resonance spectroscopy during oxygenated hypothermic pulsatile perfusion of pigs’ kidneys. MAGMA. 2012;25:391–399. doi: 10.1007/s10334-012-0319-6. PubMed DOI
Schlegel A., Kron P., Graf R., Clavien P.A., Dutkowski P. Hypothermic Oxygenated Perfusion (HOPE) downregulates the immune response in a rat model of liver transplantation. Ann. Surg. 2014;260:931–937. doi: 10.1097/SLA.0000000000000941. PubMed DOI
Schlegel A., Muller X., Dutkowski P. Hypothermic Machine Preservation of the Liver: State of the Art. Curr. Transplant. Rep. 2018;5:93–102. doi: 10.1007/s40472-018-0183-z. PubMed DOI PMC
Mitchell P. Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature. 1961;191:144–148. doi: 10.1038/191144a0. PubMed DOI
Gallinat A., Hoyer D.P., Sotiropoulos G., Treckmann J., Benkoe T., Belker J., Saner F., Paul A., Minor T. Oxygen Persufflation in Liver Transplantation Results of a Randomized Controlled Trial. Bioengineering. 2019;6 doi: 10.3390/bioengineering6020035. PubMed DOI PMC
Koetting M., Luer B., Efferz P., Paul A., Minor T. Optimal time for hypothermic reconditioning of liver grafts by venous systemic oxygen persufflation in a large animal model. Transplantation. 2011;91:42–47. doi: 10.1097/TP.0b013e3181fed021. PubMed DOI
Murphy M.P. How mitochondria produce reactive oxygen species. Biochem. J. 2009;417:1–13. doi: 10.1042/BJ20081386. PubMed DOI PMC
Murphy M.P. Understanding and preventing mitochondrial oxidative damage. Biochem. Soc. Trans. 2016;44:1219–1226. doi: 10.1042/BST20160108. PubMed DOI PMC
Hirst J., King M.S., Pryde K.R. The Production of Reactive Oxygen Species by Complex I. Portland Press Ltd.; London, UK: 2008. PubMed
Luer B., Koetting M., Efferz P., Minor T. Role of oxygen during hypothermic machine perfusion preservation of the liver. Transplant. Int. 2010;23:944–950. doi: 10.1111/j.1432-2277.2010.01067.x. PubMed DOI
Chouchani E.T., Pell V.R., Gaude E., Aksentijevic D., Sundier S.Y., Robb E.L., Logan A., Nadtochiy S.M., Ord E.N.J., Smith A.C., et al. Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature. 2014;515:431–435. doi: 10.1038/nature13909. PubMed DOI PMC
Dutkowski P., Guarrera J.V., de Jonge J., Martins P.N., Porte R.J., Clavien P.A. Evolving Trends in Machine Perfusion for Liver Transplantation. Gastroenterology. 2019;156:1542–1547. doi: 10.1053/j.gastro.2018.12.037. PubMed DOI
t Hart N.A., van der Plaats A., Faber A., Leuvenink H.G., Olinga P., Wiersema-Buist J., Verkerke G.J., Rakhorst G., Ploeg R.J. Oxygenation during hypothermic rat liver preservation: An in vitro slice study to demonstrate beneficial or toxic oxygenation effects. Liver Transplant. 2005;11:1403–1411. doi: 10.1002/lt.20510. PubMed DOI
Meister F.A., Czigany Z., Bednarsch J., Bocker J., Amygdalos I., Morales Santana D.A., Rietzler K., Moeller M., Tolba R., Boor P., et al. Hypothermic Oxygenated Machine Perfusion of Extended Criteria Kidney Allografts from Brain Dead Donors: Protocol for a Prospective Pilot Study. JMIR Res. Protoc. 2019;8:e14622. doi: 10.2196/14622. PubMed DOI PMC
Lurje I., Czigany Z., Bednarsch J., Roderburg C., Isfort P., Neumann U.P., Lurje G. Treatment Strategies for Hepatocellular Carcinoma—A Multidisciplinary Approach. Int. J. Mol. Sci. 2019;20 doi: 10.3390/ijms20061465. PubMed DOI PMC
Imber C.J., St Peter S.D., de Cenarruzabeitia I.L., Lemonde H., Rees M., Butler A., Clayton P.T., Friend P.J. Optimisation of bile production during normothermic preservation of porcine livers. Am. J. Transplant. 2002;2:593–599. doi: 10.1034/j.1600-6143.2002.20703.x. PubMed DOI
Nativ N.I., Yarmush G., So A., Barminko J., Maguire T.J., Schloss R., Berthiaume F., Yarmush M.L. Elevated sensitivity of macrosteatotic hepatocytes to hypoxia/reoxygenation stress is reversed by a novel defatting protocol. Liver Transplant. 2014;20:1000–1011. doi: 10.1002/lt.23905. PubMed DOI PMC